Disparity Map Computation: Global-Style

Presentation by Scott Grauer-Gray
Stereo Overview

• Given a reference image and matching (test) image

• Goal is to find the disparity between each pixel in the reference image and the corresponding pixel in the matching (test) image

• Disparity is inversely proportional to depth
 - Objects with greater disparity --> closer to “cameras”/ “eyes” (or wherever the image is from)
 - Objects with smaller disparity --> farther from “cameras” / “eyes” (or wherever the image is from)
Calculating the Disparity Map

- Many algorithms/papers published on topic
- **Overview and evaluation of algorithms:** A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms
 - Current evaluation at http://vision.middlebury.edu/stereo/
Stereo Assumptions

- **Surface assumptions**
 - Surfaces in image are Lambertian...appearance does not vary with viewpoint
 - Surfaces are piece-wise smooth; disparity of a single surface does not randomly “jump” around

- **Camera calibration/epipolar geometry**
 - Pair of rectified images given as input
Calculating Disparity Maps

• Most stereo correspondence algorithms use all or some of following steps
 – Matching cost computation
 – Cost (support) aggregation
 – Disparity computation/optimization
 – Disparity refinement
Matching Cost Computation

- **Matching Cost Computation** – cost of matching point \((x_1, y_1)\) in reference image to point \((x_2, y_2)\) in test image
 - In SSD algorithm, matching cost = squared difference of intensity values of pixels at disparity \(d\)
 - Other matching costs: sum of absolute difference (SAD), normalized cross-correlation (NCC), Birchfield-Tomasi
Cost (support) aggregation

Cost (support) aggregation – summing the costs of matching pixels in a given region (possibly using weights)

- In SSD algorithm, aggregation is performed by averaging together matching costs for each pixel within a window at each given disparity using a box filter
- Aggregation can be performed using a Gaussian/binomial filter to provide greater weight to pixels near center of window
Disparity Computation/optimization

- Retrieves calculated disparity at each pixel in reference image, method varies by algorithm
 - In SSD algorithm, uses “winner-take-all” method
 - Inspects aggregated cost associated with each disparity via window centered around pixel
 - Disparity with the smallest aggregated cost is selected
 - Step can be performed “in parallel” for every pixel in the reference image
Disparity Refinement

- Disparity estimates generally in discretized space (such as integer pixel values)
- Some algorithm have refinement step to compute sub-pixel disparities after initial computations
- Methods include iterative gradient descent and fitting a curve to matching costs at discrete disparity levels
- Alternative is starting with more disparity levels
Stereo Algorithms

• Most stereo algorithms can be placed one of two categories
 - **Local** – disparity computation dependent on intensity values within finite window in reference and matching (test) image; smoothness assumption is implicit with aggregating support
 - **Global** – stereo matching problem converted to global function; goal to optimize this global function that (likely) combines matching cost and smoothness cost terms (and possibly others...); smoothness assumption encoded explicitly
Local Stereo

• **Example**: SSD using fixed windows

• One problem: setting correct size of window

 – **Small window**: may not be enough intensity variation; signal to noise ratio low

 – **Large window**: may cover region with multiple disparities

 – Paper by Kanade referenced in previous lecture goes into more detail about this...

• **Another problem**: what about texture-less regions? Aggregated matching cost near 0 for multiple disparities
Global Stereo

- **Goal is to retrieve disparity map that optimizes a global function**
 - Global function can vary across different global algorithms/implementations
 - Matching cost of corresponding pixels in ref/test images given disparity often encoded into function
 - Function often contains a “smoothness cost” - explicitly encodes the “piecewise smooth” assumption
 - Smoothness cost compares computed disparities of neighboring pixels in disparity map (greater difference in disparity -> greater smoothness cost)
Global Stereo: MRF

- **Global method**: formulate stereo matching problem as a Markov network
 - Markov network - Probabilistic graph model
 - Undirected graph of n nodes with pairwise potentials (given by compatibility function...)
 - State of each node i represented as x_i
 - Given some “evidence” Y
 - Joint compatibility function: \(\phi(x_s, Y) \)
 - Output can be considered “evidence” for \(x_s \) given \(Y \); greater if \(x_s \) is more likely
 - Compatibility function: \(\psi(x_s, x_t) \)
 - Encodes “pairwise potential”/compatibility between neighboring nodes \(x_s, x_t \); small if node pair not “compatible”
Global Stereo: MRF

- **Goal**: retrieve “most likely” set of nodes \(\{ x_1, x_2, ..., x_n \} \) given the evidence \(Y \) and the compatibility between neighboring nodes

 - Joint probability distribution function of \(n \) nodes:

 \[
 P(x_1, x_2, ..., x_n \mid Y) = \prod_{\text{all nodes } s} \phi(x_s, Y) \prod_{\text{all “neighboring” nodes } s, t} \psi(x_s, x_t)
 \]

- **Target**: retrieve set of nodes that maximizes joint probability distribution
Global Stereo: MRF

- **Target**: turn stereo matching problem into Markov random field problem
 - **Given**: stereo set of images
 - Color/intensity values of pixels in stereo images can be viewed as the “evidence”
 - **Current goal**: Find the disparity map that maximizes $P(\text{disparity map} \mid \text{stereo set})$
 - No obvious solution...
 - However, you do have some idea of $P(\text{stereo set} \mid \text{disparity map})$ and $P(\text{disparity map})$
 - How can you use this information?
Global Stereo: MRF

- **Bayes rule:** \(P(X \mid Y) = \frac{P(Y \mid X) \cdot P(X)}{P(Y)} \)
 - Using Bayes rule...
 - \(P(\text{disparity map} \mid \text{stereo set}) = \frac{P(\text{stereo set} \mid \text{disparity map}) \cdot P(\text{disparity map})}{P(\text{stereo set})} \)
 - Given stereo set --> \(P(\text{stereo set}) \) can be set to 1.0f
 - Now, \(P(\text{disparity map} \mid \text{stereo set}) = P(\text{stereo set} \mid \text{disparity map}) \cdot P(\text{disparity map}) \)
 - **New Goal:** retrieve disparity map that maximizes \(P(\text{stereo set} \mid \text{disparity map}) \cdot P(\text{disparity map}) \)
 - One of these terms can be viewed as encoding the “matching” cost/probability with the other one encoding smoothness of the disparity map...
 - Which one is which?
Global Stereo: MRF

- **Target**: retrieve $P(\text{stereo set} \mid \text{disparity map})$
 - Probability represents total matching cost across all pixels in a stereo set given the disparity map
 - Greater total matching cost --> lower $P(\text{stereo set} \mid \text{disparity map})$
 - If matching cost of every pixel is 0 given the current disparity map, then $P(\text{stereo set} \mid \text{disparity map}) = 1$
 - Matching costs of pixels increase --> $P(\text{stereo set} \mid \text{disparity map})$ decreases
 - If matching cost of any pixel is infinity --> assume $P(\text{stereo set} \mid \text{disparity map}) = 0$
 - Can use property to rule out certain disparity maps
Global Stereo: MRF

- $P(\text{stereo set} \mid \text{disparity map}) =$

\[
P(\text{all pixels } s \text{ in disparity map}) \prod (e^{-\text{matching cost of } s \text{ given } d_s \text{ in disp. map}})
\]

- Value of $P(\text{stereo set} \mid \text{disparity map})$ is between 0-1 inclusive
- If matching cost of all pixels is 0, $P(\text{stereo set} \mid \text{disparity map}) = 1$ since $e^0 = 1$
- If matching cost of any pixel is infinity $P(\text{stereo set} \mid \text{disparity map}) = 0$ since $e^{-\infty} = 0$
- As matching costs of pixel(s) increase, $P(\text{stereo set} \mid \text{disparity map})$ decreases
Global Stereo: MRF

- **Target**: retrieve $P(\text{disparity map})$
 - Represents total smoothness cost of disparity map
 - Smoothness cost and $P(\text{disparity map})$ are inversely related (why...remember goal is to minimize smoothness cost)
 - Assume that pixels near each other have the same disparity --> smoothness cost increases when this condition is violated
 - Case where all pixels have same disparity --> total smoothness cost is 0 --> $P(\text{disparity map}) = 1$
 - Smoothness cost approaches infinity --> $P(\text{disparity map})$ approaches 0
Global Stereo: MRF

• How to compute smoothness cost?
 – **One method**: use function that takes disparities of neighboring pixels in disparity map (generally 4-connected neighbors used)
 – If neighboring pixels have same disparity -> cost is 0
 • Cost increases as change in disparity (between neighboring pixels) increases
 • What to do about discontinuities?
 – May want to account for them in some manner
 – Could truncate smoothness cost at some point...prevent large jumps in disparity from being over-penalized
 – Could use segmentation (in pre-processing) to encode discontinuities and set smoothness cost to 0 where discontinuities expected...(this goes beyond basic stereo)
Global Stereo: MRF

- $P(\text{disparity map}) =$
 \[\prod \left(e^{\sum (-1) \cdot \text{smoothness cost between } s \text{ and } t \text{ given } d_s \text{ and } d_t} \right) \]
 All 4-connected neighboring pixels s, t in disparity map

- If smoothness cost of all sets of neighboring pixels is 0, $P(\text{disparity map}) = 1$
- If smoothness cost of any set of neighboring pixels is infinity \(\rightarrow\) $P(\text{disparity map}) = 0$
- Note that stereo image set has nothing to do with this probability
 - Disparity of all pixels in disparity map = constant $c \rightarrow P(\text{disparity map}) = 1$ (regardless of stereo set...)
Global Stereo: MRF

• Original goal: maximize $P(\text{disparity map} \mid \text{stereo set})$

 – Used Bayes to set $P(\text{disparity map} \mid \text{stereo set}) = P(\text{stereo set} \mid \text{disparity map}) \ast P(\text{disparity map})$

 – Using new info...

 • $P(\text{disparity map} \mid \text{stereo set}) =$

 $\prod (e^{(-1) \ast \text{matching cost of } s \text{ given } d_s \text{ in disp. map and stereo set}}) \ast \prod (e^{(-1) \ast \text{smoothness cost between } s \text{ and } t \text{ given } d_s \text{ and } d_t})$

 All pixels s in disparity map

 All 4-connected neighboring pixels s, t in disparity map
Global Stereo: MRF

• **Models for matching cost**
 - Same as local window: SAD, SSD, NCC, Birchfield-Tomasi
 -> use corresponding pixels in ref/test images for given disparity to compute cost

• **Models for smoothness cost**
 - Linear model commonly used: analogous to SAD for matching cost
 • Smoothness cost between neighboring pixels on disparity map = absolute difference in disparity
 • Linear model often truncates disparity difference at a given value to allow for discontinuities without too large of a penalty
 • Other models: Potts model, quadratic model
Global Stereo: MRF

• Retrieving $P(\text{stereo set} \mid \text{disparity map})$ and $P(\text{disparity map})$ in “toy” stereo sets
 - See next few slides...
 - Assume that SAD model used for matching cost computation
 - Assume linear model in smoothness cost computation

• What would be the “simplest” possible stereo set?
Global Stereo: MRF

• Toy stereo set #1:
 – Two all “black” images given as stereo set
 • What will be the $P(\text{stereo set} | \text{disparity map})$ when all disparities are 0?
 • What will be $P(\text{disparity map})$ when all disparities are 0?
 • What is $P(\text{disparity map} | \text{stereo set})$ when disparities = 0?
 • Will $P(\text{stereo set} | \text{disparity map})$ change if disparity map changes?
Global Stereo: MRF

• Toy Stereo Set #2:
 – Two identical images given as stereo set (Tsukuba reference image, as an example)
 – What will be the P(stereo set | disparity map) when all disparities are 0?
 – What will be P(disparity map) when all disparities are 0?
 – Will P(stereo set | disparity map) change if disparity map changes?
 – What happens when all disparities = 1 in disparity map?
Global Stereo: MRF

- Toy Stereo set #3: Grayscale stereo set with textured "background" and black object "foreground"
 - Disparity of textured "background" is 0
 - Disparity of "black" object is 5
- Given ground truth disparity map...

Ref Image

- What will be the $P(\text{stereo set} \mid \text{disparity map})$ when all disparities are 0?
- What will $P(\text{stereo set} \mid \text{disparity map})$ when all disparities correspond to ground truth?
- What will be $P(\text{disparity map})$ when all disparities are 0?
- What will be $P(\text{disparity map})$ when all disparities correspond to ground truth?
Global Stereo: MRF

• Back to the Markov Random Field...
 – **Markov network** - undirected graph of n nodes with pairwise potentials
 – State of each node $i \rightarrow x_i$
 – Given “evidence” Y
 – Joint probability distribution function of nodes:
 $$P(x_1, x_2, \ldots, x_n | Y) = \prod_{\text{all nodes } s} \phi(x_s, Y) \prod_{\text{all “neighboring” nodes } s, t} \psi(x_s, x_t)$$
Global Stereo: MRF

• Stereo...
 - Find disparity map to maximize $P(\text{disparity map} \mid \text{stereo set})$ where $P(\text{disparity map} \mid \text{stereo set}) = \prod_{\text{all pixels } s \text{ in disparity map}} \left(e^{(-1) \times \text{matching cost of } s \text{ given } d_s \text{ in disp. map}} \right) \ast \prod_{\text{all 4-connected neighboring pixels } s, t \text{ in disparity map}} \left(e^{(-1) \times \text{smoothness cost between } s \text{ and } t \text{ given } d_s \text{ and } d_t} \right)$

• MRF...
 - Find set of n nodes with states x_1, x_2, \ldots, x_n needed to maximize $P(x_1, x_2, \ldots, x_n \mid Y) = \prod_{\text{all nodes } s} \phi(x_s, Y) \prod_{\text{all "neighboring" nodes } s, t} \psi(x_s, x_t)$
 - $Y =$ local “evidence”
Global Stereo: MRF

- **Maximizing $P(\text{disparity map} \mid \text{stereo set})$:** equivalent to maximizing $P(x_1, x_2, \ldots, x_n \mid Y)$ in Markov network
 - Set of states x_1, x_2, \ldots, x_n in Markov network \rightarrow set of pixels in disparity map, each with a disparity value (assigned disparity value = “state”)
 - “Evidence” Y in Markov network \rightarrow given stereo set of images

- **(A) mission accomplished:** stereo problem turned into Markov network problem
 - Specifically, the stereo problem has been “reduced to” retrieving the maximum a posteriori (MAP) estimation in the Markov network
Global Stereo: MRF

• Retrieving the MAP estimation in the Markov network
 – NP-complete problem; often infeasible to solve using “brute force”
 • Each pixel (“node”) in disparity map can take any value in disparity space (“state”)
 – Methods used to estimate solution in reasonable amount of time
 • Graph cuts
 • Belief propagation
Global Stereo: MRF

- **Belief Propagation**
 - Iterative inference algorithm that can be used on Markov network problems
 - Works by sending messages through the network for a number of iterations
 - Eventually, the message values at each node will converge and then the message values are used to retrieve the estimated state of the node
 - Retrieves optimal solution in graphs without loops
 - Called loopy belief propagation in graphs with loops (such as graph resulting from stereo problem)
 - No guarantee of optimal solution, but generally gives a good approximation
Belief Propagation

- Can be used to retrieve the MAP estimation in the Markov network
 - Each node computes messages to send to four-connected neighbors
 - Each message can be viewed as a vector containing a value for each possible disparity
 - Messages are computed at each pixel (in each iteration) and then passed to four-connected neighbors
 - Messages computed using data cost and message values from neighbors (computed in previous iteration)
 - Higher message value --> higher probability of corresponding disparity
Belief Propagation: Message Computation

• Messages initially initialized to 1
 – Message from pixel s to neighbor t in iteration i+1 corresponding to disparity d_x computed via:

\[
M_{st}(d_x) = \max_{d_y \text{ in disparity space}} \left(\Psi(d_x, d_y) \times \phi(d_x, Y) \times \prod_{k \text{ all neighbors of } s \text{ except } t}^{i} M_{ks}(d_y) \right)
\]

Computational running time for each message at each pixel: $O(D^2)$, where D is the size of the disparity space

• Message values will converge after “enough” iterations
 → Once message values converge, message values (with joint compatibility function) used to compute estimated disparity at each pixel
Belief Propagation

- After all BP iterations complete...
 - Compute belief value of each disparity d_x at each pixel s
 - $b_s(d_x) = \phi(d_x, Y) * \prod_{\text{All neighbors } k \text{ of } s} M_{ks}(d_x)$
 - Disparity value at each pixel in disparity map is set to d_x corresponding to the maximum belief value
 - Resulting disparity map is estimation of desired disparity map that maximizes $P(\text{disparity map} \mid \text{stereo set})$ from the original problem via the MRF formulation and the MAP estimation
 - We are done! (or are we...)
Belief Propagation: Analysis

- Results for Tsukuba stereo set:

 Reference image:

 ![Reference image](image1.png)

 Ground truth:

 ![Ground truth](image2.png)

 Result using window-based matching:

 ![Result using window-based matching](image3.png)

 Result using Belief propagation:

 ![Result using Belief propagation](image4.png)
Running time of Belief Propagation

- Algorithm runs for I iterations
- D values in disparity space
- Images in stereo set are of size N * M
- **Total Running time (sequential):**
 - Computation of data costs: $O(N*M*D)$
 - Computation of computing/passing message values in each iteration (naive): $O(N*M*D^2)$
 - Computation of calculated disparity values: $O(N*M*D)$
 - Total running time = $O(N*M*D) + I * O(N*M*D^2) * O(N*M*D) = O(N*M*I*D^2)$
 - Running time if computations performed on all pixels in parallel?
Storage requirements of Belief Propagation

- **Initially**: need to store the 2 N*M images in stereo set: \(O(2*N*M)\) (not needed after data costs computed)

- **Matching cost stored for every pixel at each disparity**: \(O(N*M*D)\)

- **Four message vectors of size D stored for every pixel**: \(O(4*N*M*D)\)

- **Total storage requirement**: \(O(5*N*M*D)\)
Advantages of Belief Propagation

- Resulting disparity map is close to minimization of data and smoothness costs
 - Resulting disparity map relatively accurate in practice
 - Generally better results than local methods such as SSD (even if adaptive windows are used)
- Can be extended to incorporate occlusion, segmentation, and other info to further improve the results
 - The #2 and #3 stereo algorithms according to the Middlebury benchmark are based on belief propagation
Current Middlebury benchmark stereo results

![Image of Middlebury Stereo Evaluation - Version 2](http://vision.middlebury.edu/stereo/eval/)

Middlebury Stereo Evaluation - Version 2

New features and main differences to version 1.
Submit and evaluate your own results.

Open a new window for each link.

Error Threshold - 1

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Avg.</th>
<th>Error Threshold</th>
<th>Tsukuba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nonocc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonocc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonocc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonocc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonocc</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>all</td>
<td>accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disc</td>
<td>accuracy</td>
</tr>
</tbody>
</table>

Average percent of bad pixels (explanation)
Drawbacks of Belief Propagation

• Requires many iterations for message values to converge and retrieve an accurate disparity estimate
• High storage requirements
Drawbacks of Belief Propagation

• Felzenwalb (2004) presents methods to account for these drawbacks
 – Hierarchical scheme to reduce number of iterations
 -> longer-range interactions between pixels in fewer iterations course levels
 – Checkerboard scheme for message passing
 • Only half of the pixels must compute message values in each iteration
 • Allows BP iterations to be performed in place; cuts storage requirements
Other Global Methods

- Belief propagation's primary “competitor” is graph cut
 - Either can be used to minimize total data and smoothness costs in global function
 - Tappan (2003) compared the two algorithms using identical parameters
 - Disparity maps retrieved using graph cut had slightly lower energy, but results similar in relation to ground truth
 - Belief propagation appears more popular based on Middlebury benchmark evaluation