1. For the circular current ring shown below, for the current element shown, what is $dA(r,\theta,\phi)$? Hint: you cannot assume $r=r'$ for this problem. Hint 2: write the answer in Cartesian coordinates, that is, actually give me $dA(x,y,z)$ in terms of x, y, z, R and ϕ_c.

2. Now, find A. Hint: do you have to find A everywhere to know what it is everywhere? Hint 2: after using this hint, convert r' back to spherical coordinates and then approximate $r>>R$. Hint 3: you will need $(1-x)^{-1/2} \approx 1 + x/2$.