
Detecting Passive Cheats in Online Games via
Performance-Skillfulness Inconsistency

Daiping Liu
Univ. of Delaware

dpliu@udel.edu

Xing Gao
College of William & Mary

xgao01@email.wm.edu

Mingwei Zhang
Intel Research

mingwei.zhang@intel.com

Haining Wang
Univ. of Delaware

hnw@udel.edu

Angelos Stavrou
George Mason University

astavrou@gmu.edu

Abstract—As the most commonly used bots in first-person
shooter (FPS) online games, aimbots are notoriously difficult to
detect because they are completely passive and resemble excellent
honest players in many aspects. In this paper, we conduct the
first field measurement study to understand the status quo of
aimbots and how they play in the wild. For data collection
purpose, we devise a novel and generic technique called bait-
target to accurately capture existing aimbots from the two most
popular FPS games. Our measurement reveals that cheaters who
use aimbots cannot play as skillful as excellent honest players in
all aspects even though aimbots can help them to achieve very
high shooting performance. To characterize the unskillful and
blatant nature of cheaters, we identify seven features, of which
six are novel, and these features cannot be easily mimicked by
aimbots. Leveraging this set of features, we propose an accurate
and robust server-side aimbot detector called AimDetect. The core
of AimDetect is a cascaded classifier that detects the inconsistency
between performance and skillfulness of aimbots. We evaluate the
efficacy and generality of AimDetect using the real game traces.
Our results show that AimDetect can capture almost all of the
aimbots with very few false positives and minor overhead.

I. INTRODUCTION

The online game market is one of the fastest growing
entertainment industries in the world. By 2019, the size of
global game market is forecasted to reach $100 billion [9].
Among the many genres of online games, first person shooter
(FPS) is the second most popular. For example, two out of
the five most popular games on Steam, the largest digital
distribution platform, are FPS [13]. The FPS game CrossFire
[3] is the most profitable, bringing in $957 million annual
revenue, far more than other popular games like World of
Warcraft [5]. Due to the popularity and economic importance
of FPS games, it is imperative to shield them from cheating
for the benefit of both game operators and players, especially
considering that the competitive nature of FPS games provides
strong incentives to cheat. Actually, cheating in FPS games is
quite rampant. According to the official forum of CrossFire
operated by Tencent [11], more than 80,000 players on average
are banned for serious cheating per week. Moreover, anecdotal
evidence indicates that the majority of cheaters are still at large.
With regard to FPS games, the most common cheat is the
use of automated tools to aim and shoot more accurately, also
known as aimbots.

Unlike active cheating, which tampers with game exe-
cutable or memory data to gain unfair advantages over other
players, aimbots are completely passive and do not violate
any game rules. Therefore, they are more difficult to thwart.
Even worse, aimbots usually interact with humans intensively,

making traditional bot detectors (which assume bots function
independently) ineffective. Due to its passive and human-
interactive nature, aimbot has plagued FPS games for decades,
with no effective detector yet proposed.

In this paper, we first present a field measurement study
of aimbots on two most popular FPS games, Counter-Strike
1.6 (CS-1.6) and Counter-Strike Global Offensive (CS:GO),
to have a deep understanding of aimbots. To the best of our
knowledge, our work is the first to characterize aimbots in the
wild. Based on the measurement data, we conduct a systematic
exploration of the feature space that characterizes aimbots and
honest players from two perspectives: how they kill opponents
and how they get killed. Exploiting these identified features,
we propose an accurate and robust server-side aimbot detector
called AimDetect. We implement a prototype of AimDetect
and evaluate its performance in real scenarios.

Measurement study. Since aimbots are passive, a key
challenge of such a measurement study is to obtain the ground
truth from the field deployment. Neither manual inspection
nor client-side detection can accurately or practically identify
aimbots. To this end, we devise a novel and generic technique
called bait-target that can accurately identify modern aimbots
for the measurement purpose. The design of bait-target lever-
ages our observation that when a player kills an opponent, it
will probably shoot one or more bullets, i.e., inertial shots.
Thus, once a player kills an opponent, we immediately create
a human-invisible target high above the victim, which we
call bait-target, as a trap to capture players’ inertial shots.
Since honest players cannot see bait-targets, their inertial shots
are usually gathered around the victim and will miss our
bait-target. However, as an aimbot can catch all opponents
and certainly make an attempt to shoot at the bait-target, its
inertial shots will likely hit the bait-target. In this way, bait-
target can almost conclusively distinguish aimbots from honest
players. Note that although bait-target is effective and reliable
to capture current aimbots in FPS games for our measurement
study, it cannot serve as a panacea detector in the long run as
it is evasion-prone.

We then set up public game servers hosting CS-1.6 and
CS:GO. Our field measurement lasts one month and two
weeks for CS-1.6 and CS:GO, respectively. During the two
different field measurement periods, 294 players from 131
IP addresses played in our CS-1.6 server, while 146 players
from 67 IP addresses played in the CS:GO server. Bait-target
successfully identifies 47 aimbots in total. After analyzing
the collected game data, we observe that aimbots resemble
excellent players in most metrics that are widely used by

existing aimbot detectors. We thus posit that the key challenge
in aimbot detection is actually to differentiate aimbots from
excellent players. We successfully identify seven features, of
which six are novel, that can effectively address this challenge.

Novel detector. The design rationale behind AimDetect,
as well as our insight of these identified features, stems from
the fact that cheaters are usually unskillful and blatant; and
thus although they can perform similarly to excellent players
in shooting, they resemble average players in other aspects
like defending and situation awareness. Since FPS games are
quite dynamic, it is challenging for aimbots to be as skillful
as excellent players in all aspects.

Our design approach of AimDetect is to examine if a
player’s performance is consistent with its skillfulness in
those aspects that cannot be easily mimicked by aimbots. For
instance, many excellent honest players can kill opponents
hiding behind obstacles. However, since cheaters are usually
unskillful and aimbots cannot help to shoot at targets behind
obstacles, most cheaters do not have such a kill. In other words,
in a same FPS game session if a player is able to achieve
excellent performance without the help of aimbots, highly
likely it plays like an excellent player in terms of skillfulness
and cautiousness.

The classification system of AimDetect includes two cas-
caded detectors, a Performance Oriented Detector (POD) and
a Behavior Oriented Detector (BOD), to fulfill its design
approach in two stages. At the first stage, POD uses one-class
classification to identify those players who achieve similar
performance as excellent players and aimbots. Then, at the
second stage, BOD examines if an “excellent” player behaves
like an honest excellent player. BOD leverages the proposed
features that cannot be easily mimicked by aimbots. Therefore,
AimDetect is robust against evasion in that it might be evaded
only if either (1) aimbots significantly degrade their perfor-
mance and thus cheaters would perform like average players;
or (2) cheaters become as skillful and cautious as excellent
players. However, cheaters will have no motivation or need
to use aimbots anymore in either case above. We validate the
efficacy of AimDetect by using the real traces collected on
our public servers. Our results show that AimDetect is able
to capture almost all aimbots with a false positive rate as low
as 0.7%. In addition, the overhead of AimDetect is minor in
terms of CPU and memory cost.

In summary, our major contributions are as follows:

• We conduct the first field measurement on two most
popular FPS games and devise a novel technique,
bait-target, to accurately capture modern aimbots in
the wild. Bait-target can also assist to collect training
dataset for aimbot detection evaluation.

• We characterize aimbots and honest players from two
perspectives, how they kill opponents and how they
get killed, based on the real game data. Our key
observation is that cheaters cannot be as skillful as
excellent honest players in all aspects.

• We propose a novel server-side aimbot detector called
AimDetect that detects the inconsistency between per-
formance and skillfulness of a player who is using

aimbot in an accurate and robust manner. We evaluate
AimDetect in real scenarios.

Roadmap. The remainder of this paper is organized as
follows. Section II describes the background of aimbots and
surveys related work. In Section III, we present a generalized
model of modern FPS games. In Sections IV and V, we
present the methodology and results of our measurement
study, respectively. We detail the design and implementation
of AimDetect in Section VI. Section VII evaluates the perfor-
mance of AimDetect. Finally, we conclude in Section VIII.

II. BACKGROUND & RELATED WORK

A. Cheating in FPS Games

Cheating in FPS games falls into three basic categories:
tampering with game data, maphack, and aimbots.

Tampering with game data. Cheaters can manipulate
game data to gain unfair advantages. For instance, they could
modify game executables in disk or data in memory to elimi-
nate the recoil of weapons, to equip with infinite ammo, and
to move significantly faster.

Detecting client manipulation is straightforward in FPS
games. The server could track the state of each player, such
as moving speed, injury, and ammo, and check against games
rules. Any cheat that actively tampers with game rules will be
revealed. Several recent works have been presented to detect
client tampering in games [17] [20].

Maphack. In FPS games, players’ coordinates are confi-
dential. When a player is blocked by opaque objects like walls,
it is assumed that other players are unable to see him. However,
to simplify implementation and improve performance, most
modern games will synchronize every player’s coordinates
with others. The visibility of blocked objects is mandated
by client-side software. Cheaters could either eliminate the
functions that enforce invisibility or directly read coordinates
from memory to pinpoint all players on the map. Such a cheat
is known as maphack.

Although maphack is nearly undetectable, it could be
prevented. The basic idea is that the server sends player A’s
coordinates to player B if and only if A is visible to B. This
idea has been implemented in anti-cheat software like sXe [14]
for Counter-Strike. OpenConflict [18] is a similar academic
work for real-time strategy games.

Aimbots. In FPS games, a player controls a virtual char-
acter to search for opponents and shoot to kill them with a
variety of weapons. Several factors can determine the shooting
accuracy of a player, including reaction and experience. It
normally takes a long time and extensive exercises for a player
to reach the expert level of shooting accuracy. However, with
the help of aimbots, a newbie can shoot as accurately as a
professional player does. When an aimbot is used, players only
need to point the weapon at an opponent’s general direction.
The aimbot will then automatically aim and shoot at that
opponent. Some aimbots can even lock the reticle onto a target
within the cheater’s field of view.

In order to aim automatically, a bot must know the exact
position of an opponent in the virtual game world. Basically,
aimbots have two approaches to retrieve that information.

First, cheaters can analyze game clients to locate the address
of every object’s coordinates stored in memory. At runtime,
bots directly read the coordinates from memory and adjust
the aim accordingly. The other approach scans the screen
and obtains the object’s position through graphics analysis.
Aimbots usually exploit a simple trick, chameleon skins, to
greatly simplify graphics analysis. Chameleon skins replace
player model textures with brightly colored skins like red or
yellow [2]. In this way, aimbots can locate opponents through
scanning the screen for an area of pixels of a certain color. This
trick is quite crude, but in most cases, quite effective. Once
an opponent’s position is obtained, aimbots simulate inputs to
automatically aim and shoot via OS API.

In summary, unlike client tampering [17] and maphack
[18], aimbot could neither be easily detected as it is passive
nor definitely prevented as it relies on local game data only.

B. Aimbot Type

Aimbots can be implemented with different levels of au-
tomation. (1) OnPressed (OP-bot). This type of aimbot auto-
aims only when the attack button is pressed by players. (2)
FollowTarget (FT-bot). Aimbots automatically aim once an
opponent comes into sight but do not shoot automatically. (3)
AutoAtk (AA-bot). Aimbots automatically aim and shoot at
every visible opponent. All the above three types of aimbots do
not control the movement of in-game avatars. (4) FullyAuto
(FA-bot). Aimbots can be fully automated and require no user
interaction.

Our work focuses on OP-bot, FT-bot, and AA-bot. On
one hand, cheaters in FPS games rarely use FA-bot because
they expect aimbots to assist but not replace themselves for
playing. By contrast, FA-bot is preferred in MMORPGs since
players often need to complete tedious and repeated tasks.
In fact, among the most popular FPS games like CrossFire,
CS-1.6, TF 2, CS:Source (CS:S), and CS:GO, we find only
few instances of FA-bot for CS-1.6 and CS:S. On the other
hand, a major headache players face in FPS games is that
even though someone looks suspiciously like an aimbot, they
cannot manually confirm with high confidence. However, when
an aimbot is highly automated, it becomes significantly easier
for manual detection. Moreover, FPS games are quite dynamic,
interactive, and complicated. The automated software can
hardly handle every scenario naturally. That is why cheaters
prefer to use OP-bot in practice and actually OP-bot accounts
for more than 60% real-world instances in our collected real
game data.

C. Related Work

Game cheating has received wide attention. A systematic
survey and taxonomy can be found in [23]. Modern commer-
cial anti-cheat systems like PunkBuster and Valve Anti-Cheat
(VAC) augment client hosts with monitoring functionality to
perform cheat detection. These commercial solutions exclu-
sively rely on signature matching, a method commonly con-
sidered as ineffective. Kaiser et al. [24] went one step further
and proposed anomaly-based cheat detection that requires no
signature. However, it requires reliable monitoring on client
hosts, which is not always guaranteed in reality. In contrast,
we solely rely on data that can be collected on the server side.

Moreover, all of these methods are designed to be versatile,
while ours targets a specific type of cheat.

A number of previous works target specific types of
cheating other than aimbots. To detect cheats that tamper
with game clients, Bethea et al. [17] and Cochran et al. [20]
employed symbolic execution to verify on the server side if
the received messages could be explained by authentic games
rules. Some cheaters hack the event ordering protocols used
in online games. To prevent such cheats, Baughman et al. [16]
proposed the lockstep protocol. OpenConflict [18] leverages
oblivious set intersections to prevent disclosing confidential
game data to unauthorized players, i.e. map-hacking.

The works closest to ours are those of detecting bots in
online games. Several detect game bots in MMORPGs [22]
[25] [26]. These approaches leverage the repeated behaviors
and self-similarity of game bots for detection. However, aim-
bots require intensive human cooperation and rarely exhibit
repeated and self-similar patterns. There are also works on
aimbot detection in FPS games [15] [21] [27] [28]. However,
these works are either prone to evasions or ineffective in
differentiating aimbots from excellent players, which is the
key challenge in aimbot detection. Instead, we identify seven
features, of which six are novel, that characterize the unskillful
and blatant nature of aimbots. We also design a more effec-
tive cascaded classifier that detects the inconsistency between
performance and skillfulness of cheaters.

III. GENERALIZING FPS GAMES

FPS games feature a first-person point of view with which
a player witnesses the action through the eyes of the in-game
avatar [7]. There are three basic elements in almost all modern
FPS games:

Virtual World. All FPS games simulate a virtual world
that usually complies with physical laws in the real world. For
instance, it regulates how fast a player can move and how a
player reacts to the recoil of weapons.

Avatars. An avatar is an in-game entity that is controlled
by a human player. In FPS games, a player usually controls
only one avatar.

Weapons. FPS games typically give players a choice of
weapons, either realistic or imaginative. Most primary weapons
in FPS are firearms that can attack opponents at a distance.

The runtime game state can be abstracted into two sets:

A = {At
i} and E = {Ej}. (1)

At
i = <pos, aiming, fov, health, attacking>

denotes the state of avatar i at time t. The position of an
avatar is defined by a three-dimension coordination pos
= (x, y, z). The aiming describes the direction that a
player is aiming at, and it is denoted in two forms. One is
angle = (pitch, yaw, roll), where pitch, yaw, and
roll are commonly used in games to model a player’s view

as illustrated in Figure 1. The other is a direction vector �f
= (a, b, c). The field of view (fov) specifies the visible
angle of a player. The health denotes how much damage is
required to kill the player. The attacking state is 1 if the
attack button is held and 0 otherwise. In games, the time t is

roll

pitch
yaw

z

x y

Fig. 1: Pitch: degree of deviation from a horizontal plane.
Yaw: a deflection from an intended course. Roll is rarely used
in games.

usually measured in ticks or frames rather than the wall clock
time.

Ej ∈ {Ei
Shoot, Ei→j

Hit , Ei→j
Kill} represents three basic

events involving avatar i. i → j denotes avatar i hits or kills
j. Shoot events are generated when an avatar is holding the
attack button (i.e., in attacking state). Players can shoot at any
time, even when there is no visible opponent. Therefore, we
only log the shoot events for an avatar if there is at least one
opponent in the sight of the avatar. In addition, a shoot event
does not always imply one shot bullet. For instance, there could
be multiple shots in one shoot event for some weapons in CS
games.

In order to be general, our modeling of a game state is quite
simplified. A specific game may extend A and E to define a
larger state space, which may improve the detection accuracy.
However, our evaluation results show that the generalized mod-
eling already performs very well in the real world deployment.

IV. MEASUREMENT INFRASTRUCTURE

A. Bait-target Design

To shed light on the characteristics of real-world aimbots,
we set up public game servers to collect traces. The key
challenge is to obtain ground truth due to the passive nature
of aimbots. It is widely hold that manual inspection cannot
reliably confirm the existence of aimbots. Also, it is impractical
in our deployment to resort to client-side detectors. To this
end, we devise bait-target that can accurately identify modern
aimbots.

The basic idea is to simulate an opponent using a human-
invisible bot, which is referred to as a bait-target, as a trap
to catch aimbots. The design rationale behind bait-target lies
in two aspects: (1) honest players rarely hit a transparent
bait-target, thus incurring fewer false positives; (2) because
an aimbot is able to catch all different kinds of targets, it will
certainly shoot at the bait-target and likely make the hit, thus
ensuring to achieve a high detection rate. Although the idea
looks simple, we need to address several challenging problems.

When to spawn bait-targets? Obviously, it does not make
sense to spawn bait-targets casually. For example, if we spawn
a bait-target whenever a player fires, we could falsely flag
many honest players as aimbots. To address this problem, we
leverage the following key observation:

[Inertial shots] When a player kills an opponent, he will
highly likely shoot one or more extra bullets.

Bait-target

Potential
radius of
inertial

shots from
honest
players

h

Fig. 2: An example of bait-target. The bait-target is rendered
as visible for illustration purpose.

Inertial shots guarantee both low false positive rate and
high detection rate. On one hand, inertial shots are transient,
lasting less than one second. If bait-targets are properly placed,
such short-lived inertial shots from honest players are unlikely
to hit them. However, aimbots attempt to make a hit for
every shot and thus they will probably hit bait-targets. On the
other hand, inertial shots are inevitable. Most modern aimbots
require humans to press the attack button. Since all humans
cannot react instantly to a kill event, they usually shoot several
more bullets after the target is killed.

Note that while this finding is valid in most cases, it may
not hold for those slow-shooting weapons like a sniper. This
is a minor limitation of bait-target. Our experience of playing
several popular FPS games shows that aimbots in the wild
rarely use these weapons.

Where to place bait-targets? The position where a bait-
target is placed can also affect the accuracy. If bait-targets are
placed very close to a player’s crosshair or it is placed near
a real opponent, many false alarms could be raised. However,
if they are placed far away from a player’s crosshair, we may
miss most aimbots. We decide to place a bait-target exactly
above the victim upon a kill event. When a player kills an
opponent, we can assume that his crosshair is close to the
victim and therefore honest players’ inertial shots are usually
gathered around the victim. However, aimbots can immediately
catch next valid target, causing their inertial shots to hit the
bait-target. Figure 2 illustrates the placement of a bait-target.
The distance between bait-target and ground is computed in
Equation 2.

h = tan θ · dist (2)

where dist is the distance between victim and attacker and θ
is the angle that induces h larger than the potential radius of
normal inertial shots from honest players as shown in Figure
2. θ should be set empirically for different games. The unit of
dist does not matter and different games can define their own
world coordinations.

How long do bait-targets last? Another important pa-
rameter is how long a bait-target lasts. The longer it lasts,
the more false positives we generate. However, if bait-target
lasts too short, we may miss inertial shots from aimbots.
Our implementation empirically chooses one second, after
which we move the bait-target away and change its team

Parameter Points
Head 10
Body 5

Other Parts 3

th score 15
th tests 2

TABLE I: A sample of parameters for bait-target tests.

Game Ranking among all
games

Ranking among FPS
games Release

CS:GO 2 1 2012
CS-1.6 12 4 2003

TABLE II: Ranking on Steam [13] of the two studied games.

to unassigned. Our measurement shows that one second is
sufficient to capture an aimbot.

How does bait-targets flag aimbot? Our bait-target adopts
a simple scoring scheme to identify aimbots. In most FPS
games, the difficulty to hit different parts of opponents varies.
Generally, the more difficult, the more damages incurred.
Aimbots usually prefer to shooting at the parts with more
damages, like head. In our design, a direct hit on different parts
of bait-target will count certain points. When the score reaches
a threshold th score, we consider a positive test is observed.
The score will be reset if it is still below th score after three
consecutive tests, avoiding false alarms caused by accumulated
accidental shots on the bait-target. When a predefined number
of positive tests th tests are observed, the attacker will be
logged as an aimbot.

We then ban the aimbot after ten more kills, allowing
our server to collect more data. As an example, a typical
configuration is shown in Table I. Different games may change
the parameters and even define different hit parts.

B. Design Clarification

Transparent Targets. Bait-target requires aimbots shoot
at transparent targets. In order to assess to what extent this
requirement can be met, we collected and analyzed more
than 300 real aimbot instances for several games including
CrossFire, TF 2, CS:GO, CS-1.6 and CS:S. These are currently
the most popular FPS games [13] [5]. We find that modern aim-
bots rarely avoid shooting at transparent targets. In particular,
only some FA-bot does not shoot at transparent targets. This
is reasonable because modern games usually implement rich
game features and modes. In many cases, e.g., Ghost Mode,
the targets can be indeed invisible. In order to work reliably,
aimbots should not avoid shooting at transparent targets.

Bait-target is not a long-term detector. We do not expect
bait-target to serve as a promising detector in the long run.
Bait-targets per se are a form of security through obscurity
and thus are evasion-prone. Once aimbots become aware of
their existence, they could evade by shooting only at visible
targets or switching off for second after a kill, even though
this sacrifices the reliability of aimbots.

Actually, bait-target is originally designed as an effective
measurement tool rather than a robust detector. Besides, it can
also assist game operators to obtain the training set for machine
learning based detectors. We believe bait-target successfully
achieves these two goals. On one hand, almost all identified
aimbots are true positives. On the other hand, honest players’

Skip
Bait-target

Spawnable?

Update
Score S

S>th_score?

Update
Positive
test T

T>th_tests?

Clear
Bait-target

4th test?

Score
Reset

Data
Collector

Logs

Kill Event

Bait-target

Yes

No

Yes

No

Yes

B iBait target

BAN after N
killls

Yes

Fig. 3: Flow chart of our experimental protocol.

data can be randomly sampled to mitigate potential influence
of evasions.

Generality of Bait-target. We posit that bait-target is
generic and can be applied to all FPS games. First, bait-target
does not depend on any game/platform specific features. It
relies only on the fact that inertial shots are inevitable due
to the delay between when the target is killed and when the
attacker receives the death event and stops shooting. This is
true in all games. We have validated the prototypes for games
on two games, CS-1.6 and CS:GO.

C. Data Collection

Server setup. We host CS:GO and CS-1.6 on our public
servers. These two represent the most popular modern FPS
games, as shown in Table II. Our servers are published on ww
w.gametracker.com. The servers cycle on three most popular
maps, dust2, iceworld, and inferno, with each lasting day.

Prototype of bait-target. We implement the bait-target
using Amxmod [1] for CS-1.6 and SourceMod [12] for CS:GO.
We evaluate its effectiveness using our collected aimbots and
the traces from our public servers. The results are presented
in §IV-D. θ in Equation 1 is empirically set as π

18 for both
games.

Handling FA-bot. In §IV-B, we have mentioned that the
FA-bot of CS-1.6 does not shoot at bait-targets. Even worse,
there is no practical and reliable approach to identify FA-bot.
A further analysis of FA-bot reveals that all of them avoid
shooting at transparent targets through checking the rendering
mode of an object. Based on this observation, we re-render
all players as opaque with a transparency mode. This ad-hoc
technique is simple but quite effective to disable all FA-bot.

Note that this trick does not reduce the generality or
accuracy of our measurement results. On one hand, our work
does not target FA-bot. On the other hand, disabling FA-bot
does not introduce further false detections. Meanwhile, this
trick does not induce any negative effects upon honest players.

Experimental protocol. Our public server reserves two
slots for bait-targets because FPS games usually limit the
number of players that can join a server. The limit is 32 and
64 for CS-1.6 and CS:GO, respectively. Bait-targets and a
behavioral monitor run simultaneously to log results. Figure
3 shows our experimental protocol.

1
Proportion of kills

0.8
0.9

0 6
0.7
0.8

C
0.5
0.6C

D CS-1.6
CS GO

0.3
0.4F

CS:GO

0 1
0.2

0
0.1

0 5 10 15 20 250 5 10 15 20 25

of inertial shots

Fig. 4: Statistics of inertial shots.

Game Category Connections IPs Countries

CS-1.6 Honest 256 93 25
Aimbot 38 38 15

CS:GO Honest 137 58 13
Aimbot 9 9 5

TABLE III: Dataset of real-world deployment. The IP ad-
dresses of aimbots are banned. Therefore, there is only one
connection for each aimbot.

Data collector. Our in-game data collector leverages Meta-
mod [10] and SourceMod [12]. MetaMod and SourceMod
provide comprehensive hooks to in-game events for CS-1.6
and CS:GO respectively. They enable us to develop third-party
plugins to monitor all players’ actions on server side at every
frame.

Dataset. Our dataset contains one-month and two-week
traces for CS-1.6 and CS:GO, respectively. Table III summa-
rizes the collected data. During our deployment, 294 connec-
tions from 131 distinct IP addresses are logged on our CS-
1.6 server. Bait-targets identify 38 aimbots. 146 connections
from 67 distinct IP addresses are logged on the CS:GO server,
among which five are aimbots. The IP addresses are also
mapped to countries using GeoLite2-City [8].

D. Inevitable Inertial Shots

We create a bait-target to identify aimbots on our server.
In order to assess the effectiveness of bait-target, we need to
answer the following two questions: (1) to what extent does
our observation of inertial shots hold? and (2) how likely is
that honest players hit bait-targets?

Validity of Inertial Shots. We record the inertial shots of
every player connected to our servers. Since our bait-target
test lasts one second, we define intertial shots as those that
are fired within one second after a kill event. Also, to make
the results more accurate, a shot is counted only if there is
no enemy left in sight of the attacker. The statistics from our
deployment are presented in Figure 4.

We find that only 3.6% kills from CS-1.6 and 4.8% from
CS:GO come with no inertial shots. Meanwhile, for each
player, most of their kills have at least one inertial shot. Thus,
our observation would hold in most cases. Also, in both games,
about 80% kills are followed with two to seven inertial shots.
This result demonstrates that our parameter configuration in
Table I is reasonable.

False alarms. Our data shows that only ∼0.8% inertial
shots from honest players hit a bait-target in both games. Thus,
by setting an appropriate hitting threshold, we can prevent bait-
targets from issuing a false alarm. To verify this, we recruit
six participants who do not know the existence of bait-target

F ::=
⋃

op(Ri | cond)
op ::= {V AL, AV G, STDV, COUNT, TIME, ELAPSE}
cond ::= {(ON)SEE, (ON)ATK, (ON)AIM, MOV, KILL}
R1 ::= A =

⋃
At

i

R2 ::= E =
⋃

Ei
j

R3 ::= A
Δt =

⋃
(At

i − At−n
i)

R4 ::= A
t
i � A

t
j

Fig. 5: Rules to systematically derive our feature set.

to conduct an in-lab experiment. During the 3-hour testing, no
honest player is flagged as an aimbot.

V. CHARACTERIZATION OF AIMBOTS

In this section, we characterize the behaviors of aimbots
from two perspectives, i.e., how they kill opponents and how
they get killed, based on the data collected in the field.

A. Systematic Exploration of Feature Space

The raw data of A and E is insufficient to characterize a
player’s behaviors. In particular, it cannot be fed to a machine
learning classifier that does not know the physical meaning of
the data. Existing works [28] [27] [21] [15] have empirically
defined their own feature sets. However, these features are
either ineffective in the real world or prone to evasions.

Two existing works [21] [15] rely on players’ position,
fighting time, and aiming accuracy to detect cheaters. Un-
fortunately, these features are more likely to differentiate
excellent from average players rather than aimbots from honest
players. Their evaluations achieve promising results but only
two or three human players are involved. Moreover, aimbots
can easily evade the high ranked features without degrading
performance. For instance, aiming accuracy, defined as the
time aiming at a target divided by the total time when the target
is visible, is ranked the first in their evaluations. However,
aimbots do not need to aim constantly. There is a relatively
long interval between two shots. Aimbots only need to aim
upon a shot and then move away during the intervals. Actually,
many average players can also have a high aiming accuracy
although they cannot aim accurately upon a shot. For the same
reason, we exclude the shooting miss ratio, an intuitive feature
that many people consider to be reliable. However, we find that
aimbots can fire more shots to increase the miss ratio while
achieving the same number of hits within the same time period.

In [28] [27], the authors define two features, the cursor ac-
celeration and time on target (i.e., aiming accuracy). Although
the cursor acceleration can effectively differentiate excellent
players from aimbots, it can be evaded by simply mimicking
the cursor movement of humans. We instead decide to derive
our own feature set by systematically exploring the feature
space, in which we successfully identify seven features, six of
which are novel, for play behavior characterization. Given the
generalized model of FPS games in §III and the aimbot types
in §II-B, we derive the feature set F using the rules in Figure
5.

The first three operators of op return the value, average,
and standard deviation of a feature. COUNT returns the number
of values. TIME computes the duration of a feature. Finally,
ELAPSE returns the elapsed time between two game states.
Note that both TIME and ELAPSE operators return the wall
time, rather than the frames as t for avatar state.

Player (p)

Opponent (o)

Aiming (f)

Field of
View (fov)

Fig. 6: Geometric meaning of divergence.

We also specify when a feature is collected using cond.
As described in §II-B, aimbots function only during a specific
time period. We may collect a lot of noise data if we do not
constrain when a feature should be collected. We currently
define eight conditions: SEE(i,j) denotes avatar j is visible
to i and ONSEE(i,j) means the moment when avatar j
becomes visible to i; ATK(i), ONATK(i), AIM(i,j), and
ONAIM(i,j) are defined for the attacking and aiming states
of an avatar, respectively; MOV(i) means avatar i is moving,
and KILL(i,j) specifies the event when avatar i kills j.
All these conditions can be easily computed based on either
avatars’ state (A) or events (E). These eight conditions will
play a critical role to filter out noise data in the feature
collection. Note that only one condition, i.e., ATK(i), is
considered in previous research.

R1 collects the states of an avatar and R2 collects all events
occurred during the game. R3 computes the state change of
an avatar between two frames. R4 describes the interaction
between two players at frame t.

The rules in Figure 5 can generate almost infinite number
of features. To make our analysis tractable, we only consider
the features that are geometrically or statistically meaningful.
For instance, it is obviously meaningless to compute the
relationship between the health and position of a player. In
total, we test more than a hundred features, among which
seven are finally selected. A feature is selected if (1) it can
differentiate aimbots from either excellent or average players
and (2) it is difficult for aimbots to evade without extensive
efforts from cheaters or degrading performance significantly.
We next present these features in details.

B. How Players Kill Opponents?

A player’s goal in FPS games is to kill the opponents. Aim-
bots, as well as all other cheats, assist cheaters in this sense.
Therefore, our first subset of features characterize how players
kill opponents. To single out excellent players, we propose a
new metric, Expertise-Index (EI) as defined in Equation 3,
which computes the difference between the number of kills a
player made and the number of times itself being killed. In our
analysis, the top 5% honest players in terms of EI are labeled
as excellent and the remaining as average.

EIi = ΣEi→∗
Kill − ΣE∗→i

Kill . (3)

Although EI can retroactively assess the performance of a
player, it is not suitable to serve as a feature in our detector
because it highly depends on how long a player plays. In
addition, the detection can be dramatically delayed.

Divergence of aiming upon the opponent comes into
sight (F1). For each kill event, we first look at the game

1
Proportion of kills

0.8
0.9

0.6
0.7C

0.4
0.5D

F Average

0.2
0.3F Average

Excellent

0
0.1 Aimbot

<
0.8

Divergence

(a) CS-1.6.

1
Proportion of kills

0.8
0.9

0 6
0.7
0.8

C

0 4
0.5
0.6

D Average
Excellent

0 2
0.3
0.4F Excellent

Aimbot

0
0.1
0.2

0
<

0 8
Divergence

0.8

(b) CS:GO.

Fig. 7: Divergence of aiming.

state when the victim comes into the sight of the attacker.
In particular, we only consider the cases when there are
no other opponents in the sight of the attacker. We find
that the divergence of aiming is an effective feature to help
identify aimbots from excellent players. Figure 6 illustrates
the geometrical meaning of this feature, which is computed
as:

cos θ(i, j) =
aiaj + bibj + cicj√

a2i + b2i + c2i

√
a2j + b2j + c2j

. (4)

Figure 7 shows the cumulative distribution of the results.
The x axis represents the interval of the divergence. The larger
cos θ is, the smaller θ is. Excellent players are more skillful and
experienced. They usually aim at the point where an opponent
is more likely to appear so that they can react quickly and
shoot accurately. However, most cheaters are unskillful and
blatant. Although aimbots can help aiming at opponents during
attacks, they cannot help predicate the opponents’ positions,
which heavily depends on the experience and cautiousness of
a player. We define this feature as the percentage of kills that
have a divergence smaller than a threshold α:

F1 =
Σ(Ei→∗

Kill ∧ (cos θ ≤ α))

ΣEi→∗
Kill

. (5)

For different games, α may need to be adjusted accord-
ingly. Based on the results in Figure 7, we set α to 0.994 for
both games.

Suspiciousness of critical hits (F2). Most commercial FPS
games try to accurately model the real world. In particular,
hits on different parts of opponents cause varying damages.
For instance, hits on head usually incur the most damages in
almost all games and thus aimbots usually lock the head for
simplicity and efficiency. Our survey shows that more than
90% of modern aimbot instances lock the head as target by
default. In addition, 18% of aimbot tools allow users to change
shooting target to other parts of body. Our traces present
a similar result. Table IV shows the ratio of headshots for
aimbots and honest players. It can be seen that both aimbots
and excellent players can achieve higher headshot ratio than
average players.

Moreover, aimbots usually try to achieve headshots as fast
as possible. Table V lists the percentage of headshots made by
the first hit. Combining the above results, we therefore define
the suspiciousness as:

Game Aimbot Excellent Average
CS-1.6 80.2% 68.2% 30.3%
CS:GO 77.3% 62.5% 32.7%

TABLE IV: Ratio of headshots.

Game Aimbot Excellent Average
CS-1.6 65.4% 54.7% 32.5%
CS:GO 66.1% 53.3% 33.1%

TABLE V: Ratio of headshots achieved by the first hit.

F2 =
1

n

n∑
i=1

(−si), si =

{
1

jthhit
if critical hit,

0 otherwise.
(6)

where si denotes that the first critical hit is the jth hit in ith
kill event. If there is no critical hit during a kill event, si is
0. We use the negative value of si to make it easier to present
our classifier in §VI-B.

Ratio of hits when the attacker is moving (F3). Most
FPS games also conform to the physical laws. A common rule
regulates that the faster an attacker moves, the more difficult
for it to aim accurately. Therefore, honest players tend to stand
still during attacks. This feature computes the ratio of hits
when an attacker is moving, i.e.,

F3 =
Σ(Ei→∗

Hit ∧MOV (i))

ΣEi→∗
Hit

. (7)

The results of our traces are shown in Table VI. As we can
see, most excellent players are cautious while the majority of
aimbots and many average players rush blatantly. Meanwhile,
we also check 10 playing demos from 30 professional players
for CrossFire, CS-1.6, and CS:GO. We find that these expert
players also move cautiously and they tend to stand still during
most kills. By contrast, aimbots are quite blatant and they
commonly have little intention to play cautiously.

Game Aimbot Excellent Average
CS-1.6 85.7% 42.3% 57.7%
CS:GO 74.1% 46.8% 54.6%

TABLE VI: Ratio of hits when the attacker is moving.

Time to kill (F4). During an attack, a player must kill
opponents as quickly as possible; otherwise, it will probably
get killed. We measure how long it takes for an attacker to kill
an opponent using Equation 8. This is the only feature that
has been used in one existing work [15]. Intuitively, excellent
players and aimbots usually are able to kill opponents faster.

TTKi = ELAPSE(ONSEE(i, j), KILL(i, j)). (8)

Figure 8 shows the cumulative distribution of F4 for CS-
1.6 and CS:GO. Most aimbots and excellent players can kill
opponents within two seconds. By contrast, average players
generally take longer time to kill an opponent. F4 is effective
to differentiate aimbots from average players. Similar to F1,
we define F4 as:

1
Proportion of kills

0 8
0.9

0 6
0.7
0.8

C
0.5
0.6C

D Average

0.3
0.4F Excellent

Aimbot

0 1
0.2

Aimbot

0
0.1

0 1 2 3 4 6 8 9 10 11 12 13 14 1 16

Seconds
>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time to Kill

15

(a) CS-1.6.

1
Proportion of kills

0 8
0.9

0 6
0.7
0.8

C
0.5
0.6C

D
A

0.3
0.4F

Average
Excellent

0 1
0.2 Aimbot

0
0.1

0 2 3 4 5 6 7 8 9 0 2 3 4 5 0

Seconds
>0 1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15 10

0

Time to Kill 15

(b) CS:GO.

Fig. 8: Cumulative distribution of F4.

F4 = −Σ(Ei→∗
Kill ∧ (TTK ≤ α))

ΣEi→∗
Kill

. (9)

According to Figure 8, the threshold α can be set as two
seconds. For the same reason as F2, this feature also has the
negative value.

Local impact ranking (F5). During the games, a player
has a higher impact if it can kill more opponents. At time t
of a game, assume K is the number of kills made by player p
and N is the total number of opponents spawned since p joined
the game. We define a new metric, impact index, as K

N
. Since

players can join and leave during the games, we compute the
local impact ranking for each player separately. When a player
joins the game, we starts to recompute the impact index for all
players. This feature then is the local ranking of each player.
As expected, after a short bootstrapping, both aimbots and
excellent players will rank and remain in the top. Although
intuitive, this feature is selected because if cheaters attempt
to evade our detection, they have to deliberately miss many
targets to lower their rankings.

Ability to kill opponents behind obstacles (F6). We also
find that many excellent players can kill opponents behind
obstacles like walls. In the two games together, about 45%
of excellent players at least kill one invisible opponent, while
the ratio of aimbots is only 14.9%. A common scenario is
that the victim moves behind some obstacles to protect itself
during attacks. An excellent player is still able to kill the
opponents in such a scenario. However, most aimbots cannot
work when the opponents are invisible. Actually, with the help
of commercial anti-wallhack techniques like sXe [14], game
servers can make aimbots absolutely useless in face of invisible
opponents. Therefore, we define this feature as:

F6 =

{
1 if killing opponents behind obstacles,

0 otherwise.
(10)

C. How Players Get Killed?

We next examine the characteristics of aimbots from the
opposite side, i.e., how they get killed. A look into the
deaths of aimbots and excellent players reveals two interesting
observations.

First, a non-trivial portion of aimbots are killed by those
players who are not in their sight. This is mainly because
cheaters are unskillful and more blatant. They usually rush

1
Proportion of deaths

0 8
0.9

1

0 6
0.7
0.8

C
0.5
0.6C

D

0.3
0.4F Average

Excellent

0.1
0.2

Excellent
Aimbot

0
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of Deaths in Special Cases (F7)

(a) CS-1.6.

1
Proportion of deaths

0 8
0.9

0 6
0.7
0.8

C

0 4
0.5
0.6C

D

0.3
0.4F Average

Excellent

0.1
0.2

Excellent
Aimbot

0
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of Deaths in Special Cases (F7)

(b) CS:GO.

Fig. 9: Cumulative distribution of F7.

recklessly and do not check their surroundings carefully. Sec-
ond, we observe that aimbots are more likely to be killed when
the fight lasts relatively longer, e.g., longer than two seconds.
There are several possible reasons. Excellent players have more
chance to survive in a long lasting fight because they are not
only good at aiming but also protecting themselves. Also, most
FPS games adopt a parameter, spread, which determines how
possible and how far a shot deviates from the aimed point. The
longer a player shoots continuously, the larger this parameter
increases. Although aimbots can aim accurately, they cannot
offset the effect of spread. In many cases, when an opponent
cannot be killed quickly, inexperienced cheaters are likely
to shoot continuously by instinct. Finally, since it is quite
challenging to handle the dynamic and complicated situations
in FPS games, aimbots can have glitches and malfunction in
some scenarios.

Ratio of deaths in special cases (F7). Based on the two
findings, we thus compute the ratio of deaths in the above
two situations to the total deaths. Figure 9 shows the results
of the two games, indicating that more than 80% of excellent
players and aimbots in both games are killed at least five times.
Therefore, although death events are relatively infrequent for
excellent players and aimbots, they can still be leveraged for
aimbot detection.

D. Key Insight

In this section, we present seven features that can ef-
fectively differentiate aimbots from either excellent or av-
erage players. The key insight is that even though cheaters
can resemble excellent players in shooting performance, both
still manifest very different behaviors in skillfulness, such as
cautiousness and self-defense, which cannot be mimicked by
aimbots. We next show how to build an accurate and robust
online aimbot detector by leveraging these features.

VI. AIMDETECT DESIGN

Aimbots seriously wreck the fairness in FPS games. The
game operators are struggling to combat aimbots since aimbots
resemble excellent honest players in many aspects, especially
in those obvious metrics like impressive aiming accuracy.
In practice, many excellent players are banned due to false
detections [4]. Therefore, the key challenge in aimbot detection
is to differentiate aimbots from excellent players. One of our
main contributions in this work is to address this key challenge.

Meanwhile, if aimbots would like to mimic average play-
ers, they have to degrade the performance significantly. Note
that most cheaters are unskillful, they will probably perform no
better than an average player. Therefore, these gentle aimbots

Game
Server

Admin Policy

Event
Monitor

Feature
Extraction

Report

Feature
Data

AIMDETECT

G
am

e
Plugin

C
lassifier

Performance
Oriented

Detector (POD)

Behavior
Oriented

Detector (BOD)

Kill Event

Control Flow

Data Flow

Excellent
Players

Fig. 10: Overview of AIMDETECT

are tolerable from the perspective of game operators, because
honest players are unlikely to complain an average player.
Actually, in order to attract and retain new players, some
commercial FPS games even incorporate a gentle aim-assist
tool for novices [2].

With the above two observations in mind, we thus posit that
a desired aimbot detector should be accurate in differentiating
aimbots from excellent players and robust against evasion.
The detector would be evaded only if one of two conditions
below happens: (1) cheaters are as skillful and cautious as
an excellent player; or (2) aimbots degrade their performance
significantly and play like average players.

A. Design Overview

At a high level, AimDetect is motivated by our mea-
surement results that aimbots usually manifest themselves
in a series of suspicious behavioral patterns. In particular,
we characterize the differences between aimbots and honest
players from two aspects:

[A1] Anomalous performance resembling excellent players;

[A2] Blatant and unskillful nature of cheaters.

Figure 10 illustrates the architecture of AimDetect, which
completely resides on game servers. The first component of
AimDetect is an in-game plugin, which has three modules:
event monitor, feature extraction, and admin policy. The first
module monitors in-game events like aiming at the enemy,
death and hit. These events drive the feature extraction module,
which collects predefined in-game features. Administrators can
set policies that are executed when aimbots are detected.

At runtime, a stand-alone classifier is driven by kill events.
Every time a kill event is captured, the feature vectors of
players are updated and the classifier is invoked. We build
a cascade classifier that has two stages. First, a Performance
Oriented Detector (POD) determines whether a player resem-
bles excellent players in terms of the gaming performance.
The identified ”excellent” players are then examined by the
Behavior Oriented Detector (BOD) in the second stage, which
determines whether a player behaves like an excellent players,
i.e., if its skillfulness is at the same level of excellent players.

B. Performance Oriented Detector (POD)

Feature Selection and Discussion. In the first stage, POD
monitors a player’s performance. POD ensures that aimbots
cannot evade AimDetect without degrading their performance
significantly. To this end, we select three features, F2, F4, and
F5, for POD.

One may question why several features are needed if one
like local impact ranking can straightforwardly identify excel-
lent players. On one hand, as more features that characterize
players’ performance from more aspects are used, it becomes
more difficult for aimbots to evade. For instance, if only the
time-to-kill (F4) is used, aimbots can deliberately delay for
one to two seconds and then execute a headshot. Cheaters
can still have notable advantages over honest players. On the
other hand, using more features can also reduce false positives.
For example, assume all players in a game are novices. The
local impact ranking may mistakenly identify one player as
excellent. Since the player is actually a novice, our second
stage detector may consider it to be inconsistent, generating a
false positive.

Implementation. POD uses a one-class classifier that is
trained on a dataset containing aimbots and excellent players.
We choose a one-class classifier over a two-class because the
two-class classifier requires input data from average players
at the training phase, which is difficult to obtain. While it is
reasonable to label the top 5% honest players as excellent, it
is impossible to know whether the top 10% or 20% are also
excellent or not.

Given a target class T represented by the training set Xtr

and a new object z, the one-class classifier assigns z to T if
the distance between z and T is smaller than a threshold ε:

f(z) = I(d(z, T) < ε), (11)

where I(·) is an indicator function that returns 1 if the
condition is met and 0 otherwise. d(z, T) is a distance measure
which we define as:

d(z, T) =
∑
i

zi − Ti

σi
, (12)

where σi denotes the standard deviation of the ith feature
over n trials. We give higher weights to the features that have
smaller variation by dividing σi. Also, conventionally the dis-
tance is summed over the absolute value of feature differences.
We instead choose to keep the minus sign. Considering that
each value of all three features negatively correlates with a
player’s performance, a large negative distance means a player
performs even better than the samples in the training set. Such
players should definitely further be checked by BOD. In our
implementation, T is simply an average feature vector over
Xtr.

The threshold ε is a user defined parameter. A large value
means a stricter detector, but may falsely report an honest
player because more ”excellent” players will be selected and
checked by BOD. A small threshold reduces false positives,
but allowing relatively gentle aimbots to slip through.

C. Behavior Oriented Detector (BOD)

Feature Selection and Discussion. Once a suspicious
player is identified by POD, it is then checked by BOD to
see if its performance is consistent with its behaviors (i.e.,
skillfulness) or not. BOD ensures that AimDetect cannot be

evaded without extensive efforts from cheaters. Based on our
measurement results in §V, we choose four features for BOD.

The first feature is the average of F1 over a series of kill
events. This feature basically characterizes the cautiousness of
a player. In order to evade, aimbots may learn how excellent
players behave using more advanced techniques. However,
due to the highly dynamics nature of FPS games, it is very
challenging and costly to reach this goal in real time under
very different game scenarios.

BOD also uses F3, which characterizes the blatant nature
of cheaters. In general, it is difficult to require most cheaters
to behave gently. Alternatively, aimbots can force cheaters to
stand still during attacks. However, this can seriously affect
user experience. For instance, in some cases, players need to
rush and move for defending themselves.

The third feature BOD used is F6. Considering that aimbots
cannot help shoot at invisible targets, this feature effectively
indicates the true expertise of a player. The last feature is
F7. Basically, even though aimbots can mimic how excellent
players shoot, they cannot mimic how they get killed. Finally,
we believe it is theoretically possible to build a perfect FA-
bot that resembles excellent players in all aspects. However,
as discussed in §II-B, few cheaters will use it in practice.

Implementation. BOD currently leverages the two-class
Support Vector Machine (SVM) algorithm with hyperbolic
tangent kernel [19]. We choose SVM because it has been
proven to be effective and efficient in practice. Also, SVM
works best when the dataset does not contain many outliers,
which is the case in BOD. Again, BOD is trained over the
dataset from excellent players and aimbots.

D. Decision Synchronization

All features in POD depend on the kill events that occur
frequently for aimbots and excellent players. Therefore, POD
can make decisions fast. However, F6 and F7 in BOD depend
on some relatively infrequent events like deaths for aimbots
and excellent players. When POD has made a decision, BOD
may still have insufficient data to make its detection. Therefore,
in order to ensure that BOD can accumulate enough data,
game operators can specify two configurable parameters, the
maximum number of kills (pk) and the minimum number of
deaths (pd). The detection does not start until one of the two
conditions is satisfied.

E. Portability of AimDetect

We emphasize that AimDetect is generic and portable. All
proposed features are based on a general model presented in
§III. Although various contents could be supported in different
games, characterizing all of them in AimDetect is unnecessary.
Most of these elements are minor factors that can be ignored
for simplicity and generality. For instance, some games may
provide vehicles like cars and helicopters, which just affect the
movement of players.

VII. AIMDETECT EVALUATION

In this section, we evaluate the efficacy of AimDetect in
terms of detection accuracy and system overhead.

1 Average
Proportion of kills

0 8
0.9

Average
Excellent

0 6
0.7
0.8

C
Aimbot

0.5
0.6C

D

0.3
0.4F

0.1
0.2

0
0.1

0 3 2 1 0 1 2 3 4 5 6 0< >

-1
0 - -2 - 2 4

10

Distance
-3 6

(a) CS-1.6.

1
Proportion of kills

0 8
0.9

1
Average
Excellent

0 6
0.7
0.8

C

Excellent
Aimbot

0.5
0.6C

D

0.3
0.4F

0 1
0.2

0
0.1

0 3 2 1 0 1 2 3 4 5 6 0< >

-1
00 -3 -2 -1 0 1 2 3 4 5 6

10
0

Distance
<
-3 6

(b) CS:GO.

Fig. 11: Cumulative distribution of the distance between a
player and the trained model at each kill event.

A. Detection Performance

We use two metrics, true positive rate (TPR) and false
positive rate (FPR), for detection accuracy. Given the notations
in Table VII, TPR and FPR are defined as:

TPR =
Ptp

Pa
, FPR =

Pfp

Pn
(13)

Experiment Setup. We first split the dataset into three
groups, Da that contains aimbots, De that contains excellent
players, and Do that contains all the rest. We conduct our
experiments using 10-fold cross validation. In each configura-
tion, two in Da and four in De are tested for CS-1.6. Since the
dataset of CS:GO is relatively small, 10 random one-aimbot-
one-excellent pairs are tested. During each test, we simulate
the online detection by invoking the classifier at every kill
event.

Setting pk and pd. As described in §VI-D, there are
two configurable parameters for AimDetect. These parameters
basically determine the detection speed of AimDetect. Large
values improve the confidence of detection results, but slow
down the detection speed. Small values trigger POD and BOD
faster, but may cause more false detections. We empirically set
pk as 10 in our evaluation and pd is set to five. However, if
a player does not have sufficient kills or deaths, we still test
them using all available data.

Results of POD. POD has one configurable parameter,
the threshold ε. We first study the impact of the threshold on
detection accuracy and speed. If a positive decision is made at
a kill event, the remaining kills will be omitted. We find that
the threshold does not affect the detection speed significantly.
Once pk or pd is triggered, POD can almost instantly make a
decision, which means ε basically affects detection accuracy
only. Figure 11 shows the cumulative distribution of the
distance between a player and the training set at each kill event
in one of the tests. Obviously, average players significantly

Symbol Definition
Pa total # of aimbots

Ptp # of aimbots correctly classified

Pn total # of honest players

Pfp # of honest players falsely classified as aimbots

TABLE VII: Notations of detection results.

differ from aimbots and excellent players. In Table VIII, we
present the number of identified players in each group for
different values of ε.

We can see that in all cases, all aimbots are successfully
identified by POD and hence the threshold does not affect TPR.
Meanwhile, FPR decreases along with the threshold. This is
because when the threshold decreases, fewer honest players are
selected for further checking by BOD, which lowers the risk of
generating false positives. Moreover, a relatively large portion
of players in Do are also identified by POD. This demonstrates
the difficulty to select the set of average players for training,
and it is more reasonable to use the one-class classification in
POD.

Results of BOD. For all the players identified in POD,
BOD next checks if their playing performance is consistent
with their behaviors. The results are presented in Table VIII. In
almost all cases, BOD demonstrates promising accuracy. BOD
successfully identifies 32 out of 35 aimbots for CS-1.6 and 7
out of 8 for CS:GO. We manually investigate the missed cases
and find that those cheaters are more skillful and cautious. For
instance, most of their hits are achieved when they stand still
and they do not differ significantly with excellent players in
F1.

In all but one cases, BOD raises some false positives. In
general, we believe it is impossible to eliminate false posi-
tives. An excellent player can resemble cheaters sometimes,
especially when the opponents play much worse than the
excellent players. However, we believe this will not prevent
AimDetect from being deployed on commercial games. In
particular, existing games mostly rely on manual inspection
to identify aimbots, which can suffer from much higher false
positive rate.

B. Comparison with VAC

We also compare the detection performance of AimDetect
with that of the Valve Anti-Cheat (VAC) system adopted by
Steam. VAC represents a state-of-the-art commercial detector.
We recruit four participants to play with aimbots in a private
server we set up on Steam. Each participant plays with aimbots
for about 40 minutes in turns. No cheating attempt is detected
by VAC. In contrast, AimDetect successfully identifies all four
cheaters. Moreover, we find many players report in mpgh.net
that they go undetected using aimbots [6].

C. System Overhead

AimDetect is deployed on the server side and must monitor
hundreds of online players simultaneously. Thus, it needs to
be efficient in terms of CPU and memory consumption. We
measure the CPU overhead of AimDetect on our public server.
During the entire field deployment, AimDetect consumes 0.1%
extra CPU utilization on average. Moreover, our measurement
shows that there is no decrease on the number of frames per
second (usually ∼100) caused by our in-game plugin. Thus,
AimDetect is CPU-efficient.

The primary memory consumption of AimDetect is caused
by accommodating each player’s behavioral data. Each player
consumes about 100 bytes to record data, including IP, time,
features, and other information. If a game server is serving

Game Classifier Group Threshold ε
4 3 2 1

CS-1.6

POD
Average 153/2430 147/2430 116/2430 48/2430

Excellent 20/20 20/20 20/20 17/20
Aimbots 40/40 40/40 40/40 40/40

BOD†
Average 39/153 34/147 21/116 8/48
Excellent 2/20 2/20 2/20 1/17
Aimbots 37/40 37/40 37/40 37/40

TPR 92.5% 92.5% 92.5% 92.5%
FPR 1.6% 1.4 % 0.9% 0.3%

CS:GO

POD
Average 337/1300 174/1300 127/1300 71/1300

Excellent 10/10 10/10 10/10 10/10
Aimbots 10/10 10/10 10/10 10/10

BOD†
Average 71/337 24/174 18/127 7/71
Excellent 2/10 2/10 2/10 2/10
Aimbots 9/10 9/10 9/10 9/10

TPR 90% 90% 90% 90%
FPR 5.6% 2.0% 1.5% 0.7%

TABLE VIII: Detection results of AimDetect for CS-1.6 and CS:GO. † The results denote the number of players identified as
aimbots and thus they are false positives (i.e, Pfp) for excellent and average players.

30,000 concurrent players, the induced memory consumption
would be only ∼2.9MB in total. This overhead is negligible
for modern game servers. Finally, since AimDetect is deployed
purely on the server side, it incurs no extra network overhead.

VIII. CONCLUSION

In this paper, we conduct the first field measurement to
understand how aimbots play in the wild, especially how they
kill opponents and how they get killed. Our major observa-
tion is that cheaters who use aimbots cannot maintain the
same level of consistency as excellent honest players between
performance and skillfulness in all aspects. Based on the
measurement results, we identify a set of features, which are
very hard to mimic by aimbots, to characterize the difference
between cheaters and excellent honest players. Leveraging
these features, we develop an accurate and robust server-
side aimbot detector called AimDetect. The cascaded classifier
of AimDetect is able to detect the inconsistency between
performance and skillfulness of cheaters. We implement a
prototype of AimDetect and evaluate its effectiveness using
the real traces of the two most popular FPS games, CS-
1.6 and CS:GO. Our evaluation results show that AimDetect
can capture almost all of the aimbots with very few false
positives and minor overhead. In the future work, we plan
to implement and evaluate bait-target and AimDetect across
more FPS games. Moreover, since our current measurement
study lasts no more than one month, we will deploy more
public game servers and attempt to collect all kinds of human
playing behaviors over an even longer time period.

REFERENCES

[1] AMX Mod X. http://www.amxmodx.org/.

[2] Cheating in online games. http://en.wikipedia.org/wiki/Cheating in o
nline games.

[3] Crossfire. http://en.wikipedia.org/wiki/CrossFire (video game).

[4] Crossfire official forum. http://bbs.cf.qq.com/forum.php.

[5] Crossfire: Tencent’s top earning free-to-play game you’ve never heard
of. http://www.forbes.com/sites/insertcoin/2014/01/20/crossfire-tencent
s-top-earning-free-to-play-game-youve-never-heard-of/.

[6] Cs:go aimbot. http://www.mpgh.net/forum/showthread.php?t=1005526.

[7] First-person shooter. https://en.wikipedia.org/wiki/First-person shooter.

[8] Geolite2-city. http://dev.maxmind.com/geoip/geoip2/geolite2/.

[9] Global games market forecast by 2019. http://venturebeat.com/2016/
03/14/global-games-market-forecast-to-hit-100b-by-2019/.

[10] Metamod. http://metamod.org/.

[11] Official forum of crossfire. http://bbs.cf.qq.com/forum.php?mod=foru
mdisplay&fid=30829.

[12] Sourcemod. https://www.sourcemod.net/.

[13] Steam stats. http://store.steampowered.com/stats.

[14] sXe. http://www.sxe-injected.com/.

[15] H. Alayed, F. Frangoudes, and C. Neuman. Behavioral-based cheating
detection in online first person shooters using machine learning tech-
niques. In Computational Intelligence in Games (CIG), 2013.

[16] N.E. Baughman and B.N. Levine. Cheat-proof playout for centralized
and distributed online games. In IEEE INFOCOM, 2001.

[17] D. Bethea, R. Cochran, and M. Reiter. Server-side verification of client
behavior in online games. In NDSS, 2010.

[18] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh. Openconflict:
Preventing real time map hacks in online games. In IEEE Symposium
on Security and Privacy (S&P), 2011.

[19] C. Chang and C. Lin. Libsvm: A library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2011.

[20] R. Cochran and M. Reiter. Toward online verfication of client behavior
in distributed applications. In NDSS, 2013.

[21] L. Galli, D. Loiacono, L. Cardamone, and P. L. Lanzi. A cheating
detection framework for unreal tournament III: A machine learning
approach. In Computational Intelligence and Games (CIG), 2011.

[22] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang. Battle of botcraft:
Fighting bots in online games with human observational proofs. In
ACM CCS, 2009.

[23] G. Hoglund and G. McGraw. Exploiting Online Games: Cheating
Massively Distributed Systems. Addison-Wesley Professional, first
edition, 2007.

[24] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remote anomaly-based
cheat detection using client emulation. In ACM CCS, 2009.

[25] E. Lee, J. Woo, H. Kim, A. Mohaisen, and H. Kim. You are a game
bot!: Uncovering game bots in mmorpgs via self-similarity in the wild.
In NDSS, 2016.

[26] S. Mitterhofer, C. Kruegel, E. Kirda, and C. Platzer. Server-side bot
detection in massively multiplayer online games. IEEE Security and
Privacy, 7(3), May 2009.

[27] S. Yu, N. Hammerla, J. Yan, and P. Andras. Aimbot detection in online
fps games using a heuristic method based on distribution comparison
matrix. In Proceedings of the 19th International Conference on Neural
Information Processing (ICONIP), 2012.

[28] S. Yu, N. Hammerla, J. Yan, and P. Andras. A statistical aimbot
detection method for online fps games. In The 2012 International Joint
Conference on Neural Networks (IJCNN), 2012.

