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Abstract— An emerging threat vector, embedded malware
inside popular document formats, has become rampant since
2008. Owed to its wide-spread use and Javascript support, PDF
has been the primary vehicle for delivering embedded exploits.
Unfortunately, existing defenses are limited in effectiveness,
vulnerable to evasion, or computationally expensive to be
employed as an on-line protection system. In this paper, we
propose a context-aware approach for detection and confine-
ment of malicious Javascript in PDF. Our approach statically
extracts a set of static features and inserts context monitoring
code into a document. When an instrumented document is
opened, the context monitoring code inside will cooperate with
our runtime monitor to detect potential infection attempts in
the context of Javascript execution. Thus, our detector can
identify malicious documents by using both static and runtime
features. To validate the effectiveness of our approach in a real-
world setting, we first conduct a security analysis, showing that
our system is able to remain effective in detection and be robust
against evasion attempts even in the presence of sophisticated
adversaries. We implement a prototype of the proposed system,
and perform extensive experiments using 18623 benign PDF
samples and 7370 malicious samples. Our evaluation results
demonstrate that our approach can accurately detect and
confine malicious Javascript in PDF with minor performance
overhead.

Keywords-Malcode bearing PDF; malicious Javascript; mal-
ware detection and confinement; document instrumentation.

I. INTRODUCTION

Malware authors are constantly seeking for new ways
to compromise computer systems. Recently, they have em-
barked to take advantage of popular forms of data exchange,
focusing their attention on malcode-bearing PDF docu-
ments [1]. The PDF standard has several unique advantages
when used as an attack vector: (1) it has replaced Microsoft
Word as the most dominant document format; (2) it has
been widely considered to be safe; (3) it is easy to craft
a malicious PDF; and more importantly, (4) it supports
Javascript. All of these features have made PDF one of
the most attractive exploitation vehicles. This is clearly
supported by the fact that the number of discovered PDF
vulnerabilities has quadrupled in the last five years [2]
with many attack cases having been reported [1] [3]. The
most striking observation comes from Microsoft malware
protection center, showing that the exploitation of old PDF
vulnerabilities is on the rise [1].

Despite the increasing number of successful PDF infec-
tions and their impact on end users, thus far, only a few
methods for detection of malicious PDF have been proposed
as response to this emerging threat. Unfortunately, it ap-
pears that traditional signature and behavior based detection
methods, which are favored by the majority of modern anti-
virus software, cannot handle malicious PDF well. Recently,
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researchers exploit the structural differences between benign
and malicious documents to detect malicious PDF [4] [5]
[6] [7]. These methods have been proven to be simple, fast,
and accurate. However, when attackers are aware of these
static features, they can evade easily [8]. Another recent
work extracts and tests malicious Javascript in an emulated
interpreter [9]. Although it is more robust against evasion,
attackers can still exploit syntax obfuscations to subvert
Javascript extraction. Also it is very costly to emulate all
PDF-specific Javascript objects. In 2009, Adobe announced
the Protected Mode, a sandboxing mechanism that runs PDF
reader in a confined environment. Although it raises the bar,
Adobe Sandbox has its own drawbacks. An obvious one is
that there exist vulnerabilities in the sandbox itself. Actually
hackers have already discovered different ways to escape
Adobe Sandbox [10] [11].

The detection of malicious PDF exhibits two distinct
challenges. First, users tend to open multiple PDFs simu-
taneously. However, the runtime behaviors of a PDF reader
can vary as different documents are opened, and both benign
and malicious PDFs are processed by one single thread in the
PDF reader. These can inevitably affect detection accuracy
due to the interference among multiple open documents.
Second, although it is straightforward to locate traditional
malware once detected, it is non-trivial to pinpoint these
malicious PDF documents since all open documents could
be malicious.

In this paper, we introduce a context-aware approach to
detect and confine malicious Javascript in PDF through static
document instrumentation and runtime behavior monitoring.
Our method is motivated by the fact that some essential oper-
ations of Javascript in malicious PDF rarely occur in benign
documents. Our context-aware approach can efficaciously
overcome the aforementioned two challenges. On one hand,
context-aware approach can make detection features, like
suspicious memory consumption, more effective in detec-
tion. On the other hand, the context information explicitly
indicates which open documents are malicious.

There are different ways to achieve context-aware mon-
itoring. One intuitive choice is to extract Javascript from
documents [9] [14]. Alternatively, Javascript interpreters can
be instrumented [15]. But these methods are neither robust
nor easy to implement in practice. Instead, we choose to
perform static document instrumentation. This method, to
the best of our knowledge, has never been explored before
for PDF malware detection and confinement. For each PDF
Javascript snippet, we include a prologue and epilogue to
inform our runtime detector for the entry to and exit from



Table I: Existing Methods to Detect and Confine Malicious PDF.

Method Difficult to Evade | End-Host Deployment | Need Emulation | Low Overhead
Signature No Yes No Yes
Structural [5] [4] [6] No Yes No Yes
Extract-and-Emulate [9] Neutral No Yes No
Lexical Analysis of Javascript [7] Neutral Yes No Yes
Adobe Sandboxing [12] Neutral Yes No Yes
CWSandbox [13] Neutral No Neutral No
[ Our Method [ Yes [ Yes [ No [ Yes

Javascript context. The advantage of using static document
instrumentation over the other two alternatives lies in three
aspects. First and most important, it is immune to code and
syntax obfuscations. Second, it does not need to emulate
Javascript interpreters, resulting in much less development
effort and minor computational overhead. Last but not least,
it provides good portability and can be easily deployed at
end hosts.

When an instrumented document is loaded, our runtime
detector monitors the behaviors of a PDF reader process
and identifies potential infection attempts from Javascript.
The infection attempt manifests itself through a sequence
of suspicious actions, such as exploiting to compromise
systems, retrieving malware and executing it. By monitoring
these suspicious behaviors as evidence of infection, we
compute a weighted sum to detect malicious PDF.

Our system also defines five novel static features for detec-
tion. These features characterize the obfuscation techniques
frequently used in malicious PDF. The combination of static
and runtime features will be more effective and robust than
existing methods, which are either fully static [5] [4] [6]
or fully dynamic [9] [13]. A more thorough comparison
between our method and others is presented in Table I.

For any new intrusion detection mechanism, we need
to perform a security analysis—a task that in many cases
is even more important than its detection performance. In
principle, it is required that the defense system remains
robust and secure even when its internal operation is exposed
to attackers. To this end, we conduct a security analysis
of our approach showing that our system is still effective
in detection and robust against evasion attacks even in
the presence of a sophisticated adversarial environment. In
particular, a list of potential advanced attacks are discussed
and mitigations for their impact are presented.

To validate the efficacy of our system, we conduct a series
of experiments using a corpus of 18623 benign and 7370
malicious PDF documents. The experimental results show
that our static and runtime features achieve very promising
detection performance. No false positive and few (25 out
of 942) false negatives are generated during the evaluation.
It takes only 0.04 seconds on average to instrument a
malicious sample and about 5.5 seconds to process a very
large (20 MB) document. The slowdown caused by our
runtime detector is 0.093 seconds for a single Javascript.
Even when as many as 20 separate scripts are instrumented,
the slowdown does not exceed 2 seconds. Overall, our
system provides an effective defense against malicious PDF
in practice.

The remainder of the paper is outlined as follows. In
Section II, we survey related work. The system design is
detailed in Section III. Then in Section IV, we analyze
the robustness of our system under the assumption of an
advanced attacker. The evaluation results are presented in
Section V. Section VI discusses the limitations and future
work. Finally, we conclude in Section VII.

II. RELATED WORK

Existing research on malicious PDF detection has taken
two directions, static methods which build statistical models
from document content and classify unknown samples using
machine learning, and dynamic methods which execute
suspicious Javascript in some constrained environments.

Early static methods are based on n-gram analysis to
detect universal malicious files [16] [17]. In 2011, Laskov et
al. [7] presented PJScan, the first static method dedicated to
the detection of malicious PDF. Using a patched SpiderMon-
key, PJScan extracts lexical tokens of Javascript and trains
an OCSVM (One Class Support Vector Machine) classifier
to identify malicious PDF. Instead of analyzing Javascript,
Malware Slayer [6] inspects the content of malicious PDF
and counts the frequency of PDF keywords. Then, a set
of keywords with high frequency are selected and fed into
various machine learning algorithms for detection. PDFRate
[4] extracts more structural features from PDF and thus
builds a more accurate classifier. It can also detect targeted
attacks. Srndic et al. [5] proposed a structural-path based
method. They modeled a document as a set of structural
paths and detected malicious PDF using Decision Tree
and SVM (Support Vector Machine). Wepawet [18] uses
JSAND [14], which leverages statistical and lexical features
of Javascript, to detect malicious PDF. In general, static
methods have been proven to be simple, fast, and effective.
However, they are susceptible to mimicry attacks [8]. Our
method differs from these fully static methods in that,
besides static features, we also use runtime behaviors of
malicious Javascript for detection.

Compared with static detection, dynamic approaches are
more robust against mimicry attacks. Tzermias et al. [9] pro-
posed MDScan, which extracts Javascript from documents
and executes it in instrumented SpiderMonkey and Nemu
[19]. However, such a method suffers several limitations.
First, it requires reliable Javascript extraction, which can
be subverted by syntax obfuscations. Attackers can hide
shellcode at some weird places in a document, e.g., in the
title, and reference it in forms like “this.info.title”.
In this case, the extracted Javascript will fail to execute in
emulated environments. Moreover, it is required to emulate
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Figure 1: System Architecture

PDF-specific Javascript objects, both documented [20] and
undocumented like printSeps (). Finally, the proposed
defense cannot be readily deployed on a user’s system.
Meanwhile, malicious Javascript detection on the Web is
a well-studied topic and many methods have been proposed
[14] [15] [21] [22]. However, these methods are specially
designed for detecting malicious Javascript on the Web and
they are mainly based on the analysis of Javascript code
itself. Differently, our approach monitors suspicious system-
level behaviors in the context of Javascript execution.
Similar to our approach, CWSandbox [13] and PEB
heuristics [23] also detect suspicious runtime behaviors
of document readers. However, CWSandbox [13] is used
primarily for detecting traditional malware, and it can be
easily evaded by event-triggering or environment-sensitive
malicious Javascript. Polychronakis et al. [23] proposed to
execute shellcode in a CPU emulator and detect suspicious
memory accesses using four heuristics. Egele et al. [24] pre-
sented a similar method which identifies potential shellcode
at runtime and tests it in libemu [25]. Compared with these
methods, we use different and more robust runtime features,
which characterize the essential operations required in the
infection process. Moreover, we neither identify shellcode,
which can be evaded by using English Shellcode [26],
nor emulate CPU, which is heavyweight. Snow et al. [27]
proposed to monitor system call sequences of document
readers. However, they didn’t model the infection process
of malicious documents and their method is context-free.

III. SYSTEM DESIGN

A. Architecture

Our system consists of two major components, front-end
and back-end, working in two phases. In Phase-I, the front-
end component statically parses the document, analyzes the
structure, and finally instruments the PDF objects containing
Javascript. Then, in Phase-II when an instrumented docu-
ment is opened, the back-end component detects suspicious
behaviors of a PDF reader process in context of Javascript
execution and confines malicious attempts. Figure 1 shows
the architecture of our system.

Static Analysis and Instrumentation: For suspicious PDF,
the front-end first parses the document structure and then
decompresses the objects and streams. A set of static features
are extracted in this process. When a document has been
decompressed, the front-end will instrument it and add
context monitoring code for Javascript. In some cases, if
the document is encrypted using an owner’s password, i.e.,
a mode of PDF in which the document is readable but non-
modifiable, we need to remove the owner’s password. With
the help of PDF password recovery tools like [28], this can
be done easily and very fast.

Runtime Detection: The back-end component works in
two steps, runtime monitoring and runtime detection. When
an instrumented PDF is loaded, the context monitoring
code inside will cooperate with our runtime monitor, which
tries to collect evidence of potential infection attempts.
When Javascript executes to the end or a critical operation
occurs, the runtime detector will compute a malscore. If the
malscore exceeds a predefined threshold, the document will
be classified as malicious.

B. Static Features

Several recent works have proposed to detect malicious
PDF by statically analyzing document content [4] [5] [6].
Static methods are simple, and they have promising perfor-
mance in detecting existing malicious documents. In this
work, we define five novel static features to aid runtime
detection by leveraging the obfuscation techniques used in
malicious PDF. Although static features are vulnerable to
evasion, their usefulness for detection lies in two aspects:
(1) if malicious documents use obfuscations, our system can
detect them with higher confidence; and (2) if not, then the
unobfuscated documents can be processed more easily and
accurately by our front-end component. In the following, we
detail the static features used in our system.

Ratio of PDF Objects on Javascript Chain: In PDF,
a labelled object is called an indirect object, which can
be referred to by other objects [29]. Sometimes, there
are several indirect objects between the root and the one
containing real data. These PDF objects form a reference
chain. In the sample PDF as shown in Figure 2, there
are ten indirect objects. We extract every chain containing
at least one Javascript object on the path. We call it a
Javascript chain. This feature computes the ratio of the
objects involved in Javascript chains to the total objects
in a document. Normally, malicious documents contain few
data and many of them have only one blank page. Thus, in
malicious documents, the ratio should be relatively high.

PDF Header Obfuscation: The PDF specifications re-
quire only that the header appears somewhere within the
first 1,024 bytes of the file [29]. Benign documents rarely
have incentives to obfuscate PDF header, but malicious
documents are more willing to do so. Actually a recent work
has proposed to manipulate the file type identifiers to evade
anti-virus software [30]. Another trick attackers can use is
to specify an invalid version number in header. Our system
checks if PDF header appears at the very beginning of a
document and if the header format is valid.



The following three features are checked for objects on
Javascript chains only.

Hexadecimal Code in Keyword: PDF standard allows
any character except NULL to be represented by its 2-
digit hexadecimal code, preceded by one or more number
signs (#). Many malicious documents use this trick to
hide keywords. For example, in object (4 0) in Figure 2,
/JavaScript is encoded as /JavaScr##69pt.

Count of Empty Objects: Object (6 0) in Figure 2 shows
a Javascript chain from a malicious PDF. In this document,
the Javascript chain ends with an empty object. Actually, the
real malicious Javascript is embedded in another chain. Our
system counts the number of empty objects in a document.

Levels of Encoding: Encoding in PDF is used primarily
for compression. Normally benign documents use only one
level of encoding since multi-encoding brings little improve-
ment. However, malicious documents tend to use multiple
levels to evade anti-virus software.

Our system records the maximal encoding levels used on
Javascript chains. Maximum, rather than average, is used
for two reasons: on the one hand, maximum is more effec-
tive; on the other hand, average is susceptible to mimicry
attacks. For example, attackers can deliberately insert many
Javascript chains with one level of encoding. In this case,
the average drops close to one.

C. Document Instrumentation

Due to its wide-spread adoption, simplicity, and strong
expressiveness, Javascript is employed by the vast majority
of malicious PDFs in the wild. Therefore, identifying and
confining malicious Javascript in PDFs can effectively miti-
gate the risk they currently pose to Internet users. Motivated
by the fact that malicious Javascript behaves significantly
different from the benign one in system-level, we propose
a context-aware detection and confinement approach. The
core idea is to confine operations that are deemed suspicious
based on the context of Javascript execution.

In order to implement the context-aware approach, one
of the challenges is to identify when Javascript starts to
execute and when it finishes. A simlpe solution is to extract
Javascript from documents and execute it in an emulated en-
vironment. However, the extract-and-emulate method cannot
guarantee reliable Javascript extraction, as demonstrated by
an example shellcode in object (4 0) in Figure 2. Moreover,
it can be very computationally expensive to emulate PDF-
specific objects. An alternative option is to instrument a
Javascript interpreter. For example, a snippet of monitoring
code can be inserted at the entry and exit points of the
Javascript interpreter. Although easy to implement, we do
not choose this approach for two reasons. First, interpreter
instrumentation is insecure and can be easily bypassed.
Second, interpreter instrumentation has poor portability.

To overcome the aforementioned limitations, we propose
to leverage static document instrumentation, which requires
neither Javascript extraction nor environment emulation.
Using our approach, a snippet of context monitoring code is
inserted into the document statically. Every time Javascript
gets executed and finishes execution, the context monitoring
code takes control and informs our runtime detector.
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Figure 2: A Synthetic Sample of Malicious PDF. The start point
can be object (2 0), (4 0), or (5 0). Any object can be selected as
the start point, and here we assume (2 0) as the start point.

The first step of our method is to reconstruct all Javascript
chains in a document. We use a similar technique de-
scribed in previous works [7] [8] [9] to locate Javascript.
Specifically, we scan the document for keywords /JS and
/JavaScript that indicate a string or stream containing
Javascript [29]. Next, we recursively backtrack to find the
ancestors on a chain and forward search for the descendants.
At the end of this process, we can extract a collection of
Javascript chains. We only instrument the chains associated
with some triggering actions, such as /OpenAction and
/AA. Figure 2 illustrates the execution steps of the afore-
mentioned algorithm. This algorithm is quite robust since it
is immune to Javascript code obfuscation, and according to
[29], the keyword /JavaScript should be plain text.

Javascript in PDF can be invoked either singly or sequen-
tially (through /Next and /Names). The instrumentation
process for single Javascript is shown in Figure 3. We
first store the original code in a string which is passed as
argument to eval () and then we prepend and append our
context monitoring code to it. This process is quite simple
and does not require sophisticated code analysis. The only
operation we perform is to scan the code and add ’\\’ for
" and " in the original Javascript code. When Javascript
snippets are triggered, the context monitoring code, rather
than the original script, gets executed first and it informs
the runtime detector of the entrance and exit of Javascript
context. During this process, the context monitoring code has
to be able to communicate with the runtime detector. PDF
provides three possible channels for communication: shared
file, HTTP, and SOAP (Simple Object Access Protocol).
Shared file is inefficient and insecure. The Net .HTTP
method can be invoked only outside of a document [20],
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Figure 3: An Example to Illustrate Instrumentation

i.e., cannot work in our context monitoring code. We select
SOAP for our implementation to avoid the pitfalls of the
other communication options. To achieve that, a tiny SOAP
server is built into the detector enabling the communi-
cation with the context monitoring code synchronously.
A randomly generated key is used to protect the SOAP
communications. The key has two parts, Detector ID and
Instrumentation Key. Detector ID is generated when our
system is installed. In case that an already instrumented
document is downloaded, this field can be used to filter out
communications from the invalid context monitoring code.
The second field is randomly generated when instrumenting
a document and it uniquely identifies an instrumented doc-
ument. We also maintain a mapping between instrumented
document and key. When instrumenting a file, we first ensure
that no duplicate instrumentation is carried out on a single
document. We further discuss the security of the key in
Section IV.

For sequentially invoked scripts, the process is a little
different. We can simply insert the context monitoring code
for each separate Javascript listed in /Names dictionary
or /Next field. However, this can incur intolerably high
overhead. A better choice is to parse the chain and enclose
all scripts invoked sequentially using one single context
monitoring code, which is taken in our system.

Finally, attackers can also dynamically add Javascript
using the methods listed in Table IV and delay the execution
of Javascript using setTimeOut (). The two cases are
specially handled in Section IV.

D. Runtime Features

When an instrumented PDF is opened, our stand-alone
detector starts to monitor suspicious behaviors of the PDF
reader and collect evidence of infection. We detect those
essential operations that compromise target systems.

To improve the chance of successful exploits given various
modern security enhancements, heap spraying has become
the preferred weapon in hackers’ arsenal. When heap is
sprayed, a vulnerability like CVE-2008-2992 can be trig-
gered to transfer the control to shellcode, which will exe-
cute the dropped malware, carry out drive-by-download, or
establish a reverse bind shell. All of these operations should
rarely occur in benign Javascript. Thus, any occurrence
of these operations in the context of Javascript execution
can be considered as suspicious. This is referred to as JS-
context monitoring. In addition, we note that unlike browsers
which normally work in multi-thread, PDF readers process
documents in single-thread. That is, during the execution
of Javascript, no other PDF objects in the same or another
document will be processed. This fact simplifies our method

Table II: Runtime Behaviors Monitored in Two Contexts.

Runtime Behaviors
Process Creation and DLL Injection
Memory Consumption, Network Access, Mapped
Memory Search, Malware Dropping, Process
Creation, and DLL Injection

Context
Out-JS-Context

JS-Context

and we do not need to consider the potential false positives
caused by concurrency.

JS-context monitoring can effectively detect malicious
documents that exploit the vulnerabilities in Javascript in-
terpreters. However, attackers can also exploit other vulner-
abilities like CVE-2010-3654 in Flash and CVE-2010-2883
in CoolType.dll. Javascript in such malicious documents is
normally responsible for heap spraying and malformed data
crafting. In such cases, probably the JS-context monitoring
can detect only one suspicious operation, i.e., heap spraying,
which is insufficient for accurate detection. To complement
JS-context monitoring, we also monitor the runtime behav-
iors after Javascript finishes (out-JS-context).

Table II lists the runtime behaviors we monitor in the two
contexts above. Each monitored behavior is defined as one
runtime feature in our system. Essentially, these behaviors
are modeled as sequences of system calls. While using
system calls to detect anomaly is not new [27] [31] [32], our
method differs in two aspects. First, most previous works
focus on detecting the behavior deviations from expected
execution. But we detect the infection attempts of malicious
code. Second, although there exist works on modeling the
behaviors of malware [32], our method relies on the context-
aware monitoring which has not been explored in previous
works. Below, we continue to explain the details of each
monitored behavior.

Malware Dropping: A common practice of malicious
PDF is to drop some malware to a user’s file sys-
tem. To monitor the malware dropping, we hook the
APIs NtCreateFile (), URLDownloadToFilex (),
and URLDownloadToCacheFilex () on Windows.

Suspicious Memory Consumption: In heap spraying,
malicious code fills the heap with a NOP sled appended with
shellcode. Subsequently, it attempts to divert the control flow
to any address covered by the NOP sled that leads to the
shellcode execution. In an effort to increase the probability
of hitting a NOP, malicious code attempts to write a large
area of memory, usually more than 100 MB [33].

Suspicious memory consumption can be very promising in
detecting the presence of heap spraying, especially if mon-
itored in JS-context. The context-free monitoring can cause
many false positives, e.g., in a case that many documents
are opened simultaneously. However, the context-aware
monitoring in our method can effectively eliminate most
noise. We check the PROCESS_MEMORY_COUNTERS_EX
structure [34] at the entry/exit of JS context and when other
in-JS sensitive APIs are captured.

Suspicious Network Access: Unlike on the Web,
Javascript in PDF rarely connects to the Internet and its
primary function is to dynamically render a document,
which rarely relies on network communications. Actually,



the number of Javascript methods provided in PDF for
network access is limited and most of them can be used only
in restricted conditions. For example, app.mailmsg ()
and app.launchURL () establish network connections
using third-party applications (email clients and browsers),
which are not monitored by our runtime detector. And,
the Net.HTTP object cannot be invoked by Javascript
embedded in a document. Thus, any network connection
generated in JS-context should be considered as suspicious.
In our system, we hook all connect and 1isten. Note
that we white-list the communications between the runtime
detector and the context monitoring code.

Mapped Memory Search: Besides drive-by-download,
attackers can also embed malware in a document. Such a
technique is called Egg-hunt. In [35], a malicious sample
using egg-hunt is analyzed. One challenge of egg-hunt
is that attackers cannot know where malware is loaded
in memory and they have to search the whole address
space. However, some memory in the address space is
unallocated, and dereferencing it can lead to segmentation
fault. In order to prevent access violations, attackers
have to employ some techniques to safely search the
virtual address space. Several effective techniques, for
both Linux and Windows, are described in [36]. In our
implementation, NtAccessCheckAndAuditAlarm(),
IsBadReadPtr (), NtDisplayString (), and
NtAddAtom () are monitored.

Process Creation: The final step of an attack lies in exe-
cution of the dropped malware. Attackers can create a new
process to execute the malware. In JS-context, this behavior
can be a strong sign of infection attempt; while in out-JS-
context, it can cause false positives. We observe that Win-
dows error report programs and tools distributed with PDF
readers, which obviously are benign, are usually invoked. So,
we add them to a white-list. In implementation, we monitor
NtCreateProcess (), NtCreateProcessEx (), and
NtCreateUserProcess ().

DLL Injection: In the wild, usually attackers prefer to
execute malware via DLL injection. This behavior should
never occur in JS-context and rarely occur outside of
JS-context. Thus, we monitor DLL injection in both JS-
context and out-JS-context. In implementation, we monitor
CreateRemoteThread().

E. Runtime Detection and Confinement

Detection. The workflow of runtime detection and
lightweight confinement is shown in Figure 4. The run-
time detector works in three steps. Initially, all sensitive
operations are ignored until at least one in-JS operation is
captured from an unknown PDF. Although it may cause false
negatives to discard out-JS operations at this step, we believe
it is worthwhile for achieving a lower false positive rate and
higher performance. Next, the detector starts to continuously
record all sensitive operations. The core logic of the runtime
detector is a weighted sum, as shown in Equation 1.
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Figure 4: Workflow of Runtime Detection & Lightweight
Confinement.

The first part represents the static and out-JS features.
The second part denotes the in-JS features. The features
are numbered from 1 to 13, and the runtime features are
numbered in the order they appear in Table II. All these
features are normalized to binary values. Instead of assigning
a weight for each feature, we set a weight for each “part” in
the equation. We also define a threshold and if the malscore
exceeds it, the document is tagged as malicious. The feature
normalization, weight and threshold setting are based on the
statistical results of a large corpus of benign and malicious
samples. We provide a detailed description in Section V-C.

In real world, users usually open many PDFs simulta-
neously, which must be correctly handled by the runtime
detector. For each unknown open PDF which has carried
out at least one in-JS operation, we maintain a separate
malscore and a set of related operations. In-JS operations
affect the corresponding malscore only, while out-JS op-
erations contribute to every active malscore. Finally, in
order to handle the case that multiple malicious PDFs work
together to attack stealthily, we maintain a list of executables
downloaded in JS context. When an in-JS operation invokes
an executable in the list, we intentionally prepend a malware
dropping operation for this PDF and append a malware
execution operation for another PDF that downloads the
file. Malscore is volatile, implying that it no longer exists
when a PDF reader is closed. However, the maintained list
of executables is persistently stored. When an alert is raised,
we report the malscore, associated features, and the detected
malicious PDFs to users.

Confinement. In Figure 4, the operations enclosed in
solid border are confined. Our lightweight confinement, as
well as runtime monitoring, is based on Windows API
hooking. There are various ways to implement API hooking,
e.g., modifying the system service dispatch table (SSDT) or
the interrupt descriptor table (IDT). Our prototype adopts
the import address table (IAT) hooking since it is simple,
effective, and efficient. Although attackers could leverage
GetProcAddress () or call kernel routines directly to
bypass IAT hooking, it is quite uncommon [13]. In the
future, we will use advanced kernel mode hooks to make
it more difficult to evade.

An essential step of IAT hooking is to inject our hook
DLL. There are two popular implanting techniques on
Windows, i.e., remote thread injection and Applnit registry
modification [37]. Our prototype adopts the latter approach.
As Applnit modification can affect the whole system, which
is undesirable, we utilize a similar technique introduced
in [38]. The basic idea is to develop a trampoline DLL,



which further loads the IAT hook DLL if the host process
is a PDF reader and otherwise does nothing. In this way,
our confinement affects PDF readers only and thus incurs
negligible overhead to the whole system.

Moreover, since API hooks execute in a PDF reader
process, we need a channel for communications between
API hooks and our stand-alone runtime detector. In our
prototype, TCP socket is used. When the hook DLL is
injected, its first job is to set up a TCP connection to the
runtime detector. At runtime, it sends the captured API,
API parameters, and memory usage (for suspicious memory
consumption in §III-D) to the runtime detector.

Table III shows the pre-defined confinement rules exe-
cuted by the runtime detector and Hook DLL. The rules are
quite straightforward. The only issue that deserves attention
is, in order to confine the created process, we use an existing
sandbox tool, Sandboxie [39]. Currently, we just handle
three sensitive operations. However, we can easily extend
existing confinement rules.

F. De-instrumentation

In reality, it is common to open a document many
times. In order to improve performance and scalability,
we can monitor new documents only. We adopt an intu-
itive and simple approach, document de-instrumentation,
to achieve this goal. When a document is identified as
benign, our system removes the context monitoring code
from it, i.e., de-instrumenting it. De-instrumentation is done
in background after the PDF reader is closed. To facil-
itate de-instrumentation, our static instrumentation com-
ponent will generate and export the corresponding de-
instrumentation specifications when instrumenting a doc-
ument. De-instrumentation significantly improves scalabil-
ity while no security hole is introduced. Note that de-
instrumenting at-once is a simple heuristic. A configurable
parameter and randomization can be introduced to set the
number of opens before de-instrumentation.

IV. SECURITY ANALYSIS

For any intrusion detection system, it is a must to enforce
its own integrity and security. In this section, we first
describe the threat model. Then, we present a list of potential
advanced attacks and our countermeasures.

A. Threat Model

In our analysis, we assume an advanced attacker who can
access our code and test it for unlimited times. Moreover,
the attacker can embed some arbitrarily large shellcode in
the document. The shellcode is able to: (1) identify the heap,
stack, and code areas in memory; (2) scan the whole virtual
address space; and (3) modify any memory content.

Meanwhile, we also assume that attackers can neither
(1) understand the meaning of data in memory if there
is no identifiable signature nor (2) manipulate our static
instrumentation code since the instrumentation component
gets executed before malicious code.

B. Potential Advanced Attacks and Countermeasures

Mimicry Attack: An obvious attack is the mimicry
attack, targeting the messaging mechanism between the
context monitoring code and the runtime detector. Attackers
try to steal the key used in communications and send a fake
message to the runtime monitor, mimicking the epilogue of
the context monitoring code. Then, the shellcode can do
anything without monitoring. An alternative approach is to
search for our episode code and execute it before carrying
out malicious operations. We argue that

our random key, context monitoring code randomization
and duplication, and zero tolerance to fake message can
effectively defeat such a mimicry attack.

Attackers can use either signature-based [40] or test-based
[41] methods to search for keys in memory. In many cases,
the key is stored at some fixed addresses or somewhere near
an identifiable string, e.g., “auth-password” or “MyPwd”.
Such a signature remains intact once software is released,
and hence attackers can easily locate the key in memory. Our
system avoids generating signatures through: (1) executing
the context monitoring code using eval (); (2) generating
the key randomly during static instrumentation; (3) random-
izing the structure of the context monitoring code; and (4)
creating copies of fake context monitoring code.

It is much easier to defeat the test-based cracking. We
enforce that whenever a fake message is received, we tag
the active document as malicious. Note that attackers cannot
launch DoS attacks by pretending to be another PDF. As
mentioned before, PDF readers work in single-thread and
only one document is active at any time. From the key in
the prologue, we can identify the active document, which is
responsible for the fake message.

Runtime Patching Attack: Attackers can also carry out
the runtime patching attack. There are two separate scripts in
the document, so we instrument each of them independently.
When the shellcode in the first script gets executed, it
can locate the second script in memory and patch out
the context monitoring code. Then, the second script can
execute without monitoring. A variant attack is to distribute
malicious Javascript in two separate documents.

To avoid the runtime patching attack, we ensure to take
control at the beginning of each script. We apply encryption
to enforce such control retaining. During instrumentation,
an encryption scheme is randomly selected to encrypt the
original script, and the decryption method is embedded in
the prologue of the context monitoring code. In this way,
malicious Javascript cannot get executed without our context
monitoring code.

Moreover, several obfuscation methods are used to make it
impossible for attackers to eliminate the context monitoring
code but still keep the decryption code.

Staged Attack: An advanced attacker can split the exploit
into multiple stages. Let us consider the simplest two-stage
attack, as shown in Figure 5. In step 3, the Stage_2 code
can be installed using Javascript methods listed in Table IV.

To defeat this kind of attack, we analyze the Javascript
code and search for the methods in Table IV during static



Table III: Confinement Rules

Rules

Operation Execute In Hook DLL

Execute In Runtime Detector

Malware Dropping Before alert, call original API.

Before alert, maintain the list of downloaded executables;
‘When alert, isolate.

Before alert, reject the call since it

Process Creation . . .
¢ will be invoked by runtime detector.

Before alert, run target program in Sandboxie [39];
When alert, terminate and isolate the program.

DLL Injection Always reject.

Isolate the injected DLL.

1) Instrument the target PDF.

2) Context monitoring code informs the enter of Javascript.
3) The Stage_1 shellcode setups Stage_2 code at runtime.
4) Context monitoring code informs the leave of Javascript.
5) Stage_2 shellcode is triggered by some event later.

Figure 5: Two-stage Attack

Table IV: Methods provided in PDF to add scripts at runtime.

Method
Doc.addScript()
Doc.setAction()

Doc.setPageAction()
Field.setAction()
Bookmark.setAction()

Trigger Event
Open the document
Close/Save/Print the document
Open/Close a page
Operate on a form field
Click the bookmark

instrumentation. Then, we instrument the dynamically added
scripts that are stored in the parameters of these methods.
A more robust solution we are working on is to hook these
methods in Javascript interpreters and instrument dynami-
cally inserted scripts on-the-fly. Since we only need to hook
five methods, the development efforts and runtime overheads
should be minor.

Delayed Execution: Another evasion approach is to delay
the execution of Javascript. This can be achieved through
app.setTimeOut () and app.setInterval () [20].
Our countermeasure is similar to the one for staged attack
and we intentionally instrument the two Javascript methods
above.

V. EVALUATION

To validate the efficacy of our proposed approach, we
implement a prototype on Windows. The front-end compo-
nent is implemented in Python 2.7. The runtime monitor
and detector in the back-end component are implemented in
C and Java, respectively. And, the tiny SOAP server in the
runtime monitor is built using the Web service framework
JAX-WS. Based on a large corpus of real data, we first
evaluate the effectiveness of our detection model and then
examine the runtime overhead of our prototype.

A. Data Collection

We collected more than twenty thousand benign and mali-
cious samples for this study. Table V summarizes the dataset
used in our evaluation. The benign documents are from four
trusted sources: (1) we collected thousands of documents
from two users’ file systems; (2) we downloaded hundreds
of official forms and reports from large organizations like
governments and well-known companies; (3) we collected a
set of non-malicious PDF files from Contagiodump [42]; and

(4) we randomly crawled over ten thousand of documents
using Google and tested them using anti-virus software.
The malicious samples are from Contagiodump and those
containing no Javascript are excluded.

Table V: Dataset Used for Evaluation

Category # of Samples | # with Javascript Size
Known Benign 18623 994 11.84 GB
Known Malicious 7370 7370 172 MB
[ Total [ 25993 [ 8364 [ 12.01 GB |

B. Feature Validation

Before measuring detection accuracy, we first validate the
capability of our detection features to distinguish between
benign and malicious documents. Here we present the sta-
tistical results of the features used in our system.

Static Features: We scanned all benign documents and
found 994 samples containing Javascript. The following
evaluation mainly relies on these 994 samples.

The first static feature we validate is the ratio of PDF
objects on Javascript chains. Figure 6 shows the cumulative
distribution function of the ratio in benign and malicious
documents. As we can see, about 95% of malicious docu-
ments have a ratio over 0.2. We even found 64 samples with
a ratio of 1. This is reasonable since malicious documents
usually contain only one blank page. By contrast, the ratio
in benign documents presents a quite different pattern. From
the dotted line in Figure 6, we can clearly see that about
90% of benign documents have a ratio smaller than 0.2 and
almost no document has a ratio over 0.6. The results indicate
that this feature can effectively distinguish between benign
and malicious documents.

The statistical results of the other static features in ma-
licious documents are shown in Table VI. For boolean
features, “False” is denoted as 0 and “True” as 1. We found
that while empty objects can be found in malicious samples,
no benign documents contain empty object. This complies
with our intuition that people rarely have incentive to include
these junk objects in documents and normally they tend to
use automatic tools like this.addscript () and [43] to
insert Javascript. These tools rarely generate empty objects.
Unlike previous two features, more malicious samples use
header obfuscation and hex code. As a comparison, we only
found three benign documents with header obfuscation and
no benign document contains hex code. We believe this
is because usually PDF documents are created from other
formats like Microsoft Word and LaTeX using automatic
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Figure 6: Ratio of PDF Objects on
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conversion tools. Such tools do not obfuscate document
header or structure. Finally, only about 1% of malicious
samples use multiple levels of encoding, and surprisingly
about 3% of them do not use any encoding. In benign
documents, we found that all of them use either zero or one
level of encoding. Overall, these five features complement
with the first feature and enable us to more accurately
distinguish between benign and malicious documents.

Table VI: Statistics of Static Features of Malicious Documents.

Value | o/patse | 1True | 2 | 3 | 6

Feature
Header Obfuscation 6792 578 - - -
Hex Code 6827 543 - - -
Empty Objects 7357 5 4 3 1
Encoding Level 233 7065 40 | 31 | O

Memory Consumption: We randomly sampled 30 docu-
ments from each of two categories, “Known Benign” and
“Known Malicious”, respectively. All of the 30 selected
benign documents contain Javascript. Then, we measured
the memory consumption of the sampled 60 documents
in JS-context and the results are shown in Figure 7. As
we can see, one malicious sample can consume more than
1700 MB memory. On average, malicious samples consume
about 336.4 MB memory while benign documents consume
merely 7.1 MB. Moreover, the minimal memory consumed
by malicious samples is 103 MB but the maximum by
benign samples is only 21 MB. These results indicate that
our context-aware monitoring of memory consumption could
be an effective feature to differentiate between benign and
malicious documents.

Context-aware v.s. Context-free. However, only if the
monitoring is conducted in JS-context, will memory con-
sumption be an effective feature. The context-free mon-
itoring could be inaccurate. In order to demonstrate the
deficiency of the context-free monitoring, we measure the
memory consumption of a PDF reader when different
number of documents are opened at the same time. Note
that opening many documents simultaneously is a common
practice in daily life. In our evaluation, we used Adobe
Acrobat 9.0 and four documents with various size from our
reference list, including [3] [5] [20] [29]. For each document,
we made 20 copies and recorded the memory consumption
of Acrobat when different number of copies were opened
simultaneously. The results are shown in Figure 8. In most
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Figure 7: Memory Consumption of
Malicious and Benign Javascripts

Number of Open Documents

Figure 8: Memory Consumption of PDF
Reader When Opening Many Documents

cases, the memory consumption increases linearly with the
inceasing number of opened documents and it can grow up
to 1600 MB. An exception is [3]. When the 15th copy is
opened, the memory consumption drops to a lower level
and then increases linearly again. We tested many times and
this effect appeared in every test. Our speculation is that
this specific document triggers some memory optimization
mechanisms in Acrobat. From these results, we can see that
it is almost impossible to set an appropriate threshold in the
context-free monitoring. A high value could miss a large
fraction of malicious documents while a low value may
generate many false positives. Besides, as shown in Figure
8, the memory increase of [29] is also very large. Thus, in
the context-free monitoring, the memory increase of a PDF
reader is not a good feature either. By contrast, our context-
aware monitoring is much more effective and accurate.

C. Detection Accuracy

We evaluate the detection accuracy of our prototype, in
terms of false positive rate and false negative rate. We tested
the malicious samples in VMware Workstation hosting Win
XP SP1 with Adobe Acrobat 8.0/9.0 installed. We first
describe the parameter configuration of our detector and then
present the detection results.

1) Parameter Configuration

First, we normalize non-binary features, including F1, F4,
F5, and F8. The normalization rules are listed in Table VII.
According to Figures 6 and 7, we set F1 as 1 when the ratio
> 0.2 and F9 as 1 when the memory consumption > 100
MB. Similarly, the values of F5 and F6 are set according to
Table VI. In this way, all 13 features can be represented in
binary values.

To set the weights and threshold, we need to meet the
criterion that a document is tagged as malicious iff at least
one JS-context feature and any other features have positive
values. The basic idea is that if no suspicious behavior is
detected in JS-context, the document contains no malicious
Javascript and thus it is out of the scope of our detection.
According to the criterion, we set wi as 1, we as 9, and the
threshold as 10, respectively.

2) Detection Results

We measured the false positive and false negative rates
of the tuned detector over all benign documents with
Javascript (994) and one thousand randomly selected mali-
cious samples. The malicious samples cover vulnerabilities



Table VII: Parameter Configurations in Our System.

Parameter Value
F1 If ratio > 0.2, F1 = 1; else F1 = 0;
F4 If # of empty objects > 1, F4 = 1; else F4 = 0;
F5 If encoding level > 2, F5 = 1; else F5 = 0;
F8 If mem consumption > 100 MB, F8 = 1; else F§ = 0;
w1 1
wa 9
Threshold 10
Table VIII: Detection Results
Detected Detected .
Category Malicious Benign Noise | Total
Benign Samples 0 994 0 994
Malicious Samples 917 25 58 1000

in Javascript interpreter, Flash, U3D (Universal 3D), TIFF
and JBIG2 image, etc. The detection results are shown in
Table VIII.

It can be seen that no benign sample is misclassified as
malicious, achieving zero false positive. There is only one
sample with suspicious behavior in JS-context. However,
since there is no other feature with positive value, this
sample is still classified as benign. Afterwards, we checked
the sample and confirmed that the script uses SOAP for
network access. The rest 993 samples are tagged as benign
simply because no suspicious JS-context behavior is moni-
tored, although some samples have positive values in other
features. Even though Javascript methods like SOAP and
ADBC can generate network accesses, we are reluctant to
white list them since we cannot decide the maliciousness of
the target server.

During the test, 58 (~6%) of the malicious samples did
nothing when opened. Inspecting those samples, we found
that these samples exploited either CVE-2009-1492 [44] or
CVE-2013-0640 [45] which do not work on Adobe Acrobat
8.0/9.0. As these samples failed to exploit, we excluded
them when computing false negative rate. For the rest 942
samples, we successfully detected 917, with a detection rate
of 97.3%. We examined the 25 undetected samples and we
found two reasons that cause the misses. First, although
malicious Javascripts in these samples spray the heap, the
PDF reader process crashes when the scripts attempt to
hijack the control flow. Second, the 25 undetected samples
use no obfuscation and thus no static feature contributes
to detection. Actually there are more than 25 samples that
crash the PDF reader process, but the others are detected
by our system via suspicious memory consumption and
static features. Although false negatives are unavoidable
when malicious PDF fails to exploit, it does not violate
our primary goal, i.e., protecting users from damages of
malicious PDF.

Table IX compares our method with previous countermea-
sures in terms of false positive rate and true positive rate. It is
clear that our method is comparable with the best fully static
methods [4] [5]. Since the malicious samples in our dataset
are not the most recent (the latest was captured in Feb. 2013),
we cannot fully demonstrate the superiority of our system
over the fully static methods. Thus, we further compare our
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Table IX: Comparison With Existing Methods

Method False Positive | True Positive

N-grams [17] 31% 84%
PJScan [7] 16% 85%
PDFRate [4] 2% 99%
Structural [5] 0.05% 99%
MDScan [9] N/A 89%

Wepawet [18] N/A 68% [9]
Ours 0 97%

system with other methods by analyzing possible advanced
attacks.

e Our approach v.s. Structural methods: The mimicry
attacks proposed in [8] can effectively bypass these
structural methods [4] [5] [6] [7]. However, our ap-
proach is immune to the proposed attacks in that we
detect the malicious attempts from Javascript rather
than how malicious Javascript is stored in PDF.

e Our approach v.s. Anti-virus Software: There are a
whole bunch of tricks available in the wild to evade
anti-virus software [30] [46] [47]. Attackers can easily
generate variants using these tricks to defeat anti-
virus software. Compared with anti-virus software, our
method can effectively detect new variants and zero-
day malicious PDF in time because we use the incon-
cealable system-level behaviors of malicious PDF for
detection.

e Our approach v.s. Dynamic Analysis Tools: At-
tackers can subvert existing dynamic analysis tools
like CWSandbox [13] using event-triggering and
environment-sensitive malcode. Our method does not
suffer this limitation since we detect as real users
operate on malicious documents.

Based on the analysis of potential advanced attacks, we
can see that our method is more robust than existing defense
against malicious PDF.

D. System Performance

To measure the runtime overhead of our method, we run
our prototype on 32-bit Windows 7. We performed the tests
on a laptop with a 2.53 GHz Intel Core 2 Duo CPU processor
and 2 GB of RAM. The performance of each component in
our system is presented below.

1) Static Analysis and Instrumentation

Overall, it took about 297.7 seconds to process all 7370
malicious samples, i.e., 0.04 seconds on average for each
sample. We also measured the overhead when processing
the files with various sizes. We randomly selected three
benign and malicious documents, respectively. The sizes of
these documents are shown in Table X. One of the malicious
samples contains two scripts and the rest of five documents
contain only one script.

The execution time of each step in static analysis and
instrumentation is shown in Table X. We can see that the
overhead is minor for both large and small documents. In
particular, it took only about 5.5 seconds to process a 20
MB document. Considering that it could take 20 seconds to
download the document (in case of 1 MB/s), the additional
delay of 5.5 seconds for processing it is acceptable.



Table X: Execution Time (in seconds) of Static Analysis &

Instrumentation.

PDF Parse & Feature Instrumen- Total

Size Decompress Extraction tation

2 KB 0.0005 0.0255 0.0183 0.0444

9 KB 0.0008 0.0867 0.0138 0.1014
24 KB 0.0007 0.0726 0.0247 0.0981
325 KB 0.0569 0.0210 0.0236 0.1016
7.0 MB 0.8954 0.4023 0.0773 1.3750
19.7 MB 3.2219 2.0015 0.2761 5.4995

Table XI: Memory Overhead of Static Analysis &

Instrumentation.

PDF Size | # of Python Objects | Memory Consumption
2 KB 74095 5.26 MB
9 KB 74085 5.26 MB
24 KB 74112 5.28 MB
325 KB 74616 5.63 MB
7.0 MB 366845 42.86 MB
19.7 MB 1081771 130.6 MB

Whereas most of the execution time is spent on feature
extraction and instrumentation for small documents, the
dominant overhead comes from parsing and decompressing
as document size increases, which accounts for over 95%
of the total execution time. Besides, for instrumentation, the
overhead depends on the number of scripts. That is why
it took more time to instrument the 2 KB file than the 9
KB file in Table X. The overhead increase is approximately
linear. This is because during feature extraction, we have
tagged the PDF objects containing Javascript code and
our instrumentation component only needs to locate and
instrument them.

In summary, the evaluation results indicate that the com-
ponent of static analysis and instrumentation incurs minor
overhead and can be used for end-host protection.

We also profiled memory overhead. Table XI presents the
memory usage during static process. The memory overhead
is a little bit high. However, since the front-end component
works off-line and the RAM on modern systems can easily
accomodate such a memory demand, the overhead is accept-
able. Actually, for most documents, the memory overhead
of our system is comparable with PDF readers like Adobe
Acrobat. In the future work, we will optimize our program
and use memory more efficiently.

2) Runtime Detector

The runtime detector with a tiny SOAP server requires
about 19 MB memory. Although the detector maintains the
state (i.e., all features) for each unknown open document, we
found that the memory usage increases a little as the number
of monitored documents increases. Thus, the overhead of our
runtime detector is also minor.

We further evaluated the efficiency of our context mon-
itoring code. We manually crafted a set of documents
containing various copies of Javascript. The Javascript is
from a randomly selected malicious sample. In total, we
got 20 documents with 1 to 20 separate scripts in each
document. For each crafted document, we measured the total
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execution time of Javascript before and after instrumentation.
When one script is instrumented, the additional execution
time incurred by our context monitoring code is about
0.093 seconds. Since most malicious documents in the wild
contain only one script, this overhead represents the common
case. Note that, although both benign and malicious docu-
ments can contain many scripts, in most cases these scripts
are invoked sequentially via /Names and /Next. Thus,
only one piece of the context monitoring code is inserted.
Basically, the overhead grows linearly as the number of
instrumented scripts increases. However, when there are 20
scripts, the overall overhead is still below 2 seconds. Benign
documents may contain many singly invoked scripts, but in
most cases these scripts are associated with some actions
that probably are not triggered simultaneously. Therefore,
when the overall overhead is distributed among each script,
the performance degradation is still minor. In summary,
our context monitoring code is efficient enough for online
protection.

VI. LIMITATIONS AND FUTURE WORK

Although the majority of existing malicious PDFs use
Javascript to launch attacks, attackers can also have other
options like ActionScript. Our approach cannot detect those
malicious PDFs that do not use Javascript as the attack
vector.

We have also not evaluated the effectiveness of our
method for in-browser PDF viewers. The challenge lies in
two aspects. First, in-browser PDF viewers usually start to
render before a document has been completely downloaded.
This brings difficulty to our static analysis and instrumen-
tation. Moreover, runtime behaviors of a browser is much
more complicated than those of a PDF reader. In our future
work, we will create new runtime features for browsers and
be able to detect malicious PDF in an in-brower PDF viewer.

Finally, we have not handled embedded PDF documents.
In the future work, we will extract static features from both
embedded and host PDFs. It would be also valuable to in-
strument embedded documents, and we plan to correlate the
runtime behaviors from both embedded and host documents.
In this way, we can effectively defeat the mimicry attacks
proposed in [8].

VII. CONCLUSION

In this paper, we developed an effective and efficient
hybrid approach—Ileveraging five novel static features and
the context-aware behavior monitoring—for detection and
confinement of malicious Javascript in PDF. The static fea-
tures are designed to detect the obfuscation techniques that
are widely used by malicious PDF but usually disregarded by
benign documents. We also observed that the indispensable
operations for malicious Javascript to compromise target sys-
tems rarely occur in JS-context. Based on this observation,
we presented the static document instrumentation method
to facilitate context-aware monitoring of potential infection
attempts from malicious Javascript. The intrusive nature of
instrumentation method endows our system with immunity
to Javascript code and PDF syntax obfuscations. To validate
the efficacy of our proposed approach, we conducted a
security analysis given an advanced attacker, showing that



our

method is much more robust than existing defense.

The experimental evaluation based on over twenty thousand
benign and malicious samples shows that our system can
achieve very high detection accuracy with minor overhead.
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