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Abstract. Hospital Patient Scheduling is an inherently distributed problem because of the
way real hospitals are organized. As medical procedures have become more complex, and their
associated tests and treatments have become interrelated, the current ad hoc patient scheduling
solutions have been observed to break down. We propose a multi-agent solution using the Gener-
alized Partial Global Planning (GPGP) approach that preserves the existing human organization
and authority structures, while providing better system-level performance (increased hospital unit
throughput and decreased patient stay time). To do this, we extend GPGP with a new coordi-
nation mechanism to handle mutually exclusive resource relationships. Like the other GPGP
mechanisms, the new mechanism can be applied to any problem with the appropriate resource
relationship. We evaluate this new mechanism in the context of the hospital patient scheduling
problem, and examine the e�ect of increasing interrelations between tasks performed by di�erent
hospital units.

Keywords: Multi-agent systems, coordination, distributed scheduling, applications, organiza-
tional modeling and redesign

1. Introduction

Generalized Partial Global Planning (GPGP) is a task environment centered ap-
proach to coordination [10, 5]. The basic idea is that each agent constructs its
own local view of the structure and relationships of its intended tasks. This view
may then be augmented by information from other agents, and it may change in
other ways dynamically over time. The GPGP approach uses a set of individual
coordination mechanisms to help to construct these partial views, and to recognize
and respond to particular task structure relationships by making commitments to
other agents. These commitments result in more coherent, coordinated behavior
[3, 2, 16]. No one coordination algorithm will be appropriate for all task environ-
ments, but by selecting from a set of possible coordination mechanisms we can
create a wide set of di�erent coordination responses.

We have demonstrated the usefulness of the GPGP approach using �ve coordina-
tion mechanisms drawn from Durfee's original PGP work [12] in several domains|
distributed vehicle monitoring [7], distributed data processing [25], and in randomly
generated problems [10]. This paper contains a study of GPGP as applied to the
hospital patient scheduling domain. The domain is quite interesting because it is
inherently distributed due to the existing human authority structure of a hospital.
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Although we can apply the �ve existing GPGP coordination mechanisms to the
hospital patient scheduling problem directly, the hospital patient scheduling prob-
lem contains a task relationship that is not handled by any of the existing co-
ordination mechanisms, namely, that the hospital patient is a mutually exclusive
resource. To address this new relationship, �rst we must de�ne it formally as a
resource constraint in our task structure representation language (t�ms [9, 32])
and then we de�ne a new GPGP coordination mechanism to handle the new task
relationship. We show how the existing practices can be captured using GPGP
and removing some of the mechanisms. GPGP with our new resource-constraint
mechanism outperforms existing practice (as described by Ow et al. [23]) in two
ways: increased patient throughput, and decreased patient stay time. Historically,
hospital procedures were not as mutually interrelated as they are becoming today.
We also demonstrate that the existing practice produces similar results to our new
mechanism when few inter-unit task relationships exist.
The paper is arranged as follows. First we discuss the hospital patient scheduling

problem, and how we represent mutual exclusion resource problems in general using
the t�ms modeling language. Next we brie
y discuss GPGP, and focus on the new
resource constraint coordination mechanism. Finally, we present our experimental
results, and indicate how this work is being extended to broader resource models.

2. The Hospital Scheduling Problem

Our model is drawn from a case study of an actual hospital [23, 18]:

Patients in General Hospital reside in units that are organized by branches of
medicine, such as orthopedics or neurosurgery. Each day, physicians request
certain tests and/or therapy to be performed as a part of the diagnosis and
treatment of a patient. [. . . ] Tests are performed by separate, independent,
and distally located ancillary departments in the hospital. The radiology
department, for example, provides X-ray services and may receive requests
from a number of di�erent units in the hospital.

Furthermore, each test may interact with other tests in relationships such as
enables, requires�delay (a slight variation on enables where the second task must
be both after and delayed), and inhibits (a negative variation of the soft facilitates

relationship where the performance of some test within some timeframe invalidates
the results of another). These task relationships indicate when the execution of one
task changes the characteristics (here, primarily duration) of another task [9].
From this view of task structure, the hospital scheduling problem has these pe-

culiar features:

� Tasks have no redundancy. Each test can only be done by a single ancillary
department.

� The quality accumulation functions of non-executable tasks are always min.
This is because here all the tests need to be done (t�ms can however represent
a wide range of quality accumulation functions).
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� Unlike our previous domain models, here the �nal quality is not important. A
test is either completed, or it is not.

� Di�erent agents (representing di�erent nursing or ancillary units) may use dif-
ferent utility functions when making local schedules. For example, the unit
nurses may try to minimize the patient's stay time, while the ancillary sta�
tries to maximize equipment use and/or minimize setup times.

� Although t�ms and GPGP handle them, there are no deadlines in this domain
model.

Examining the hospital's current coordination structure is enlightening because
it shows a mismatch between the structure and the current hospital environment.
Although the modern hospital task environment is quite complex and interrelated
(see Figure 1), the coordination structure actually used by the hospital assumes
that there are no interrelationships! Each ancillary acts independently, without
communication with either nursing units or other ancillaries (except for the initial
patient order from the nursing unit). The current practice observed in the hospital
is for the nursing units to notify ancillaries of the requested tests and treatments,
and for all ancillaries to schedule independently, sending an orderly to collect a
patient whenever the scheduled time arrives. This somewhat surprising description
has been echoed by hospital administrators in several recent discussions as well.
Of course, with no inter-ancillary coordination, there is no way to know if the pa-
tient will actually be there|they might be o� having a di�erent test performed.
Unit nurses try to make sure the proper prerequisite tests (represented here by
enablement constraints) are done �rst. While this structure seems sorely lacking
when compared to the current environment, it may historically have been a rea-
sonable, low overhead arrangement. It may be that in the past doctors ordered
fewer tests on less complex ancillary equipment with fewer or no interfering rela-
tionships between these technologies. Thus the current practice was adapted for a
di�erent task environment than today. In Section 6, we demonstrate that a simple
algorithm, not much di�erent from the current hospital scheduling practice, is not
signi�cantly di�erent from our new algorithm when ancillary interrelationships are
low or non-existent.

3. Mutually Exclusive Resource Modeling Using T�MS

t�ms task structures are abstraction hierarchies whose leaves are instantiated basic
actions or \executable methods". At a basic level this is similar to HTN (Hierar-
chical Task Network) or TCA (Task Control Architecture) approaches to action
representation[13, 28]. Additionally, t�ms allows the speci�cation of dynamically
changing and uncertain task characteristics that e�ect an agent's preferences (util-
ity) for some state of the world, including tasks with hard or soft deadlines. A
t�ms speci�cation also indicates relationships between local and non-local tasks or
resources that e�ect these agent preference characteristics. Thus it extends HTN
ideas toward specifying \worth-oriented" domains [26]. Recent extensions to t�ms
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Figure 1. High-level, objective task structure and subjective agent views for a typical hospital
patient scheduling episode.

have included named provision relationships and multiple outcome speci�cations
[34, 32].

t�ms can be used both as a subjective internal representation for agent reasoning
(see Section 4), or as an objective modeling language for formally specifying a
problem. Here we will present just enough of the t�ms modeling language to
describe our model of mutually exclusive (mutex) resource problems. A complete
speci�cations of the t�ms modeling language can be found in [5].

In utility theory, agents have preferences over possible �nal states (action or plan
outcomes), and preference-relevant features of an outcome are called attributes.
A substantial body of work exists on relating attribute values to overall utilities
[33]. At its core, t�ms is about specifying these attributes and the processes by
which they change|what we call a model of the task environment. In this paper
we will use only two attributes, quality and duration. Furthermore, in Hospital
Patient Scheduling, quality is limited to 0 or 1, although our t�ms statement of
the problem is actually much more general.

Actions. A t�ms action (or executable method) represents the smallest unit
of analysis. d0(M) is the initial duration of action M, and q0(M) is the initial
maximum quality of action M. d(M; t) is the current duration, and q(M; t) is the
current maximum quality of action M at time t. Q(M; t) is the current quality of
action M . Q(M; t) = 0 at times t before the execution of M . If an agent begins to
executeM at time t (written Start(M)) and continues until time t+d(M; t) (written
Finish(M)), then Q(M;Finish(M)) = q(M;Finish(M)) = q(M; Start(M)) (i.e. the
current actual quality becomes the maximum possible quality). For the purposes
of evaluation in this paper, the amount of work done on an action M here is
simply Work(M) = Finish(M) � Start(M). If there were no interrelationships
(non-local e�ects, NLEs) between M and anything else, then q(M; t) = q0(M)
and d(M; t) = d0(M). The execution of other actions and tasks e�ect an action
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precisely by changing the current duration and current maximum quality of the
action (that is, d(M; t) and q(M; t), as speci�ed below). For the purposes of this
paper, we will also assume that Q(M; t) = 0 for Start(M) � t < F inish(M);
other de�nitions of Q are possible to represent anytime algorithms, etc. Action pre-
emption and resumption may also be modeled by extending these simple de�nitions
[5].
Tasks. A t�ms task (or subtask) represents a set of related subtasks or actions,

joined by a common quality accumulation function. For example, in an AND/OR
tree, an AND task indicates that all subtasks must be accomplished to accomplish
the task, while an OR task indicates that only one subtask needs to be accom-
plished. Since t�ms is about worth-oriented environment modeling, we use contin-
uous rather than logical quality accumulation functions (for example min instead
of AND, max instead of OR1). Given a subtask relationship subtask(T1;T) where
T is the set of all direct subtasks or actions of T1, then if T1 is an AND task we
may recursively de�ne Q(T1; t) = Qmin(T1; t) = minT2TQ(T; t). For the purposes
of evaluation, the amount of work done on a task is the sum of all the work done
on its subtasks, and the �nish time of a task is the latest (max) �nish time of any
subtask.
Non-local E�ects (NLEs). Any t�ms action/method, or a task T containing

such a method, may potentially a�ect some other method M through a non-local
e�ect e. We write this relation (a labeled arc in the task structure graph) as
nle(T;M; e; p1; p2; : : :), where the p's are parameters speci�c to a class of e�ects.
For this paper, there are three possible outcomes of the application of a non-local
e�ect on M under our model: d(M; t) (current duration) is changed, q(M; t) (cur-
rent maximum quality) is changed, or both. An e�ect class e is thus a function
e(T;M; t; d; q; p1; p2; : : :) : [task�method�time�duration�quality�parameter 1�
parameter 2� : : :] 7! [duration� quality]. For the purposes of this paper, we will
ignore the details regarding where information is available, i.e. non-local e�ects
that depend on the transmission of information. Our model will use three NLEs:
enables, facilitates, and mutex.
Enables. If task Ta enables action M , then the maximum quality q(M; t) = 0

until Ta is \completed", at which time the current maximum quality will change
to the initial maximum quality q(M; t) = q0(M). Another way to view this e�ect
is that it changes the \earliest start time" of enabled method, because a rational
scheduler will not execute the method before it is enabled.

enables(Ta;M; t; d; q; �) =

�
[d; 0] t < �(Ta; �)
[d;q0(M)] t � �(Ta; �)

(1)

The term �(Ta; �) computes the earliest time at which task Ta reaches quality �.
Facilitates. Computationally, facilitation occurs when information from one task,

often in the form of constraints, is provided that either reduces or changes the
search space to make some other task easier to solve. A simple to understand
example of this relationship in computation is the relationship between sorting and
searching. It is faster to retrieve an item from a sorted data structure, but sorting
is not necessary for retrieval. Hence the sorting task facilitates the retrieval task.
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In our framework, one task may provide results to another task that facilitates

the second task by decreasing the duration or increasing the quality of its partial
result. Therefore the facilitates e�ect has two constant parameters (called power
parameters) 0 � �d � 1 and 0 � �q � 1, that indicate the e�ect on duration
and quality, respectively. The e�ect varies not only through the power parameters,
but also through the quality of the facilitating task available when work on the
facilitated task starts (the ratio R, de�ned below).

R(Ta; s) =
Qavail(Ta; s)

q(Ta; s)

facilitates(Ta;M; t; d; q; �d; �q) = [d(1� �dR(Ta; Start(M)));

q(1 + �qR(Ta; Start(M)))] (2)

So if Ta is completed with maximal quality, and the result is received before M

is started, then the duration d(M; t) will be decreased by a percentage equal to
the duration power �d of the facilitates e�ect. The second clause of the de�nition
indicates that communication after the start of processing has no e�ect. In this
paper we will only use the duration e�ect power �d. Negative values for power
parameters produce \hindering" or \inhibition" e�ects.
Mutex. We �rst represent mutually exclusive access to a resource R by a set

of actions M as a set of pairwise mutex NLEs between all the elements of M. In
Section 8 we extend this model to include explicit resources, and more general
resource limitations than mutual exclusion.

mutex(Ta;M; t; d; q) =

�
[d; 0] Start(Ta) � t < Finish(Ta)
[d;q0(M)] otherwise

(3)

Computing d(M; t) and q(M; t). Underlying a t�ms model is a simple state-
based computation. Each method has an initial maximum quality q0(M) and
duration d0(M) so we de�ne q(M; 0) = q0(M) and d(M; 0) = d0(M). If there
are no non-local e�ects, then d(M; t) = d(M; t � 1) and q(M; t) = q(M; t � 1). If
there is only one non-local e�ect with M as a consequent nle(T;M; e; p1; p2; : : :),
then [d(M; t);q(M; t)]  e(T;M; t;d(M; t� 1);q(M; t � 1); p1; p2; : : :). If there is
more than one non-local e�ect, then the e�ects are applied in the order mutex, then
enables, then facilitates.
A mutually exclusive resource coordination problem. A Mutex Coordi-

nation Problem (MCP) is thus de�ned as a t�ms objective task structure, which
can be represented as a tuple hA;T;M; �;E;R; �; �i where

� A is a set of agents

� T is a set of t�ms tasks

� M is a set of t�ms actions (methods)

� � is a mapping from tasks to sets of subtasks and/or actions

� E is a set of non-local e�ects between elements of T and/or M
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� R is a set of uniquely named resources

� � is a mapping from a subset of actions M to resources R.

� � is a mapping from every action inM to the agents that are capable of executing
that action.

For the simple case of mutex relations only, we simplify this to hA;T;M; �;E; �i
by adding mutex relationships to E between every pair of methods that accesses
the same uniquely named resource. However, we can not do this in general, see
Section 8.
For the purposes of evaluation, a solution S to an MCP can be represented

abstractly as a set of after-the-fact schedules for each agent, indicating the Start
and Finish times for each action. We can then calculate the �nish time of S,
Finish(S), as the latest action �nish time, and the amount of work done as the
sum of the work done in each action. In our experiments, we create a speci�c
model of a hospital with �xed maximal values for A (the Ancillaries); T and M
(all the possible hospital tasks and their component actions), � (mapping from
actions to the single appropriate ancillary), and E (task interrelationships including
both enables, facilitates, and mutex). We then generate \patients" by choosing a
subset of tasks; generate di�erent \historical" models by removing (simplifying) the
number of enables and facilitates relationships, and examine the e�ect of the mutex
coordination mechanism by manipulating the probability of mutex relationships (see
Section 6).

4. Generalized Partial Global Planning (GPGP)

GPGP is a domain independent scheduling coordination approach. The term \plan-
ning" in the name is historical, arising from Durfee's PGP work. In the modern AI
view of a continuum between planning and scheduling, both GPGP and PGP focus
on the scheduling side|on the relative ordering and absolute temporal placement
of actions. The GPGP approach makes several architectural assumptions on the
agents involved. Most important of these is that the agent represents its current
set of intended tasks using the t�ms task structure representation language (see
Sections 3 and 6.1).
An agent using the GPGP approach provides a planner or plan retriever to create

task structures that attempt to achieve agent goals, and a scheduler that attempts
to maximize utility via choice, serialization, and absolute temporal location of basic
actions in the task structure. Each GPGP mechanism examines the changing task
structure for certain situations, such as the appearance of a particular class of task
relationship, and responds by making local and non-local commitments to tasks,
possibly creating new communication actions to transmit commitments or partial
task structure information to other agents. The set of coordination mechanisms is
extendible, and any subset or all of which can be used in response to a particular
task environment situation. Initially, GPGP de�ned the following �ve coordination
mechanisms based on Durfee's PGP:
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Updating non-local viewpoints. Each agent detects the possible coordination
relationships and then communicates the related task structures. A coordination
relationship is simply a task interrelationship (e.g. enables, facilitates, etc.)
that extends between the task networks of two di�erent agents. Detecting
the existence of such relationships is domain dependent. In a domain such
as distributed sensor networks, possible coordination relationships are detected
geographically with respect to physical sensor locations[9]. In an application
such as �nancial information gathering[11] possible relationships are recorded
before a partial plan is distributed to multiple agents. In the hospital scheduling
problem, the set of \possible relationships" are well-known medical domain
knowledge, and are based on the particular set of tests ordered by the examining
doctor and recorded by the nursing unit.

Communicate results when they will be used by others. For example, if the
results of task A at agent A will enable the execution of task B at agent B, then
actually send those results when they become available. In our previous GPGP
studies, we modeled the performance of communicating whenever it seemed
advantageous versus only when tasks had been committed to, with respect to
environmental features such as rate of dynamic change, message size, and like-
lihood of distraction [8, 10]. The standard result communication mechanism
also sends noti�cations when a result cannot be delivered due to some failure,
and when an agent believes all of its work on a joint goal has been completed
(similar to the Cohen & Levesque model of teamwork [20]).

Handling simple redundancy. When more than one agent wants to execute a
redundant method, one agent is randomly chosen to execute it and send the
result to the other interested agents. This can lead to more complex load-
balancing mechanisms for handling redundancy [7, 5]. Like all the mechanisms,
this one can be switched on or o� for di�erent domains or parts of a domain|
sometimes redundancy is desirable.

Handling hard relationships (A must come before B) from the predecessor side.
A is the \predecessor" task, B is the \successor". The idea used in PGP and
generalized in GPGP is that the agent with the predecessor task will commit
to a completion time locally, and then transmit the commitment to the agent
responsible for B. Note that this is not the only way to handle this relationship
(see below).

Handling soft relationships from the predecessor side. A \soft" relationship
exists between A and B if when A is executed before B, the execution of B will
be perhaps faster or will return better results, but it is not strictly necessary.
A simple example is sorting versus searching: sorting facilitates searching, but
sorting is not strictly necessary before searching. In this PGP generalization,
again the agent with the predecessor task commits to a completion time and
transmits the commitment to the successor.

The most important thing about the GPGP approach is that it assures the gen-
erality of the mechanisms, because each mechanism is speci�ed as a response to
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some pattern in a t�ms task structure. Although the speci�c task structure dif-
fers from task instance to task instance and domain to domain, these coordination
relationship show up over and over again in di�erent locations in each new do-
main. Thus the GPGP approach allows us to apply the �ve Durfee mechanisms
to domains other than distributed vehicle monitoring (such as randomly generated
problems, distributed data processing[24], choosing organizational forms[6], local
area network diagnosis [29], or hospital patient scheduling and information gath-
ering as discussed in this paper). The only limitation is the reliance on a t�ms
speci�cation of the underlying task.
However, just because a mechanism can be applied to any domain does not mean

that it should be. One might consider if there is an optimal set of mechanisms
(usually very hard to determine except in very simpli�ed domains), or consider if
some set of mechanisms either models current practice (an organizational modeling
perspective) or performs better than the current set of mechanisms. For example,
any particular coordination relationship, enables for example, can engender many
possible, reasonable coordination mechanisms. For example, if a task TA at agent
A enables task TB at agent B, one could (this is a highly abridged list):

� Have A commit to a deadline for TA (the existing original PGP-inspired mech-
anism)

� Have A send the result of TA (\out of the blue", as it were) to B when available

� Have B request that A complete TA by some deadline

� Have B poll for the completion of TA (Our model of current hospital practice)

The point is that there are many possible responses (coordination mechanisms)
to a particular coordination relationship. The choice of a response may be con-
ditioned on expected performance, or on organizational structure or social norms
that constrain an agent's responses.

5. Applying GPGP to Hospital Scheduling

5.1. The Minimal Required Coordination Mechanisms

To achieve the goal of �nishing all the tests, some coordination mechanisms are
required. One is the communication of results. To know which tests to do, and
to whom to communicate the results, the agent needs to know the corresponding
part of the task structure, so the mechanism of updating non-local viewpoints is
also needed. Since there are no redundant tasks, we do not need the mechanism for
handling redundancy. Handling hard and soft relationships is not strictly required,
since (as we just discussed) an agent can just wait around until it gets the needed
results, and then begin the successor task (and in fact, this is slightly better than
current actual practice in the hospital). However, we will show later that coordi-
nating over these relationships can improve performance. So, the simplest agent in
handling the hospital scheduling problem will have just two coordination mecha-
nisms, and will represent our model of current hospital organizational practice.
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5.2. A New Coordination Mechanism for Resource Constrained Problems

In the hospital scheduling problem, some (but not all) tests can only be done
with the patient physically being there. Thus a resource constraint problem arises,
where the patient becomes a crucial non-sharable resource for di�erent agents. A
mechanism that can respond to this situation is not included in the �ve mechanisms
initially de�ned based on PGP, and cannot be created by simply combining some of
those mechanisms. Therefore we describe a new resource-constraint coordination
mechanism. The new mechanism uses a simple multi-round (but not multi-stage)
negotiation process which is not optimal but has good \
ow" properties since at
least one agent is free to stop meta-level communication and begin domain work at
each round [19]. Our experience is that in highly dynamic environments with large
amounts of uncertainty, excessive time taken to �nd an optimal or near-optimal
schedule is wasted [5]. Other assumptions that we make include that the agents are
cooperating with one another, use the same bid evaluation strategy, and that their
utility measures are comparable (here, we are usually dealing with the amount of
time saved, which is a comparable measure).
When several agents try to use the same non-sharable resource at overlapping

times, only one agent can actually get the resource and execute its work. The
others who failed to get the resource waste this time unit and this e�ort. The
idea behind the resource-constraint coordination mechanism is that when an agent
intends to execute a resource-constrained task (i.e. the task is scheduled locally), it
sends a directed bid of the time interval it needs and the local priority (expressed
as the e�ect on local utility) of its task (we'll describe how this is computed later).
After a communication delay, the agent knows all the bids given out by the other
agents at the same time as its own bid. Since all the agents who bid have the same
information, if they all use the same commonly accepted rule to decide who will
get the time interval, they can get the same result on this round of bidding. The
agent who won will keep its schedule and execute that task at the pre-determined
time interval it bid, and everyone else will mark this same time interval with a
DON'T commitment and never try to execute a related resource-constrained task
in that interval unless the owner gives it up. All the agents who didn't get their
time intervals at this round will reschedule and bid again. The detailed process is
as follows:

1. (Re)Schedule. Compute the best local schedule given all current information
and DO and DON'T commitment constraints (initially, none). No task can
start sooner than the communication-delay.

2. For the next resource-constrained task in the schedule, send out bids indicating
the time interval desired and the corresponding priority.

3. Get information about the bids received (after some communication-time delay),
determine who gets which time interval (i.e., the bid with highest priority, see
Section 5.2.1), and make DO or DON'T commitments as appropriate, updating
the local scheduling information. Also process retractions of commitments from
agents that are giving up some time interval. We'll discuss how to handle
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multiple non-overlapping bids on the same resource in Section 5.2.2. If your
local, resource-constrained task can no longer be scheduled now, go back to
Step 1. If your task is a winner, go on to Step 4 at the appropriate time.

4. Monitor the execution of the task in question. When you receive others' bids,
you still mark the time intervals with the appropriate DON'T commitments
for the scheduler just in case something goes wrong, the world changes, and
you need to reschedule. If you �nd that the task has signi�cantly changed its
execution time in the schedule, notify the other agents that you give up the
time interval. If the task is �nished, stop this process.

send out bids

agent loses bid

some unforeseen problem arises

gather information
about previous bids;
compute winners &
losers; update local
information

compute best
local schedule
given all current
information

monitor
task
execution

wait for
replies

task finished

start

agent wins bid

new bids

Figure 2. Finite state machine for the bid process

For example, let the communication delay be one time unit, and let there be three
agents and tasks as follows: Agent A has task A11 of duration 3 and task A12
duration 3; Agent B has task B11 of duration 2; Agent C has task C11 of duration
4, and task C12 duration 1. A11, B11 and C11 have a shared resource-constrained
relationship.

time 0: each agent communicates only the task structures related to the shared
resource constraint (the GPGP \updating non-local viewpoints mechanism")

time 1: each agent makes its own local schedule.

schedule: Agent A: A11(2{4), A12(5{7); agent B: B11(2{3); agent C: C12(2{2).
Assume that task C11 is not in the local schedule of C for some external cause,
such as C11 not being enabled or Agent C otherwise currently believes it does
not have to do C11. The decisions about each schedule are made locally.

Agent A sends out a bid for time interval 2{4 with priority 3. (The agent decides
the priority of a task according to its local view, thus it might be \incorrect"
w.r.t a non-existent global view).

Agent B sends out bid for time interval 2{3 with priority 4.

time 2: each agent gathers information about the bidding at time 1.

Agent A �nds that the other agent won time interval 2{3, so it marks this time
interval occupied and then tries to reschedule. The new schedule is A12(4{6),
A11(7{9). Agent A sends out a bid for 4{6 with priority 3.
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Agent B �nds it won, so it keeps its schedule and starts its execution of B11 at
time slice 2.

Agent C, reconsidering, puts C11 in schedule, C11(3{6) and executes C12. C
sends out bid for 3{6 with priority 2.

time 3: Agent A �nds that it won, so it keeps its schedule and will execute A12
starting in time slice 4.

Agent C �nds that it lost, so it marks time interval 2{6 occupied and reschedules.
The new schedule is C11(7{10). C sends out a bid for time interval 7{10.

time 4: Agent C won, it keeps its schedule. C will wait until time slice 7 to begin
its execution.

To put this mechanism to practical use, we need to decide two more things. One
is how an agent computes the priority about its local task. The other is how to
decide if an agent wins or loses according to the priorities of all the agents.

5.2.1. Determining the bid winner When using this mechanism to handle re-
source constrained problems, we will assume that each agent will be honest, i.e..
they will not cheat on the priority calculation. Since di�erent agents may have
di�erent goals with respect to each other and to any global goals, the performance
of such a system can be worse than that of a centralized system with �xed central-
ized goals. In many domains such as hospital scheduling (or telescope observation
scheduling [1]), however, we cannot centralize scheduling because it would take
away the authority of each unit over the day-to-day control of its own activities.
Our distributed approach matches with the existing human organizational struc-
ture. It also allows each unit to attempt to optimize slightly di�erent measures,
as may be used by administrators to evaluate human unit-level performance. In
our work, we try to �nd the best priority function for agents that can minimize
the �nish time of the whole task. We found that (a) the number of coordinated
relationships with the task (e.g. enables or facilitates) and (b) the start time of that
task should both be considered when computing the priority of a task. The reason
for considering the coordinated relationships is apparent: a task that enables or
facilitates many other tasks should have higher priority. Each bid includes not only
the requested time interval, but also a priority calculated locally by the bidder that
captures this task relationship information. Since in the hospital patient scheduling
task, all of the tasks need to be done, we concentrate solely on the e�ect on task
durations. If T is the task we will bid on, and E is the set of tasks that T enables,
and F is the set of tasks that T facilitates, then

Priority(T ) =

P
E2E d(E) +

P
F2F �dd(F )

d(T )

where d(T ) is the estimated duration of a task T , and �d is the \power" of the
facilitates relationship (for example, a 50% reduction in duration would be �d = 0:5).
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task A

task B

if A wins

if B wins

t0 t0+a

duration a

duration b

t1

t1+b

t0 t1 t0+a t1+b

t0+a+b

t1+a+b

Figure 3. Why an earlier task has higher priority

The following example (Figure 3) will show why a task starting earlier should
have higher priority.

Assume task A and B both need a mutually exclusive resource and plan to start
at t0 and t1 respectively, and t0 < t1. If A wins, both tasks can �nish at time
t0 + a + b, if B wins, the �nish time is t1 + a + b. The reason is that the time
interval between t0 and t1 is wasted. So, all other things being equal, an early
starting task should have higher priority.

task A

task B

task C

priority 3

priority 2

priority 1

Figure 4. Example: Three bids for a single resource. Should we choose tasks A and C, or just
task A?

To summarize, then, the winner of a bidding round is the earliest task from the
set with the highest priority. Although it happens rarely in practice, if there is still
a tie (exactly the same priority and start-time) we break it in a consistent manner
(for example, a time-indexed ring of the agent's names, or any similar traditional
distributed tie-breaking scheme).
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5.2.2. Dealing with multiple non-overlapping bids It's easy to know who gets the
time interval if there are only two tasks competing for the resource. How about
when there are more than two tasks? For example see Figure 4. Since task A has
highest priority (all other things being equal), it will win. But how about task C?
Since task B didn't win its time interval (because of the con
ict with A), there will
be no con
ict if C is also executed at its time interval. Thus, should task C win
too? The results of those two di�erent methods are shown in Figure 5.

task C did not win at first round

task C wins at first round

task A

task B

task C

task A

task B

task C

finish

finish

Figure 5. The result of di�erent methods to deal with multiple, non-overlapping bids

There will be two problems that occur when we let task C also win its time inter-
val. First, task B actually has higher priority than C, but it lost the competition of
A vs B vs C. In this situation, if a task loses in one round, it may have to start its
execution very late even though it has higher priority than the intervening tasks.
Second, the time after task A �nishes and before task C starts is wasted: nobody
uses this time interval.
The advantage of allowing more than one task to get its time interval is that it

can reduce the number of rounds of negotiation. When the cost of communication
or rescheduling is high compared with the cost of execution, this method will get
better performance. In our experiments, we used the �rst method where only one
task wins at each round.
In domains other than this one, the priority calculation must take into account

other characteristics over which agents may express preferences (usually represented
as a utility function). One of the features of t�ms is that the indication of these
utility-a�ecting changes is done in a precise, quantitative manner. However, since a
peculiarity of this problem is that all tests must be done, complex reasoning about
cost and bene�t tradeo�s is not discussed here (but see [5]).

6. Evaluation

Since �nal quality is not so important in the hospital scheduling problem (tasks are
either done or not done|this is a \goal-oriented domain" as opposed to a \worth-
oriented" domain [26]), we use the average task �nish time and the actual work
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done by all agents to measure the performance of each agent. The task �nish time
shows us how quickly a patient can �nish all the tests, i.e. the latency of the system.
The actual work done by all agents can be used to determine the throughput of the
whole system.

6.1. t�ms Task Structure Modeling

In both goal-oriented and worth-oriented domains, the important components of an
environment's structure include the attributes of world states over which an agent
may express preferences, and the e�ects of agent actions on those attributes. As
shown earlier in Section 3, The t�ms language framework has been developed to
model goal- or worth-oriented environments in the support of agent development.
t�ms has been used in two ways: as part of an agent's internal computational repre-
sentation of its environment, and as a way to carefully evaluate agent architectures
and algorithms. As an evaluation tool, we use three levels of models (generative,
objective, and subjective|only the subjective models are \known" by individual
agents) to simulate and carefully control agent percepts and the e�ects of their
actions. This level of control allows us to perform (for example) paired response
studies, sensitivity analyses, and average-case execution time studies. The value
of t�ms is in providing a language with which to model complex, worth-oriented
environments including the quantitative speci�cation of continually changing real-
valued attributes. Through techniques such as reusable sets of non-local e�ects
and attribute accumulation functions t�ms also allows qualitative reasoning to
take place, such as the triggering of particular GPGP coordination mechanisms.

6.2. Generative Hospital Patient Scheduling Model

Our generative model of this environment focuses on the number and distribution
of patient tests. The episode generator, a simulation based on the description of
Ow's hospital, has a �xed number of nursing units and ancillaries, and a �xed set
of test templates that correspond to taking x-rays, physical therapy, blood tests,
etc. These templates contain statistical duration distributions on how long it takes
to complete each action. Then, we postulate for each patient a distribution of
tests (instantiated from the set of templates). Thus when each patient arrives,
linked to that patient is a unique task structure of what needs to be done to that
patient. In other words, to simulate the process of hospital scheduling, �rst we
create a big task tree template which represents all the possible ancillaries, tests
and interrelationships between these tests (�gure 6). Note that some, but not all
of the tasks require the physical presence of the patient.
For each simulated patient, we stochastically choose ancillaries and tests from

this big task template tree, to generate a single MCP instance. We use three
independent variables to control the probability of:

� non-local relationships (relationships between ancillaries). This is a measure of
how interdependent medical tests are.
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5 8 2 2 5

9 6 4 3

5 6 8 5

8 7 2 1

8 8 7 4 6

1 8 7

ancillary

test

resource (patient)
8

enable relationship

facilitates relationship

mutex relationship

test duration

Figure 6. Task tree used in experiments
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� local relationships (relationships within a single ancillary). This is a measure
of how complex an ancillary's individual scheduling problem is.

� patient resource relationships (how many tests require the patient to be phys-
ically present). For example, taking an x-ray requires the physical presence of
the patient, but the other tasks involved in an x-ray procedure (e.g., developing
and analyzing the �lm) do not require the patient's presence.

Those variables have values between 0 and 1. A possibility equal to 1 means it
will de�nitely contain all the relationships from the big task tree template (but
remember that this is not \all possible relationships").
Subjectively, we allow the portions of the task structures associated with each

ancillary to arrive simultaneously at each ancillary. Since there is only one possible
ancillary for each test (no redundancy), we do not simulate the trivial process of
sending each task from the nursing unit to the unique associated ancillary. From
Ow's studies and our discussions with hospital personnel, there is no opportunity
for negotiation at task assignment (e.g. multiple ancillaries vying for the identical
task). These opportunities only appear as the patient treatment plan is serialized
and actions are �xed in time.

6.3. Experimental Results

In general, we conduct paired-response experiments on two groups of agents:

Simple Agents follow our model of current hospital practice as it pertains to pa-
tient scheduling. They use the \communicate results" and \non-local views"
coordination mechanisms only, and handle inter-ancillary task coordination re-
lationships by simply waiting for the enabling task to be completed.

Cooperating Agents begin with the Simple Agents model, and add to that co-
ordination mechanisms for handling hard and soft ordering constraints (e.g.
enables and facilitates) by a predecessor commitment (from the original PGP
gang of �ve mechanisms) and the new mutex coordination mechanism for nego-
tiating the mutually exclusive patient resource.

All of the simulated medical patient treatment plans are done with an average
of 3 ancillaries and an average of 3 medical tests in each ancillary. With each set
of given possibilities, we run 40 repetitions. We compute the average di�erence in
�nish time of those tests. Given the hypotheses that the cooperating agents use
more time than the simple agents, we use the non-parametric Wilcoxon matched-
pairs signed-ranks test to calculate the probability with which we can reject that
hypotheses, i.e. show that the coordinating agents actually use less time. We also
compute the average di�erence in actual work done by the two groups of agents.
From those results, we can show:

� The average �nish time of cooperating agents is always less than that of simple
agents.
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� With an increase in non-local relationships, the �nish time performance of co-
operating agents �rst decreases then increases with respect to that of simple
agents (see the left side of Figure 7). The reason is because an agent has to use
more e�ort to deal with the non-local relationships while it cannot always get
enough bene�t from this cooperation. Our set of mechanisms is signi�cantly
better than just the two simplest mechanisms at the � = 0:05 level for structures
with 80% or more of the full number of inter-ancillary relationships.

� Performance in �nish time of cooperating agents increases with the increase of
patient resource constraints (see the left side of Figure 10. Our mechanisms are
again signi�cantly better at 80% of the full number of relationships, when the
non-local relationships are normal.

� Throughput performance of cooperating agents increases with the increase of
patient resource relationships. See the right side of Figures 8 through 10.

� The change in non-local relationships has no apparent a�ect on throughput
performance; our mechanisms have a consistent advantage at all levels. See
Figure 7.

Each of the following �gures has two graphs: the amount of time saved on the
left, and the amount of work saved on the right. Higher numbers are better from
the standpoint of our set of coordination mechanisms. The vertical y-axis indicates
the measured average time or work saved using our approach (higher is better),
and the x-axis indicates the independent variable (probability of inter-ancillary
relationships or probability of patient resource relationships).
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Figure 7. [y-axis] less time (left) and work (right): [x-axis] increasing the probability of inter-
ancillary relationships (with all patient resource relationships present)

Experiments run with randomly generated task structures, as expected, support
these observations. A random task structure is generated using randomized HTN
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Figure 8. [y-axis] less time (left) and work (right): [x-axis] increasing the number of patient
resource relationships (using no inter-ancillary relationships)
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Figure 10. [y-axis] less time (left) and work (right): [x-axis] increasing the number of patient
resource relationships (while all standard inter-ancillary relationships are always present)

building with average tree depth, breadth, possibility of interrelationships and ran-
dom assignment of tree leaf actions to agents (see [5] for detailed information). We
are currently evaluating performance of the mutex coordination mechanism in an in-
ternet information gathering domain and extending it to handle a more generalized
notion of a resource constraint (see Section 8).

7. Related Work

Liu & Sycara[21] developed a coordination mechanism called Constraint Partition
and Coordinated Reaction (CP&CR). In this mechanism, each resource is assigned
to a resource agent which is responsible for enforcing capacity constraints on the
resource, and each job is assigned to a job agent which is responsible for enforcing
temporal precedence (i.e. enables in t�ms) and release data constraints (like the
early-start-time commitments in t�ms) with the job. The job agents are similar to
the agents in this paper, responsible for �nishing their own jobs. They later extend
the CP&CR to a new coordination mechanism Anchor&Ascend to deal with the
Constraint Optimization Problem [22]. This mechanism also assigns resources to
a resource agent. It identi�es a bottleneck resource, and identi�es the agent that
is responsible for this resource as the Anchor agent. The Anchor agent makes
the best local subsolution �rst, then all other agents make their own subsolutions
while trying not to violate the subsolution of Anchor agent. The di�erence between
our mechanisms and those two mechanisms is that CP&CR and Anchor&Ascend
are partly centralized with respect to each resource. When dealing with hospital
scheduling problem, the disadvantage of that style of solution is that it lets an agent
outside of an ancillary to directly a�ect the ancillary's local schedule.

Ow, Prietula, and Hsu also develop a organization structure for hospital schedul-
ing problem [23]. Their organization contains unit agents which are responsible for
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monitoring the test schedule of each patient as well as collecting and disseminating
test requests to the ancillary systems, and the ancillary agent which is responsible
for collecting the test requests sent to it and schedules them. We have used this
same organizational structure. Ow's paper doesn't give any details about how each
ancillary agent deals with the resource constraint problem, only that each ancillary
agent will broadcast the times that have been blocked out to all other ancillar-
ies (somewhat similar to the �rst step of the mechanism we propose here). Ow's
mechanism also does not explicitly handle interactions between tests at di�erent
ancillaries. The set of GPGP coordination mechanisms described here easily re-
spond to these inter-ancillary interactions as well as eliminate the full broadcast
communication.
A great deal of interesting work has also been done on multi-agent meeting

scheduling [27, 14]. This work has focussed on coordinating the resources and
typically has not dealt with multiple hard and soft task interrelationships.
Simpler approaches to resource coordination can be found in traditional dis-

tributed systems. For example, a centralized coordinator approach (one agent de-
cides which time slots should go to which agent) could be used with a centralized
coordinator chosen via the bully algorithm [30]. All such centralized solutions vi-
olate the organizational constraints of distributing these decisions at the hospital
ancillaries.
The existing mutex coordination mechanism is somewhat related in its 
ow prop-

erties to traditional algorithms such as CSMA (Carrier Sense Multiple Access) used
in networking [31]. In this algorithm the shared resource is the physical local net-
work (i.e. Ethernet). In our example, if an agent loses a bid for a time slice, the
agent reschedules the task, �nds the next time slice, and bids again (similar to
nonpersistant CSMA).

8. Extensions to Limited Capacity Resources

In this paper we only considered the simplest type of resource constraint, a mutually
exclusive resource. However, t�ms can model a wider range of resources [29, 5].
In particular, we can model limited capacity/bandwidth resources as a pair of
resource/task relationships: uses and limits. A task uses some capacity of a resource
and an overused resource imposes some limits on the o�ending tasks.
For example, take the situation of a low-bandwidth communication link as de-

scribed in [29]. Two agents have a diagnosis method that uses the low-bandwidth
link. When more than one of these diagnosis methods are executed at the same
time, the link is saturated and the durations of the methods are lengthened. We
represent this situation as shown in Figure 11; the two new NLE's are de�ned as
follows:

uses(Ta; R; t; d; q; �) =

�
[d; q + �] Start(Ta) < t < Finish(Ta)
[d; q] otherwise

(4)

limits(R;M; t; d; q; �; �d) =

�
[�dd; q] Q(R; t) > �

[d; q] otherwise
(5)
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Diagostic
Method
Agent 6
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Use
s(1
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Uses(10)

Limits(15,50%)Limits(15,50%)

Figure 11. Example of two methods sharing a limited resource of capacity 15. In this example, if
both methods execute in temporally overlapping time periods, the durations of each method will
be lengthened by 50%.

The NLE uses indicates the amount of limited resource capacity used by the
method with the parameter �. In Figure 11 each diagnostic method uses 10 units
of the communication resource's capacity (the arc labeled uses(10)). The NLE limits

indicates that the resource has maximum capacity (saturation) � and that beyond
that point duration is a�ected by percentage �d (alternately, �d could be de�ned
as a function of the level of oversaturation). In Figure 11 the communication
resource has a saturation point � = 15, so the resource will not be saturated if
either diagnostic method uses the resource alone, and will be saturated if the two
methods happen to overlap in their execution. The e�ect will only be active during
the overlap, and will cause the duration of both methods to be increased (in this
example) by 50%. Note that when methods can be interrupted, the lengthening of
method durations due to a blocked resource is not associated with lengthening the
amount of continuous computation|the blocked method can be interrupted and
other computations performed until the method is no longer blocked.

We are generalizing the mutex coordination mechanism to handle such limited
resources. Two major di�erences have been discovered. First, compared to mutex

resources, limited capacity resources require more sophisticated reasoning about
multiple requests, since often several requests can be handled in a given time slice.
Secondly, with many di�erent resources, hard and soft task relationships may be
harder to handle since they may link otherwise independent resources used by
di�erent parts of a single task. These di�erences have been addressed by communi-
cating more resource state information, ordering resource-constraint coordination
resolution before hard and soft task interrelationship resolution, and changing the
multi-con
ict algorithm as shown in Figure 5.

This type of resource is useful in modeling domains such as internet information
gathering, where certain external information servers and databases can be modeled
as such limited resources. We can represent an abstract information gathering
problem as follows. Each agent is responsible for several queries Q. Each query
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Q 2 Q comprises a set of clauses C. These clauses are related to one another via
enables or facilitates relationships, as can be determined by a query planner (see for
example, Knoblock's work [17]). Multiple query plans for one query are possible.
For example, if there are multiple sets of data that must be combined, then di�erent
orderings of join operations will take di�erent amounts of time. Furthermore, each
clause may be retrieved from one of several di�erent sources, each with its own
access costs, reliability, quality, etc. The sources are, or course, limited resources,
joined to each clause by a pair of uses and limits relationships (represented by a
single double arrow in Figure 12).

max
min

minmin

M11a M11b

max
M21bM21a

Q1

P1 P2
C21 C22 C23

Q2
Agent 2

C11 C12 C13 C11 C12

Agent 1

Source
1

Source
2

Source
3

Figure 12. Abstract T�MS representation of a simple information-gathering problem: 2 queries,
one with multiple plans, and several clauses, some of which could be ful�lled at possibly multiple,
limited-capacity sources.

This work is not being carried out in simulation, but rather in a real-time dis-
tributed agent toolkit called DECAF [15]. In order to reduce broadcast communi-
cation and to make the system scalable, we introduce a resource manager agent,
which enforces access to a mutex or limited-capacity resource. Initially, the re-
source manager agent centralizes the bid processing (for some resource), carrying
out the decision process as described in this paper and modi�ed in the previous
paragraph. However, we are also looking into multi-stage negotiation[4], where the
resource manager agent bounces a con
ict back to the agents involved for further
negotiation. This will also allow the development of solutions for non-cooperative
systems.
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9. Conclusions and Future Work

In this paper we presented a model of the Hospital Scheduling Problem in t�ms,
and applied the GPGP approach to solving this problem. Hospital scheduling is
interesting not only because it is a real problem, but because it is an inherently
distributed problem, not amenable to a centralized solution because of the hu-
man organizational authorities involved. An extremely similar problem is that of
scheduling telescopic observations at university observatories in the U.S. (each uni-
versity wishes �nal control over the schedule of their own telescope, although they
totally cooperate with other universities in scheduling observations)[1]. Some of the
unique features of this particular problem that are very di�erent from our previous
work is that all the tasks need to be done, and the state of being \done" is either
yes or no, rather than a set of continuous characteristics. There are no deadlines.

We did not represent travel times (and neither do the real hospitals), however,
there is an implication of this downplay of travel times|the hospital will have
to change its coordination and scheduling mechanisms if it has to face signi�cant
travel delays with more than one ancillary. This could happen if, for example, it is a
smaller hospital and cannot a�ord its own MR scanner or CAT scanner and doctors
take to prescribing MR and CAT scans at another hospital. Patients requiring both
MR and CAT scans now have a signi�cant facilitates e�ect in their task structures to
do both scans nearly consecutively (potentially a�ecting the coordination structures
of both hospitals). Other than changing the representation, we could handle this
situation without changing the existing set of coordination mechanisms. At this
point, our hospital model results are only from simulated data, drawn from Ow's
study, and not from actual hospitals. We are currently in the process of applying
this resource negotiation approach to real, non-simulated systems, such as satellite
antennae scheduling, in collaboration with a commercial company. We are also
interested in increasing the hospital model's realism by using more detailed data
from real hospitals.

This paper also demonstrated the use of the GPGP approach in solving this
problem. In this environment, the mechanisms to communicate task structures
and partial results are necessary, while the mechanisms of handling hard and soft
relationships are optional. By providing a solution without changing any existing
mechanisms, we demonstrated again the generality of the GPGP approach. By
limiting ourselves to just the two necessary mechanisms, we were able to model
current practice fairly closely.

We then focussed on the speci�cation and implementation of a new GPGP co-
ordination mechanism oriented toward handling resource constraint relationships
between tasks at di�erent agents. The approach was that of a simple single stage,
multi round cooperative negotiation, which has good 
ow properties and low over-
head, which is important in an environment where the task mix may change dy-
namically with new patients, and where there is uncertainty over exactly how long
procedures will take. We are aware of the utility of more complex multi-stage ne-
gotiations (e.g. [4]), and intend to examine the utility of such higher-overhead,
higher-payo� approaches. The new mechanism we have developed can now be ap-
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plied to any environment with resource constraints. Finally, we demonstrated the
e�ect of the new coordination mechanism on performance in di�erent environments.
The experimental results show that the new mechanism increases the performance
of agents by both decreasing patient stays and increasing throughput when there
are many inter-ancillary relationships.
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Notes

1. The full set of quality accumulation functions, including alternate de�nitions for AND and
OR, is discussed in [5].
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