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Abstract

Design-to-Criteriabuilds customscheduledor agentsthat
meet hard temporal constraints,hard resourceconstraints,
andsoft constraintsstemmingfrom soft taskinteractionsor
softcommitmentsnadewith otheragents Design-to-Criteria
is designedspecificallyfor online application— it copeswith
exponentiakkombinatoricgo producethesecustomschedules
in a resourceboundedfashion. This enablesagentsto re-
spondto changesn problemsolving or the ervironmentas
they arise.

Intr oduction

Complexautonomousgentperatingn open,dynamicen-
vironmentsmustbe ableto addressieadlinesandresource
limitations in their problemsolving. This is partly dueto
characteristicof the environment, and partly due to the
compleity of theapplicationgypically handledby software
agentsin our research.In openervironments requestdor
servicecanarrive atthelocal agentatany time, thusmaking
it difficult to fully plan or predictthe agents future work-
load. In dynamicernvironments,assumptionsnadewhen
planningmay change,or unpredictedfailuresmay occur.
In mostrealapplicationsdeadliner othertime constraints
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This differs from statesthat are explicitly recognizedand
plannedfor [1] as software agentsmay be requiredto performa
differentsetof tasks,aswell ashaving to reactto changesn the
ervironment.
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Figure 1: Modeling and Online Schedulingfor Real Time and
ResourcéBoundedness

arepresenton the agents problemsolving [16, 8]. For ex-

ample,in an anti-submarinavarfareinformation gathering
application[3], thereis a deadlineby which the mission
plannergequirethe information. Resourcdimitations may
alsostemfrom agentshaving multiple differenttasksto per

form and having boundedresourcesn which to perform
them. Temporalconstraintamay also originatewith agent
interactions- in general,n orderfor agents to coordinate
with agenta, the agentsrequiremutualtemporalinforma-
tion sothatthey canplandownstreanfrom theinteraction.

In this paper we focuson the issueof resourcebounded
agentcontrol. We usethe termresouce boundedo denote
the existenceof deadlinesandof otherconstraintdik e cost
limitations or applicationspecificresourcdimitations (e.g.,
limited network bandwidth).Whereit is importantto differ-
entiatehardandsoft deadlinedrom theseotherconstraints,
we referto themexplicitly.

For agentsto adaptrationally to their changingproblem
solvingcontext, whichincludeschangesn theervironment
andchangeso thesetof dutiesfor theagento perform,they
mustbeableto:

1. Representr modelthe time andresourceconstraintsof
the situationandhow suchconstraintdmpacttheir prob-
lem solving. We believe this mustbe donein a quantified
fashionasdifferentconstraintshave differentdegreesof
effecton problemsolving.

2. Planexplicitly to addresgheresourcdimitations. In our
work, this mayimply performinga differentsetof tasks,
usingalternatesolutionmethodsor trading-of different
resourcegor quality), dependingon whatis available.

2Including resourcesuncontrollably becoming more or less
constrainedFor example,network lateng increasingdueto some
activity otherthantheagents problemsolving.



3. Performthis planningonline — in the generalcase,this
implies copingwith exponentialcombinatoricsonlinein
softrealtime.

While the first two requirementobviously follow from
the domain,the third requirementis lessobvious. Agents
mustbe ableto performreal time control problemsolving
online becauseof the dynamicsof the ervironment. If it
is difficult to predictthe future andthereis a possibility of
failure,or new tasksarriving, agentswill, by necessityhave
to reactto new informationandreplanonline.

The Design-to-Criteria(DTC) agentschedulerand the
TAEMS taskmodelingframework areour tools for address-
ing these requirementsand achieszing resource-bounded
agentcontrol (Figure 1). TAMS providesagentswith the
framework to represenandreasorabouttheir problemsolv-
ing processfrom a quantifiedperspectie, including mod-
eling of interactionshetweentasksandresourceconsump-
tion properties.Design-to-Criterigperformsanalysisof the
processegmodeledin TAEMS) and decideson an appro-
priate courseof action for the agentgiven its temporal
andresourceconstraints.Design-to-Criterigboth produces
resource-avare schedulesor the agent,and, doesthis rea-
soningprocesonlinein aresourceboundedashion.

While the outputof Design-to-Criterids realtime in the
sensdhattheschedulesddreshardandsoftdeadlinesand
resourceonstraintstheschedulesrenothardrealtime and
arenot fault tolerantin the sensehatthey may containun-
certaintyandknown potentialfailure points. BecauseDTC
is appliedin domainswherefailure is expected,and mod-
eled,andreschedulings expected,t may oftenbe prudent
to choosea schedulehat containssomeprobability of fail-
ure, but, alsosomeprobability of higherreturns. Theissue
of uncertainty andits role in addressindharddeadlinesjs
coveredin greatedetaillater. For situationgn whichamid-
streamschedulefailure leadsto catastrophicsystem-wide
failure, we have developedan offline variantof DTC that
usescontingeng analysis[17, 23] to explore and evaluate
recovery optionsfrom possiblefailure points.

This paperis organizedasfollows: in Sectionwe present
TAEMS anddescribeits role in our domainindependenép-
proachto agentcontrol. In Section we describehow DTC
reasonsaboutthe agents context and makes control deci-
sionsto produceresourceboundedschedules.In Section,
DTC’sapproximatenlinesolutionstratey is presente@nd
in Sectionwe discusdimitations,openquestionsandfuture
work.

TAMS Task Models

TAEMS (Task Analysis, ErvironmentModeling, and Sim-
ulation) [6] is a domainindependentask modelingframe-
work usedto describeand reasonaboutcomplex problem
solving processesTAMS modelsare usedin multi-agent
coordinationresearct24, 11] andare beingusedin mary

otherresearclprojects,ncluding: cooperatie-information-
gathering[14], hospital patientscheduling[5], intelligent
ervironments[13], coordinationof software procesg12],

andotherg[20]. Typically, in ourdomain-independerigent
architecture,a domain-specifigproblem solver or planner

translatests problemsolvingoptionsin TAEMS, possiblyat

somelevel of abstractionandthenpasseshe TAEMS mod-

elson to agentcontrol problemsolverslik e the multi-agent
coordinationmodulesor the Design-to-Criteriascheduler
The control problemsolversthen decideon an appropriate
courseof actionfor the agent,possiblyby coordinatingand

communicatingvith otheragentqthatalsoutilize thesame
controltechnologies).

TAEMS modelsare hierarchicalabstractionof problem
solving processeshat describealternatve ways of accom-
plishing a desiredgoal; they representmajor tasksand ma-
jor decisionpoints,interactionsbetweertasks,andresource
constraintsbut they do not describethe intricate detailsof
eachprimitiveaction.All primitiveactionsn TAEMS,called
methodsarestatisticallycharacterizedia discreteprobabil-
ity distributionsin threedimensionsguality, costanddura-
tion. Quality is a deliberatelyabstractdomain-independent
concepthatdescribeshe contribution of a particularaction
to overall problemsolving. Durationdescribegshe amount
of time thatthe actionmodeledby the methodwill take to
executeandcostdescribeghe financialor opportunitycost
inherentin performingthe action. Uncertaintyin eachof
thesadimensiongsimplicit in theperformanceharacteriza-
tion—thusagentanreasoraboutthecertaintyof particular
actionsaswell astheir quality, cost,anddurationtrade-ofs.
The uncertaintyrepresentatiofis alsoappliedto taskinter-
actionslik e enablementiacilitation andhinderingeffects,®
e.g.,"“10% of the time facilitation will increasethe quality
by 5% and 90% of thetime it will increasethe quality by
8%

The quantificationof actionsand interactionsin TEMS
is notregardedasa perfectscience.Taskstructureprogram-
mersor problemsolver generatorgstimateheperformance
characteristic®f primitive actions. Theseestimatesanbe
refinedover time throughlearningand reasonergypically
replanandreschedulsvhenunexpectedaventsoccur

To illustrate, considerFigure 2, which is a conceptual,
simplified sub-graphof a taskstructureemittedby the BIG
[14] resourceboundedinformation gatheringagent;it de-
scribesa portion of the informationgatheringprocess.The
top-leveltaskis to construcproductmodelsof retail PCsys-
tems. It hastwo subtasksGet-Basicand GatherReviews,
both of which are decomposednto actions, that are de-
scribedin terms of their expectedquality, cost, and du-
ration. The enablesarc between Get-Basicand Gather
is a non-local-efect (NLE) or task interaction; it models
the fact that the review gatheringactionsneedthe names
of productsin order to gatherreviews for them. Other
taskinteractionsmodeledin TAEMS include: enablement
facilitation, hindering boundedfacilitation, disablement
consumesasouce and limited-by-esouce Taskinterac-
tionsareimportantto schedulingbecause¢hey denotepoints
at which a task may be affected, either positively or nega-

3Facilitation and hindering task interactionsmodel soft rela-
tionshipsin whicharesultproducedy sometaskmaybebeneficial
or harmfulto anothertask. In the caseof facilitation, the existence
of theresultgenerallyincreaseshe quality of therecipienttaskor
reducests costor duration.
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Figure2: ConceptualnformationGatheringTaskStructureof the BIG Agent

tively, by an outcomeelsavherein the taskstructure(or at
anotheragent).

Returning to the example, Get-Basic has two ac-
tions, joined underthe sum()quality-accumulation-fuation
(QAR), which defineshow performingthe subtaskselate
to performingthe parenttask. In this case eitheractionor
both may be employedto achiere Get-Basic The sameis
true for GatherReviews. The QAF for Build-PC-Product-
Objectsis aseqlast() which indicatesthatthe two subtasks
mustbe performed,in order andthatthe quality of Build-
PC-Product-Objects determinedy theresultanguality of
GatherReviews. Therearenine alternatve waysto achieve
the top-level goal in this particularsub-structuré. In gen-
eral, a TZEMS task structurerepresenta family of plans,
ratherthana single plan, wherethe differentpathsthrough
the network exhibit different statistical characteristicsor
trade-ofs. The processof decidingwhich tasks/actiongo
performis thusan optimizationproblemratherthana satis-
factionproblem.

TAMSalsosupportamodelingof tasksthatarrive at par
ticular pointsin time, parallelism,individual deadlineson
tasks earlieststarttimesfor tasks andnon-localtasks(those
belongingto otheragents). In the developmentof TAEMS
therehasbeena constantensionbetweenrepresentational
power andthe combinatoricinherentin working with the
structure. The resultis a modelthat is non-trivial to pro-
cess,coordinate andschedulen ary optimal sensg(in the
generaktase)but alsoonethatlendsitself to flexible andap-
proximateprocessingtratgies. This elemenif choiceand
flexibility is leveragedbothin designingresource-bounded
schedulegor agentsandin performingonlineschedulingn
aresourcéboundedashion.

“While it might appearper the seqlast() QAF that thereare
only two possibleresultantquality distributions,the enablesnter-
actionbetweenBuild and Gatheraffectsthe possiblequality values
for Gather

Modeling and Reasoningabout Temporal and
Resouice Constraints

TAEMS tasksmay have both soft and hard constraintghat
mustbe consideredvhenscheduling.n termsof hardtem-
poral constraintsany TAMS task may have a hard dead-
line, by which somequality mustbe produced(or it is con-
sidereda failure), aswell as an earliest-start-timepefore
which the task may not be performed(or zero quality will
result). Thesehardconstraintanay alsobe causedy hard
commitment8 madewith otheragentsor hard delaysbe-
tweentaskinteractions.The constraintsnay alsobe inher
ited from nodeshigherin the structure— thusa client may
specifya harddeadlineon the Build-PCtaskthatappliesto
all subtaskspr a deadlinemay be specifiedon the process
of Gathering-Reiews. If multiple temporalconstraintsare
presentthe tightestor mostconserative interpretationap-
plies.

Recallthatactionsin TEMS arecharacterizedisingdis-
crete probability distributions. Becausedurationsmay be
uncertain,and becauseactionsare sequencedn a linear
fashion® theimplicationof durationuncertaintyis thatthere
is generallyuncertaintyin boththe startandfinish timesof
tasks— eventasksthat do not have durationuncertaintyof
theirown. WheneachT AEMS actionis addedo a schedule,
or consideredor aparticularschedulgoint,adatastructure
calledascheduleelements createdandthe start,finish, and
durationdistributionsfor thescheduleelementarecomputed
asa function of the characteristic®f the previous schedule
elementandtheactionbeingscheduledThe constraintsas-
sociatedwith the action(andhigherlevel task)arethenex-
aminedandcomparedo thecharacteristicghatwill resultif
theactionis performedat the “current” time or pointin the
schedule.

One approachfor determiningwhetheror not a given
actionwill violate a hard deadline for example,is to look

5In contrastto commitmentghataresoft or relaxable possibly
througha decommitmenpenaltymechanism.

5While DTC supportsschedulingof specializecparallelactivi-
ties,evenwhenactvitiesarescheduledn parallel,they mayinherit
uncertaintyfrom prior actvities.
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Figure3: ReflectingProbabilityof MissingDeadlinein MethodQuality

at somesingle statistic (median, mean, max, min) of the
action and to comparethat statisticto the deadline,e.g.,

if (mean( finish_time( actiony )) > hard_deadline( action, ))

then violated. This approachis usedduring someof the
approximation processesof the scheduling algorithm.
Another reasonableapproachis to compute the proba-
bility that the action will violate its hard constraintand
comparethe probability to a predeterminedhreshold.e.g.,

P = Pr( finish_time( actiony ) > hard_deadline( action, )).

if P > Thresholdp then violated.

However, TAEMS providesus with a bettertool for rea-
soningaboutconstraintviolation. Becausezeroquality re-
flectsfailure,andin TAMS an actionthatviolatesits hard
deadlineproduceszero quality, we can reasonabout the
probabilitythata givenactionviolatesits harddeadlinesim-
ply by reflectingsaid probability in the quality distribution
of the actionandthentreatingit like any other TAEMS ac-
tion.” Enforcingharddeadlineconstraintontheagentsen-
tire procesganalogoudo imposinga deadlineon the task
structureroot) is handledin the sameway. For example,
asshown in Figure 3, if M, hasa 10% chanceof exceed-
ing its deadline(and thus failing), the densitiesof all the
membersof its quality distribution are multiplied by 90%
(thus re-weightingthe entire distribution) and a new den-
sity / value pair is addedto the distribution to reflectthe
10% chanceof returning a result after the deadline. The
leftmosthistogramdescribedV/,,'s expectedfinish time, the
middle histogramdescribed\f,,’s unmodifiedquality distri-
bution, and the rightmostfigure shavs the modified qual-
ity distribution afterre-weightingandmemjing with thenew
(10%, 0 quality) pair. Throughthis solutionapproachthe
schedulemayactuallyselecta courseof actionfor theagent
thathassomeprobability of failure, however, the probabil-
ity of failureis reflecteddirectly in solutionquality sothatif
therisk is notworthwhile (relativeto theothersolutionpaths
availableto the agent)it will not betaken. In otherwords,
a pathcontaininga possibledeadlineviolation will only be
chosenf it hasa higherquality thanthe othersolutionson
anexpectedvaluebasis.

Onthesurface this modelis not appropriateor hardreal
time applicationgn which thefailure of theactionresultsin
no solutionfor theagent.However, if thisis thecasetheac-

"ProfessorAlan Garwey, developerof a forerunnerto Design-
to-Criteria, Design-to-Tme, first used a similar techniquein
Design-to-Tme. The techniquepresentederewasdevelopedin-
dependentlyn theDTC research.

tionwill seneakey rolein thetaskstructureor will interact
with (e.g.,enable)otheractionsin the structureandthusthe
failurewill resultin the quality of the affectedactionsalso
beingdecreasedndfurtherlowersolutionquality. Theview
presentethere,if modeledappropriatelygivesthescheduler
avery powerful tool for reasoningaboutthe implicationsof
possiblefailuresandtheir impacton overall problemsolv-
ing.

In addition to hard temporal constraints, TAEMS also
modelshardresourceconstraints For example,a giventask
may requirethe useof a network connectionand without
this connection,the task may producezero quality (fail).
In TEEMS, the effects of resourceconstraintsare modeled
using a limits NLE from the resourceto the task where
the NLE describesa multiplier relationshipbetweerthere-
sourceandthe task. For example,runningout of aresource
may causehetaskto take 1.5timesaslong to execute or it
may causethe quality to decreasdoy 50%, or it may cause
thecostto increasepr it may simply causefailure. As with
violating a hardtemporalconstraint,f aresourceconstraint
causesctionfailure, it is reflectedin the quality of the ac-
tion andary actionsor tasksthatareacted-upor{e.g.,by an
enabledrom the affectedaction)will alsohave their quali-
tiesadjustedo reflectthe effectsof theresourceroblem.

Soft constraintdn TAEMS take the form of soft commit-
mentsmadewith otheragentsandsoftinteractionshetween
tasks. For example,if task a facilitates 3, performinga
befores will positively affect 3, possiblyby shorting3’s
duration,but thefacilitationdoesnotneedto beleveragedo
performeithertask. Whenschedulingor softconstraintas-
sociatedwith actionsthe scheduleattemptgo utilize them
when possible(or avoid the in the caseof a soft negative
interaction,e.g., hinders). However, whenerer a soft con-
straintis violated,eitheron the positive or negative side,the
quality distributionsof theinvolved actionsaremodifiedto
reflect the situationand thus the schedulercan againrea-
sondirectly aboutthe impactof constraintviolation on the
agentsprocess.

The scheduleralso supportssoft constraintson overall
problemsolving. In additionto settinghardtemporalcon-
straints, the schedulerclient may specify an overall soft
deadline soft costlimit, or soft quality requirement.These
soft constraintsare membersof a packageof client prefer
encescalleddesigncriteria thatdescribegor the scheduler
theclient’s objective function. The schedulethenworksto
producea schedulgor setof schedulesjo suit the client’s



Schedule A - Client has no resource limitations, maximize quality.

Query-and-Extract-PC-Connection | Query-and-Extract-PC-Mall | Query-and-Process-ZDnet | Query-and-Process-Consumers

Quality distribution: (0.04 0.00)(0.22 20.00)(0.07 30.00)(0.66 50.00)
Expected value: 39.69

Probability q or greater: 0.66

Cost distribution: (1.00 2.00)

Expected value: 2.00

Probability ¢ or lower: 1.00

Finish time distribution: (0.02 9.00)(0.14 10.00)(0.03 10.50)(0.25 11.00)(0.03 11.50)(0.00 11.65)(0.30 12.00)(0.18 13.00)

(0.03 14.00)(0.02 15.00)
Expected value: 11.65
Probability d or lower: 0.47

Schedule B - Client interested in a free solution.

Q&E-PC-Connection | Q&E-PC-Mall | Q&P-ZDnet

Quality distribution: (0.12 0.00)(0.88 20.00)

Expected value: 17.64

Probability q or greater: 0.88

Cost distribution: (1.00 0.00)

Expected value: 0.00

Probability ¢ or lower: 1.00

Finish time distribution: (0.02 6.00)(0.02 6.50)(0.15 7.00)(0.03 7.50)
(0.28 8.00)(0.04 8.50)(0.30 9.00)(0.02 9.50)(0.16 10.00)

Expected value: 8.45

Probability d or lower: 0.49

Schedule C - Maximize quality while meeting hard deadline of 6min.

| Q&E-PC-Mall | Q&P—Consumersl

Quality distribution: (0.39 0.00)(0.61 30.00)

Expected value: 18.23

Probability q or greater: 0.61

Cost distribution: (1.00 2.00)

Expected value: 2.00

Probability ¢ or lower: 1.00

Finish time distribution: (0.09 5.00)(0.09 5.50)(0.72 6.00)(0.01 7.00)
(0.01 7.50)(0.08 8.00)

Expected value: 6.05

Probability d or lower: 0.90

Figure4: DifferentSchedulesor DifferentClients

needs. The criteria mechanisms soft becausegdueto the
combinatoricof reasoningaboutTAEMS taskstructuresit
is oftendifficult to predictwhattypesof solutionsarepossi-
ble. Instead the client describeghe desiredsolutionspace
in terms of relaxable,relative, designcriteria (in quality,
cost,duration,uncertaintyin eachdimensionandlimits and
thresholdon these)andthe schedulemakestrade-of deci-
sionsasneededo bestaddressheclient’'s needsThecrite-
ria metaphois basednimportanceslidersfor quality, cost,
duration,limits andthresholdn theseandcertainin each
of thesedimensions.The metaphoythe formal mathemat-
ics of the criteriamechanismandthe scheduless trade-of
computationhave beenfully documentedn [22, 21].

Let usrevisit BIG’s processshown in Figure2, andillus-
trate DTC'’s creationof custom,resourcebounded,sched-
ulesandtherole of taskinteractionin modelingthe effects
of failure. Eventhis simpletaskstructuregivesDTC roomto
adaptBIG’s problemsolving. Figure4 shavs threedifferent
schedulesonstructedor differentBIG clientsthathave dif-
ferentobjectives.For brevity, thedetaileddistributionsasso-
ciatedwith eachactionareomitted,however, the aggreyate
schedulestatisticsare shavn. ScheduleA is constructed
for a client that hasboth time andfinancialresources- he
or sheis simply interestedn maximizing overall solution
quality. ScheduleB is constructedor a client that wants
a free solution. ScheduleC meetsthe needsof a client in-
terestedn maximizing quality while meetinga hard dead-
line of 6 minutes.NotethatscheduleC is actuallypreferred
over aschedulghatincludesaction Query-and-Extract-PC-
Connectioneven thoughsaid action hasa higher expected
quality than Query-and-Extract-PC-Mall This is because
the PC-Connectioraction also hasa higher probability of
failure. Becausaf theenable\NLE from thetaskof getting
productinformationto retrieving reviews, this higherproba-
bility of failure alsoimpactsthe probability of beingableto
guerythe Consumes sitefor areview. Thus,thoughthelo-
cal choicewould beto prefer PC-Connectiomver PC-Mall

for this criteria, the aggraeyateeffectsleadto a differentde-
cision. Note alsothat scheduleC alsoexceedsts deadline
10%of thetime. The deadlineover-run andthe enablement
from PC-Mall contributeto the probability of failure exhib-
ited by the schedulgprobability of returninga zeroquality
result),i.e., Consumess fails 25% of the time without con-
sideringtheseotherconstraintsWhenconsideringheother
constraintsprobability of failureis: (((25%* .90) + 10%)*
.90)+ 10%= 39.25%.

Online Scheduling- Coping with Exponential
Combinatorics

As TAMS task structuresmodel a family of plans, the
DTC schedulingproblemhas conceptuallycertaincharac-
teristicsin commonwith planningand certaincharacteris-
tics of moretraditional schedulingproblems,andit suffers
from pronouncedcombinatoricson both fronts. The sched-
uler'sfunctionis to readasinputa TAMStaskstructure(or
asetof taskstructurespndto 1) decidewhich setof tasksto
perform,2) decidein whatsequencéhetasksshouldbeper
formed,3) to performthefirst two functionssoasto address
hardconstraintsandbalancethe soft criteriaasspecifiedby
theclient® and4) to do this computatiorin softrealtime (or
interactvetime) sothatit canbeusedonline.
Meetingtheseobjectivesis a non-trivial problem.In gen-
eral, the upperboundon the numberof possibleschedules
for a TAEMS taskstructurecontainingn actionsis givenin
Equationl. Clearly, for ary significanttask structurethe
brute-strengtlapproactof generatingll possibleschedules
is infeasible— offline or online. This expressioncontains
compleity from two mainsourcesOnthe“planning” side,
theschedulemustconsideithe (unordered)D (2™) different

8Becauséheremaybealternatie waysto performagiventask,
andsomeof the optionsmay not have the sameassociatedlead-
lines,thescheduleractuallybalance®othmeetinghardconstraints
andthedesigncriteria.



alternatve differentwaysto go aboutachieving thetoplevel

task (for a taskstructurewith n actions). On the “schedul-
ing” side,the schedulemustconsiderthem! differentpos-
sible orderingsof eachalternatve, wherem is the number
of actionsin the alternatve.

n

> (7 @
i=0 L

In generalthetypesof constraintpresenin TAEMS,and
the existenceof interactionsbetweentasks(andthe differ-
ent QAFsthatdefinehow to achieve particulartasks),pre-
venta simple,optimal solutionapproach.DTC copeswith
the high-ordercombinatoricausinga batteryof techniques.
Spaceprecludedletaileddiscussiorof these however, they
aredocumentedn [22]. Froma very high level, the sched-
uleruses:

Criteria-Dir ectedFocusing Theclient'sgoalcriteriais not
simply usedto selectthe “best” schedulefor execution,
but is alsoleveragedo focusall processingactivities on
producingsolutionsand partial solutionsthat are most
likely to meetthetrade-ofs andlimits/thresholdsiefined
by thecriteria.

Approximation Scheduleapproximationscalled alterna-
tives are usedto provide an inexpensve, but coarse,
overview of the schedulesolutionspace.Onealternatve
modelsone way in which the agentcan achiese the top
level task. Alternativescontaina setof unorderedactions
andanestimationfor the quality, cost,anddurationchar
acteristicghatwill resultwhentheactionsaresequenced
to form a schedule. This, in conjunctionwith criteria-
directedfocusingenabledDTC to addresshe “planning”
sidecomplexity.

Heuristic DecisionMaking To addressheschedulingside
compleity, DTC usesa supersebdf the techniquesused
in Design-to-Tme[8], namelyaniterative, heuristic,pro-
cessof sequencingut the actionsin a givenalternatve.
Theseactionratingheuristicsrateeachactionandtherat-
ings (in DTC) arestratifiedso that certainheuristicsand
constraintslominateothers.The neteffectis areduction
of the O(n!) (w(2™) ando(n™) by Stirling’s Approxima-
tion) compleity to polynomiallevelsin theworstcase.

Heuristic Err or Corr ection Theuseof approximatiorand
heuristicdecisionmaking hasa price — it is possibleto
createscheduleghat are suboptimal,but, repairable. A
secondansetof improvement27, 19] heuristicsactasa
safetynetto catchthe errorsthatarecorrectable.

The Design-to-Criteriaschedulingprocessfalls into the
generalareaof flexible computation[9], but differs from
mostflexible computationapproache its useof multiple
actionsto achieve flexibility (oneexceptionis [10]) in con-
trastto anytimealgorithms[4, 18, 25]. We have found the
lack of restrictionon the propertiesof primitive actionsto
be animportantfeaturefor applicationin large numbersof
domains. Another major differenceis thatin DTC we not
only propagatauncertainty{26], but we canwork to reduce
it whenimportantto the client. DTC differs from its pre-
decessqrDesign-to-Tme[§], in mary ways. From a client

perspectie, however, the main differencesarein its useof
uncertaintyits ability to retaigetprocessingt ary trade-of
function, andits ability to copewith both“scheduling”and
“planning” sidecombinatorics.

Design-to-Criteriais not without its limitations; when
adaptinghe DTC technologyfor usein potentiallytime crit-
ical domainssuchasthe CEROSanti-submaringvarfarein-
formationgatheringask,shavnin Figure5, we encountered
aninterestingproblem. The satisficingfocusingmethodol-
ogy usedin Design-to-Criterideadsto poorsolutionswhen
combinedwith hard deadlinesand certainclassesof very
large task structures. Without delving into exhaustie de-
tail, the problemis thatin orderto copewith the high-order
combinatoricsn theseparticularsituations,the scheduling
algorithmmust prunescheduleapproximationspr alterna-
tives, and develop only a subsetof these. Hereinlies the
problem.

Alternativesareconstructedottom-upfrom the leavesof
the taskhierarchyto the top-level tasknode,i.e., the alter
nativesof a taskarecombinationof the alternatvesfor its
sub-tasksFigure6 shavsthealternatve setgeneratiorpro-
cessfor a small task structure. Alternatives are generated
for the interior tasksT; andT,, andthesealternatvesare
combinedo producethe alternatve setfor theroottask,T'.
The compleity of the alternatve generatiorprocesss pro-
nounced. A task structurewith n actionsleadsto O(2")
possiblealternatvesat the root level. We controlthis com-
binatorialcomplexity by focusingalternatie generatiorand
propagatioron alternatvesthat are mostlikely to resultin
scheduleshat“best” satisficeto meetthe client’s goalcrite-
ria; alternatvesthat arelessgoodat addressinghe criteria
areprunedfrom intermediatdevel alternatve sets. For ex-
ample,a criteria setdenotingthat certaintyaboutquality is
animportantissuewill resultin the pruningof alternatves
thathave a relatively low degreeof quality certainty After
the alternatve setfor the high-level taskis constructeda
subseDf thealternatvesareselectedor scheduling.

For situationsin which thereis no overall harddeadline,
orin which shorterdurationsarealsopreferredthefocusing
mechanismworks as adwertised. However, in the CEROS
project,we arealsointerestedn meetingreal-timedeadlines
andotherhardresourceconstraintgin contrasto thosethat
arerelaxable)andoftenthesepreferencearenotaccompa-
nied by a generalpreferenceor low durationor low cost.
In thesecasesthe problemlies in makinga local decision
aboutwhich alternatvesto propagatgat an interior node)
when the decisionhasimplicationsto the local decisions
madeat other nodes— the local decisionprocessesre in-
terdependendindthey interactover a sharedresourceg.g.,
time or mongy. Castingthediscussiorin termsof Figure6:
assumé’ hasanoverall deadlineof 5 minutesandT;’s al-
ternatvesrequirearywherefrom 2 minutesto 20 minutesto
complete,andTy’s alternatvesare similarly characterized.
Assumethatquality is highly correlatedwith duration,thus
the moretime spentproblemsolving, the betterthe result.
If the criteria specifiesmaximumquality within the dead-
line, the alternatvespropagatedrom 77 to 7' will bethose
thatachieze maximumquality (andalsohave highduration).
Likewisewith the alternatvespropagatedrom T>. There-
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sulting setof alternatves, St at nodeT will containmem-
berscharacterizedy high quality, but also high duration,
andtheschedulewill beunableto constructa schedulghat
meetsthe harddeadline.The optimal solutionto this prob-
lem is computationallyinfeasible(w(2™) ando(n™)) asit
amountsto the generalschedulingproblembecausef task
interactionsandotherconstraints.

Two approximatesolutionsare possible. One approach
is to preprocesshe taskstructure producingsmall alterna-
tive setsat eachnodethat characterizehe larger alterna-
tive populationfor that node. Then examining the ranges
of alternatvesat eachnodeandheuristicallydecidingon an
allocationor apportionmenbf the overall deadlineor cost
limitation to eachof the interior nodes. This local-view of
the overall constraintcould then be usedto focus alterna-
tive productionon thosethat will leadto a root-level set
thatmeetsthe overall constraint.The otherapproachwhich
we have emplgyed, is to detectwhenthe local-view of the
decisionprocessis problematicandin thosecasessample
from the populationof alternatves,producinga subsethat
exhibits similar statisticalpropertiesandpropagatinghese
alternatves. This leadsto aless-focusedetof root level al-
ternatvesthanthe prior approachput it saveson the added

polynomiallevel expenseof thefirst approach.

Conclusion, Futur e Work, and Limitations

We have discussed classof issuesin DTC that pertainto
modeling and schedulingfor hard and soft temporalcon-
straints,resourceconstraints and task interactions. Space
precludesfull enumeratiorof the differentaspect®f DTC
that relateto addressingesourcdimitations — the issueis
ubiquitousto the designof the DTC algorithm,the TEMS
modelingframework, and the decisionsmadeby the DTC
scheduler From a very high level, possiblythe mostim-
portantfeaturesthat relateto resourceboundednesss the
detailedquantifiedview of actions,and task interactions,
afforded by the TAEMS modelingframewvork. This, com-
binedwith the elementof choicepresenin TAEMSfamilies
of plans,setsthe foundationfor DTC’s reasoningaboutthe
implicationsof failures,failing to acquireresourcesandvi-
olatinghardconstraints.

In termsof limitations, DTC’s approximatesolution ap-
proachis clearly not optimal in mary circumstances.As
discussedthis is particularlytrue whenthe alternatve sets
mustbeseverelypruned(focused}o producesolutions.Ad-
ditionally, in someapplicationsjn which only very specific



subsetsf the featuresafforded by TAMS are employed,
customschedulersnay do a betterjob of balancingthe dif-
ferentconcernandfinding goodsolutions.In termsof opti-
mality, it is difficult to comparethe performanceof DTC to
optimalasfoundvia exhaustve generatiorsimply becausé
is notfeasibleto generatall possibleschedulegor realistic
taskstructuresMembersof ourgrouparecurrentlyworking
on an MDP-basedl £MS schedulingtool [17, 23] andwe
planto measurdTC's performancen smallerapplications
throughthis tool.

It is importantto notethatthoughDTC takesgreatpains
to produceschedulegjuickly, the scheduleiis not hardreal
time itself. We cannotmake performanceguarantee$l5]
for a given probleminstance thoughit would be possible
to producesuchguaranteeby classifyingsimilar taskstruc-
turesandmeasuringschedulingperformanceoffline. At is-
sueis the constraintspresentin an arbitrary TAEMS task
structure. For certainclasse®f taskstructuresguarantees
without an in-depthpreclassificatiorare possible. In prac-
tice, the scheduler(implementedin 50,000lines of C++)
is fastand capableof schedulingaskstructuresvith 20-40
primitive actionsin under7 secondon a 600mhzPentium
[l machinerunningRedhatLinux 6.0. A samplingof appli-
cationsandruntimesareshavn in Table1.

In the table, the first column identifiesthe problemin-
stancethesecond:olumnidentifiesthe numberof primitive
actionsin thetaskstructure thethird column(UB # R-Altg
indicatesthe upperboundon the numberof root-level alter
natives,thefourth columnidentifiesthe upperboundon the
numberof schedulepossiblefor the taskstructure(*N/C”
indicatesthatthe valueis too large for the variableusedto
computeit). Thefifth column(# Alts R/ Total) identifiesthe
numberof alternatvesactuallyproducediuringtheschedul-
ing run— thefirst numberis the numberof alternatvespro-
ducedat the root note and the secondnumberis the total
numberof alternatvesproducediuringscheduling Thefirst
numberlis comparabléo theupperboundsexpressedn col-
umnthree.Thesixth columnshovsthenumberof schedules
actuallyproduced.The columnlabeled# D Combinesndi-
categhenumberof distribution combinatioroperationper
formed during scheduling- this is particularlyinformative
becausaearlyall aspect®f the schedulingprocessnvolve
probability distributions ratherthan expectedvalues. The
last threecolumnspertainto the time spent(in whole sec-
onds)doingdifferentactiities, namelyproducingthe setof
root-level alternatives, creatingschedulegrom the alterna-
tives,andthetotal scheduleruntime (which includessome
final sorting and other output-relatedoperations). Due in
partto the scheduless useof a particularsetof clock func-
tions, which are integer based,thereis no variancewhen
the experimentsare repeateecausehe variancepertains
to lessthanwhole seconds.

Most of the task structuregproducedl5 schedules- this
is the systendefault. Whenfewer schedulesreproducedt
indicatesthattherearenot sufficient alternatvesat the root
level to producemorescheduleswhenmorethan15 sched-
ulesareproducedijt indicatesthatthe schedules termina-
tion criteriawasnot met— generallycausecdyy a large per
centageof zeroquality schedule®r by therebeingalterna-

tivesthatappeabetterthanary schedulegeneratedhusfar
perthe designcriteria. The schedulemwill work beyond its
presenmumberundertheseconditionsbut only to somemul-
tiple of thepreset.TheJIL _translatedtructurefor example,
containssomemodelingproblemsthat producea very large
numberof zeroquality scheduleand DTC scheduledip to
4*15 andthenhaltedwith asmallsetof viable schedules.

With respecto schedulecomputationoverheadandon-
line performancethe time requiredto schedulethesetask
structuress reasonablgiventhatthe grainsizeof the struc-
turesthemselesis muchlargerthanthe secondsequiredto
performtheschedulingoperation(generallyschedulepver-
headis at most1% of the total runtime of the agents ap-
plication). That beingsaid, however, being“appropriately
fast” is not necessarilythe long term objective and perfor
manceguaranteeand performanceestimatesareimportant
researctavenuedor thefuture.

Onepromisingareaof DTC relatedresearchs anoffline
contingeny analysistool [17, 23] thatusesDTC to explore
anapproximationof the schedulespacefor a given TAEMS
task structure. The useof DTC as an oracle enablesthe
contingeny analysistool to cope with the combinatorics
of the generalschedulingproblem. The contingeng analy-
sismethodologydetermineghe criticality of failureswithin
a scheduleand for critical points, evaluatesthe statistical
characteristicef the availablerecovery options. The analy-
sis,while expensve, is appropriatgfor mission-criticalhard
deadlinesituationsin which a solutionmustbe guaranteed
by a particulartime. With DTC’s approachiit is possible
to startdown a solution path (that is appealingeven with
the possibility of failure) for which thereis no mid-stream
recovery option that will enablethe agentto still produce
someresultby the harddeadline.DTC will alwaysrecover
andfind whatever optionsareavailable,but, becausét does
notplanfor contingeng andrecoverya priori, in harddead-
line situationsin which solutionsmustbe guaranteedthere
is somepossibility of unrecaoverablefailure.

DTC hasmary differentparametesettingsnot discussed
hereandit canbemadeto avoid failureif possible However,
while this coversacertainclassof thefunctionalitiesoffered
by the contingeng analysigool, thetwo arenot equivalent.
Whereashe bestDTC cando is avoid failure if possible,
or work to minimize failure, it canonly do this for a sin-
gleline of control. Usingthe contingeny analysistool, the
agentcanselecta highrisk planof actionthatalsohassome
potentialof a high pay off, but, it canalsoreasona priori
aboutthe ability to recoverfrom afailure of the plan. While
DTC canbeextremelyconsenrative, it cannotplanfor both
high-risk and recovery concurrently The choice between
DTC andthecontingeny analysisapproachs dependenon
theapplication.For online,responsie controlto unplanned
events,DTC is mostappropriate.For mission-criticalsitu-
ationscombinedwith time for a priori offline planning,the
contingeny approachs mostappropriate.
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