High-Performance Schedulers

Francine Berman

January 26, 1998

0.1. Introduction 1

Scheduling — the assignment of work to resources within a specified
timeframe.

0.1 Introduction

The computational grid will provide a platform for a new generation of applica-
tions. Grid applications will include “portable” applications which can be exe-
cuted on a number of computation and communication sites, resource-intensive
applications which must aggregate distributed resources (memory, data, com-
putation) to produce results for the problem sizes of interest, and coupled ap-
plications which combine computers, immersive and visualization environments,
and/or remote instruments. Grid applications will include sequential, parallel
and distributed programs. All of these applications will execute on grids simulta-
neously and will share resources. Most important, each of these applications will
seek to leverage the performance potential of computational grids to optimize
their own execution.

From the application’s perspective, performance is the point. But how
can applications leverage the performance potential of the computational grid?
Experience with two decades of parallel and distributed applications indicates
that scheduling is fundamental to performance. Schedulers employ pre-
dictive models to evaluate the performance of the application on the underlying
system, and use this information to determine an assignment of tasks, commu-
nication, and data to resources, with the goal of leveraging the performance
potential of the target platform.

In grid environments, applications share resources — computation resources,
communication resources, instruments, data — and both applications and sys-
tem components must be scheduled to achieve performance. However, each
scheduling mechanism may have a different performance goal. Job schedulers
(high-throughput schedulers) will promote the performance of the system (as
measured by aggregate job performance) by optimizing throughput (measured by
the number of jobs executed by the system); resource schedulers will coordinate
multiple requests for access to a given resource by optimizing fairness crite-
ria (to ensure that all requests are satisfied) or resource utilization (to measure
the amount of the resource used). Both job schedulers and resource schedulers
will promote the performance of the system over the performance of individual
applications. These goals may conflict with the goals of application schedulers
(high-performance schedulers) which promote the performance of individual
applications on computational grids by optimizing performance measures such
as minimal execution time, resolution, speedup, or other application-centric cost

measures. In particular, grid programmers cannot rely upon resource schedulers
or other system components to promote application performance goals.

In this setting, high-performance schedulers become a critical part of the pro-
gramming environment for the computational grid. However high-performance
scheduling on the computational grid is particularly challenging: Both the soft-
ware and hardware resources of the underlying system may exhibit heterogeneous
performance characteristics, resources may be shared by other users, and net-
works, computers and data may exist in distinct administrative domains. More-
over, centralization in the computational grid environment is not feasible, since
no one system may be in control of all of the resources. In this chapter, we fo-
cus on the problem of developing high-performance application schedulers
for the computational grid — schedulers which focus on the problem of achiev-
ing performance for a single application on distributed heterogeneous resources.
The related problems of achieving system performance through high-throughput
scheduling and through resource scheduling are considered in Chapters ?? and
77 respectively.

0.2 Scheduling Grid Applications

0.2.1 What is Performance?

It should be clear from the previous discussion that performance means different
things to different constituencies, so what is performance? Webster [?] defines
performance as “the manner in which a mechanism performs”, with perform
defined as “ also “the successful completion of a process”. From this we can
imply that achieving performance requires both a model of behavior, and some
way to determine a successful behavior. In a technical context, we can say that
performance is achieved by optimizing a cost model which provides a means of
comparing and ranking alternatives within that model. With regards to applica-
tion (high-performance) scheduling, the cost model assigns a value (cost) to the
execution resulting from a particular schedule, and executions can be evaluated
by comparing them with respect to some quality (E.G. execution time, speedup,
resolution, etc.) of their execution which we call a performance measure.

0.2.2 What is Application Scheduling?

Grid applications consist of one or more tasks which may communicate and
cooperate to form a single application. Scheduling grid applications involves a
number of activities. A high-performance scheduler must

1. Select a set of resources on which to schedule the task(s) of the application.

0.2. Scheduling Grid Applications 3

2. Assign application task(s) to compute resources.

3. Distribute data or co-locate data and computation.
4. Order tasks on compute resources.

5. Order communication between tasks.

In the literature, item 1) is often termed resource location, resource selection,
or resource discovery. Resource selection refers to the process of selecting candi-
date resources from a pool; resource discovery and resource location refer to the
determination of which resources are available to the application. Item 2) may be
called mapping, partitioning or placement. For task-parallel programs, compu-
tation or data may reside in distinct locations and the scheduler must determine
which needs to be moved (item 3). For data-parallel programs, all computation
resources execute the same program and the complexity of the scheduling process
lies in the determination of a performance-efficient distribution or decomposition
of data (item 3). For data-parallel programs, load balancing — the assignment
of equivalent amounts of work to processors which will execute concurrently — is
often the scheduling policy of choice for the high-performance scheduler.

Note that items 1)-3) (termed generally as mapping) focus on the allocation
of computation and data “in space” while items 4) and 5) (generally termed as
scheduling) deal with the allocation of computation and communication “over
time”. For many authors, scheduling is also used to describe activities 1)-5), as
we use it here.

A scheduling model consists of a scheduling policy — a set of rules for
producing schedules, a program model which abstracts the set of programs
to be scheduled, and a performance model which abstracts the behavior of
the program on the underlying system for the purpose of evaluating the per-
formance potential of candidate schedules. In addition, the scheduling model
utilizes a performance measure which describes the performance activity to
be optimized by the performance model.

High-performance schedulers are software systems which use scheduling mod-
els to predict performance, determine application schedules based on these mod-
els, and take action to implement the resulting schedule. Given appropriate
input, the high-performance scheduler determines an application schedule —
an assignment of tasks, data and communication to resources, ordered in time
— based on the rules of the scheduling policy, and evaluated as “performance-
efficient” under the criteria established by the performance model. The goal of
the high-performance scheduler is to optimize the performance experienced by
the application on the computational grid.

Note that while distributed parallel applications are among the most chal-
lenging to schedule on the computational grid, “portable” single-site applications
must also be scheduled. Even if an application cannot profit from distribution,
the scheduler may have to locate a computational site and/or co-locate data in
a way that maximizes application performance. For parallel grid applications,
the high-performance scheduler will need to determine whether performance is
optimized by assigning all tasks to a single site or by distributing the application
to multiple sites.

One approach to developing high-performance schedulers initially thought
fruitful was to modify successful strategies from massively parallel processor
(MPP) schedulers for grid environments. This seemed reasonable since applica-
tions in both MPP and grid environments require careful coordination of pro-
cessing, communication and data to achieve performance. Moreover, in the MPP
environment, strategies such as gang scheduling [15] provide a method by which
both application and system behavior can be optimized (under the assumption
that achieving good throughput, utilization and/or fairness for uniform resources
will promote good application performance on average).

However, MPP scheduling models generally produce poor grid schedules in
practice. To determine why, it is useful to look carefully at the assumptions
which underly the model used for MPP scheduling.

Assumptions of the MPP Scheduling Model

o The MPP scheduler is in control of all resources.

All resources lie within a single administrative domain.

The resource pool is invariant.

The impact caused by contention from other applications in the system on
application execution performance is minimal.

All computation resources and all communication resources exhibit similar
performance characteristics.

None of these assumptions hold in most computational grid environments.
The grid high-performance scheduler is rarely in control of all resources which
may lie in a number of administrative domains. The resource pool will vary over
time as new resources are added, old resources are retired, and other resources
become available or unavailable. Other users will share the system and may dra-
matically impact the performance of system resources. Finally, resources are of
different types, and may exhibit highly non-uniform performance characteristics.

0.2. Scheduling Grid Applications 5

Even uniform resources may exhibit non-uniform performance characteristics due
to variations in load resulting from other users sharing the system.

Because the fundamental model of MPP scheduling makes incorrect assump-
tions about grid environments, the optimal schedules as determined by this model
typically do not perform well in grid environments in practice. Consequently, a
new scheduling model (and new scheduling techniques) must be de-
veloped for the grid. Such a model must reflect the complex and dynamic
interactions between applications and the underlying system.

0.2.3 Lessons Learned from Application Scheduling

Before we turn to the challenge of developing an adequate high-performance
scheduling model for computational grids, it is useful to review the experiences
of programmers scheduling applications on parallel and distributed platforms. It
is clear from the accumulated experience of both MPP and grid programmers,
users, and application developers that the choice of a scheduling model can make
a dramatic difference in the performance achieved by the application ([40, 5, 49,
31], etc). In the following, we review some of the lessons learned from application
scheduling in both environments.

Lessons Learned

e Efficient application performance and efficient system perfor-
mance are not necessarily the same.
In both the MPP and grid environments, achieving system performance,
resource performance, and application performance may present conflicting
goals. In particular, it is unrealistic to expect the job scheduler or resource
scheduler to optimize application performance. In grid environments, spe-
cific application schedulers must be developed in order for the application
to leverage the system’s performance potential.

e It may not be possible to obtain optimal performance for multiple
applications simultaneously.
In the MPP environment, if N processors are available and applications
APP1 and APP2 both require N — 1 processors in single-user mode to
achieve minimal execution time for a given problem size, then both cannot
be executed concurrently with the best performance. In grid environments,
networked resources may be shared, and APP1 and APP2 may both be
able to obtain the same resources concurrently. However, each application
may “slow down” or degrade the performance of the other [16], diminishing
the resulting performance of both applications.

e Load-balancing may not provide the optimal application schedul-
ing policy.
In grid environments, the performance deliverable by a given resource will
vary over time, depending on the fraction of the resource allocated to other
programs which share the system. Assigning equivalent amounts of work
to a set of processors whose load will vary may result in a performance
degradation occurring when lightly loaded processors wait for more heav-
ily loaded processors to finish. Moreover, communication is also “work”
on computational grids, so the impact of distributing data over shared
networks may incur additional performance penalties due to variation in
network load and traffic.

e The application and system environment must be modeled in

some detail in order to determine a performance-efficient sched-
ule.
All scheduling is based implicitly or explicitly on a predictive performance
model. The accuracy and quality of predicted behavior as determined by
this model are fundamental to the effectiveness of the scheduler. Experi-
ence shows that simple performance models permit analysis but often yield
poor schedules in practice. Grid performance models must be sufficiently
complex to represent the phenomena which impact performance for real
programs at the problem sizes of interest, but tractable enough to permit
analysis and verification.

Fundamentally, MPP scheduling policies and performance models are inad-
equate for computational grids because “good” MPP schedules do not correlate
with the “good” schedules for grid programs observed in practice. The challenge
is to develop grid scheduling policies and performance models so that the good
schedules as determined by a grid scheduling model will correlate with good ap-
plication schedules as observed in practice. Moreover, this should be true with
respect to the domain of programs which are actually likely to be executed.

In the next section, we discuss the problem of developing adequate perfor-
mance models and scheduling policies for the computational grid.

0.3 Developing a Grid Scheduling Model

As indicated in the last section, the effectiveness of the high-performance sched-
uler is based on the development of an adequate scheduling model for computa-
tional grids. Why is application performance on comptational grids so difficult
to model? Much of the difficulty can be derived from the impact of the hetero-

0.3. Developing a Grid Scheduling Model 7

geneity of the hardware and software in computational grids, and the impact
of variations in deliverable resource performance due to contention for shared
resources. To predict performance in this dynamic distributed environment,
models must represent the characteristics of the computational grid which im-
pact application performance. In particular, the challenge is to develop a grid
scheduling model which can

e Produce performance predictions that are timeframe-specific.
Since the deliverable performance of system resources vary over time in the
computational grid, predictions of performance must also vary over time.

e Utilize dynamic information to represent variations in performance.
Since computational grids are dynamic, application performance may vary
dramatically over time and per resource. Performance models for the com-
putational grid can reflect evolving system state by utilizing dynamic pa-
rameters. In addition, such attributes as the range or accuracy of dynamic
values can provide important “meta-information” which can be used to
develop environment-sensitive schedules.

e Adapt to a wide spectrum of potential computational environments.

In the computational grid, applications may have a choice of potential
platforms for execution. Performance prediction models must be able to
both target distinct execution environments, and adapt to the deliverable
performance of the resources within those environments. While dynamic
information helps models perceive performance variations, adaptation pro-
vides a way for models to respond to their impact. One technique for
adaptation is to develop models in which parameters can change, or alter-
native models can be substituted based on dynamic characteristics of the
application and the target execution platform.

There are many ways to develop application scheduling models for the com-
putational grid, many of which are documented in the literature. Early recog-
nition of the multi-parametered nature of performance and program models can
be seen in the work on Optimal Selection Theory [19]. In addition, a number of
sophisticated scheduling policies have been devised to address the grid schedul-
ing problem [42, 9, 6, 27, 39, 32, 28, 22, 25, 12, 26, 41], etc. In the next section,
we focus on one promising approach for developing a grid scheduling model.

0.3.1 A Compositional Approach to Developing Grid Schedul-
ing Models

The development of adequate models for scheduling grid environments presents
a substantive challenge to researchers and application developers. One approach
to developing grid models is to compose models from constituent components
which reflect application performance activities. This approach is being taken by
a number of researchers [37, 44, 2, 50], etc. To illustrate, consider a simple model
which predicts execution time for a grid application which executes one task (A)
to completion, and passes all data to another task (B) which then executes
to completion. (Some grid applications which compute and then visualize the
resulting data at a visualization or immersive site have this form.) A performance
model for this application is

ExecTime(t1) = CompA(t1) + Comm(t;) + CompB(t3)

where the CompA(t1), Comm(ts), and CompB(t3) components provide pre-
dictions of their performance activities when initiated at times t;, > and t3
respectively, and are composed (by summing) to form a time-dependent predic-
tion of the execution time performance (ExecT'ime(t;)). Note that each of the
constituent models (CompA(t1), CompB(t3) and Comm(t2)) may themselves be
decomposed into other constituent component models and/or parameters which
reflect performance activities.

For this application, as for many grid applications, the complexity of the
modeling process is not in the overall structure of the application, but in the pa-
rameterization of its components, i.e. “the devil is in the details”. In particular,
the way in which parameters are used to derive component model predictions
critically impact how well the model reflects expected application performance.
In the following, we briefly describe how compositional models manifest the de-
sired characteristics of grid performance models described in the last subsection.

Timeframe-specific Predictions

In grid environments, the execution performance for the application will vary.
This is captured by the parameterization of ExecTime(t;), CompA(t1), CompB(t3),
and Comm(tz) by time parameters in the model. Note that each time parame-
ter is the time for which we would like a prediction of application performance,
with #; being the time the application execution will be initiated. CompA(ty),
CompB(t3) and Comm(t2) are also time-dependent in another way — they are
calculated using dynamic parameters — as described below.

0.3. Developing a Grid Scheduling Model 9

Dynamic Information

In a production environment, computation time may depend upon CPU load(s),
and communication performance may depend upon available network bandwidth.
Such parameters may vary over time due to contention from other users. Predic-
tions of these values at schedule time may be reflected by dynamic parameters
to the CompA(ty), CompB(t3) and Comm(t2) components in the performance
model.

For example, assume that task A iteratively computes a particular operation.
A performance model for CompA(t;) on machine M might be

Oper/pt

A(t1) = Niters mgrs 377~
CompA(t1) ters CPUavail(t;)

where N, is the number of iterations, Oper /pt is the operation per point when
M is unloaded, and C'PUavail(t1) is the predicted percentage of CPU available
for M at time t;. The use of the dynamic C PUawail(t;) parameter provides a
time-dependent prediction for CompA(t1), which can be combined with other
models to form a time-dependent prediction for EzecTime(ty)).

Adaptation

The performance model must target the execution platform that will be used
by the application. A common grid scheduling policy is to compare predictions
of application performance on candidate sets of resources to determine the best
schedule and execution platform for the application. Under this policy, the
performance model must be able to adapt to distinct execution environments
and produce accurate (and comparable) predictions of behavior on each of them.

In our simple example, task A must complete before it communicates with
task B. If we allow overlapped communication and computation, the application
would have to be modeled to reflect the more complex interplay of communica-
tion and computation. For example, if communication and computation were
overlapped, it may be more appropriate to replace + by maz or a pipeline oper-
ator to reflect the way in which computation for task A, computation for task B,
and communication between the processors on which they reside are coordinated.
In this way, the performance model can be adapted to reflect the performance
characteristics of the application with respect to a particular execution environ-
ment. Such an approach is taken in [44] which describes a compositional model
for predicting lagtime in interactive virtual reality simulations.

Adaptation can also be used to weight the relative impact of the performance
activities represented in a performance model. For example, if our example
application is compute-intensive, it may be quite important to derive an accurate

10

model (exhibiting a small error between modeled and actual performance) for
CompA(t1), CompB(t3) or both, and less important to derive an accurate model
for Comm(t2). Our primary goal is for EzecTime(t1) to be able to predict
application execution time within acceptable accuracy, and it may be possible
to combine the accuracies of each of the predictions of CompA(t1), CompB(t3)
and Comm(tz) to deliver a performance prediction of ExzecTime(t;) with the
desired accuracy [38].

Note that the accuracy, lifetime, and other characteristics of performance
parameters and predictions constitute meta-information (attributes which de-
scribe the determination or content of information) which provides a qualitative
measure of the performance information being used in/produced by the model.
Such performance meta-information can be used to derive sophisticated high-
performance scheduling strategies which combine the accuracies of the perfor-
mance models and their parameters with the performance penalties of deriving
poor predictions. This approach can be used to address both the accuracy and
the robustness of derived application schedules.

Compositional scheduling models provide a mechanism for representing both
the high-level structural character of grid applications, and the critical details
which describe the dynamic interaction of the application with computational
grid. As such, they constitute a promising approach to developing high-performance
scheduling models. Other promising approaches are also being developed. No
matter what approach is used to develop grid scheduling models, such models
will have a significant impact on the development of the software architecture for
computational grids. In particular, the scheduling models must be able to pro-
vide/extract dynamic performance information for a given time-frame to/from
the grid software infrastructure in a flexible, efficient, and extensible manner. In
addition, performance information must be available in a time-frame suited to
the structure of the application and with respect to the application’s particular
resource requirements.

In the next section, we focus on the most visible current efforts in developing
high-performance schedulers for computational grids. The spectrum of schedul-
ing models developed for these efforts represents the state-of-the-art in modeling
approaches for high-performance grid schedulers.

0.4 Current Efforts

At this point in time, there are exciting initial efforts at developing schedulers
for grid systems. In this section, we focus on a representative group of these pi-

0.4. Current Efforts 11

oneering efforts to illustrate the state-of-the-art in high-performance schedulers.
For more details on each project, we refer the reader to the references provided.

Note that we do not provide a valuation ranking of these projects. With
high-performance schedulers, as with many software projects, it is often difficult
to make head-to-head comparisons between distinct efforts. Schedulers are devel-
oped for a particular system environment, language representation, and program
domain, and many research efforts are incomparable. Even when distinct high-
performance schedulers target the same program domains and grid systems, it
may be difficult to devise experiments that compare them fairly in a production
setting. Fair comparisons can be made, however, in an experimental testbed
environment. In grid testbeds, conditions can be replicated, comparisons can be
made, and different approaches may be tested, resulting in the development of
mature and more usable software. Current efforts to develop grid testbeds are
described in Chapter 77.

Table 0.4 summarizes major current efforts in developing high-performance
grid schedulers. The way in which the scheduling model is developed for each
project in Table 0.4 illustrates the spectrum of different decisions that can be
made, and experience with applications will give some measure of the effective-
ness of these decisions. We discuss these efforts from the perspective of the
constituent components of their scheduling models in the next subsections.

0.4.1 Program Model

Program models for current high-performance schedulers generally represent the
program by a (possibly weighted) dataflow-style program graph, or by a set
of program characteristics (which may or may not include a structural task
dependency graph).

Dataflow-style program graphs are a common representation for grid pro-
grams. Dome [1] and SPP(X) [2] provide a language abstraction for the program
which is compiled into a low-level program dependency graph representation.
MARS [20] assumes programs to be phased (represented by a sequence of pro-
gram stages or phases), and builds a program dependency graph as part of the
scheduling process. SEA [43] and VDCE [45] represent the program as depen-
dency graphs of coarse-grained tasks. In the case of VDCE, each of the tasks
are from a mathematical task library.

In other efforts, the program is represented by its characteristics. AppLeS
[4] and I-SOFT [17] take this approach, representing programs in terms of their
resource requirements. AppLeS and I-SOFT focus on coarse-grained grid appli-
cations. IOS [7] on the other hand, represents real-time fine-grained iterative
automatic target recognition applications. Each task in IOS is associated with

12

Project | Program Performance Scheduling Remarks
Model Model Policy

AppLeS | communicating application best of candidate Network Weather

[4] tasks performance schedules based Service ([47]) used

model parameterized on user’s to forecast resource
by dynamic resource performance load and
performance capacities | criteria availability

MARS phased dependency graph determines candidate program history

[20] message-passing built from schedule which information used
programs program and used minimizes execution to improve

to determine time successive
task migration executions

Prophet | Mentat SPMD execution time = sum | determines schedule focuses primarily

[46] and parallel of comm. and comp. with the minimal on workstation
pipeline programs parameterized by predicted execution clusters

static and dynamic inf. | time

VDCE programs composed | task dependency graph | list scheduling communication

[45] of tasks from weighted by dedicated | used to match weighted as 0
mathematical task task benchmarks and resources with in current version,
libraries dynamic load info. application tasks param. by exp.,

anal. model
in next version

SEA dataflow-style expert system “ready” tasks resource selection

[43] program dependence | which evaluates enabled in program performed by a
graph “ready” tasks in graph are next to Mapping Expert

program graph be scheduled Advisor (MEA)

I-SOFT | apps. which couple developed by centralized scheduler users select own

[17] supercomputers users, maintained user queues | resources, sched.
remote instruments, | static capacity info. and static capacities, approach used
immersive envts., used for scheduling apps scheduled as ”first | for I-Way
data systems some applications come, first served” at SC 95

10S real-time, iterative app. represented off-line genetic alg. approach

[7] automatic target as a dependency graph | mappings indexed by uses dynamic
recognition of subtasks, each of dynamic params. used parameters
applications which can be assigned | to determine mapping to index off-line

one of several for current mappings
possible algs. iteration

SPP(X) | base serial language | compositional determination of skeleton perf.

[2] X and performance model performance models can
structured based on skeletons model for be derived
coordination associated with candidate schedules automatically
language program with minimal from program

structure execution time structure

Dome SPMD C++ program rebalanced globally-controlled initial bench-

[1] PVM programs based on past or locally-controlled mark data

performance, after
some number of
Dome operations

load balancing

based on short
initial phase
with uniform
data distribution

0.4. Current Efforts 13

a set of possible image-processing algorithms. This approach combines both the
program graph and resource requirements approaches to program modeling.

0.4.2 Performance Model

The performance model provides an abstraction of the behavior of the application
on the underlying system. The values of the performance model are predictions
of application performance within a given timeframe. Performance models of
current efforts in high-performance schedulers represent a wide spectrum of ap-
proaches, however parameterization of these models by both static and dynamic
information is common. Approaches differ in terms of who supplies the perfor-
mance model (the system, the programmer, some combination), its form, and its
parameterization. We describe some of the general approaches in the following
paragraphs.

On one end of the spectrum are scheduler-derived performance models.
SPP(X) [2] derives “skeleton” performance models from programs developed us-
ing a Structured Coordination Language. Similarly, MARS [20] uses the program
dependency graph built during an iterative execution process and parameterized
by dynamic information as its performance model for the next iteration. Dome
[1] uses the last program iteration as a benchmark for its SPMD programs, and
as a predictor of future performance. IOS [7] associates a set of algorithms with
each fine-grained task in the program graph, and evaluates pre-stored off-line
mappings for this graph indexed by dynamic information. VDCE uses the pro-
gram graph as a performance model, in which the scheduler will evaluate candi-
date schedules based on predicted task execution times. All of these approaches
require little intervention from the user.

On the other end of the spectrum are user-derived performance models.
AppLeS [4] assumes that the performance model will be provided by the user.
Current AppLeS applications rely on structural performance models [37] which
compose performance activities (parameterized by static and dynamic informa-
tion) into a prediction of application performance. The I-SOFT scheduler [17]
assumed that both the performance model and the resulting schedule were de-
termined by the programmer. Information about system characteristics was
available, but usage of those characteristics was left up to the programmer.

Some approaches combine both programmer-provided and scheduler-provided
performance components. Prophet [46] provides a more generic performance
model (EzecutionTime = Computation + Communication) for its SPMD pro-
grams, parameterized by benchmark, static, and dynamic program capacity in-
formation. SEA [43] uses its dataflow-style program graph as input to an expert

14

system which evaluates which tasks are currently “ready”. These approaches
require both programmer and scheduler information.

0.4.3 Scheduling Policies

The goal of a high-performance scheduler is to determine a schedule which opti-
mizes the application’s performance goal. Note that this performance goal may
vary from application to application, although a common goal is to minimize
execution time. The current efforts in developing high-performance schedulers
utilize a number of scheduling policies to accomplish this goal.

In many of the current efforts, the work comes in determining an adequate
performance model. The scheduling policy is then to choose the “best” (accord-
ing to the performance criteria) among the candidate choices. Note that some
schedulers perform resource selection as a preliminary step to filter the candidate
resource sets to a managable number, and some schedulers do not.

AppLeS [4] performs resource selection as an initial step and its default
scheduling policy chooses the best schedule among the resulting candidates (sched-
uled by a “Planner” subsystem) based on the user’s performance criteria (which
may not be minimal execution time). Other scheduling policies may be pro-
vided by the user. SPP(X), Prophet [46] and MARS [20] use similar approaches
although they do not provide as much latitude for user-provided scheduling poli-
cies or performance criteria — the performance goal for all applications is minimal
execution time.

VDCE [45] uses a list scheduling algorithm to match resources with applica-
tion tasks. The performance criteria is minimal execution time. Dome [1] focuses
on load-balancing as a scheduling policy for its SPMD PVM programs with the
performance goal of minimal execution time. The load-balancing policy used by
Dome can be globally-controlled or locally-controlled and after a short initial
benchmark, uses dynamic capacity information to re-balance at Dome-specified
or programmer-specified intervals. The scheduling policy used by SEA is em-
bodied in its expert system approach: the application is scheduled by enabling
tasks as they become “ready” in the program graph.

I-WAY was a successful “proof-of-concept” experiment in grid computing at
Supercomputing '95. The I-SOFT scheduler [17] was centralized and operated on
a “first come, first served” policy. Information about static capacities and user
queues was used by many users to develop schedules for their own applications.

Finally, IOS [7] uses a novel approach for scheduling fine-grained automatic
target recognition (ATR) applications. Off-line genetic algorithm mappings are
developed for different configurations of program parameters prior to execution.
Dynamic information is then used to select a performance-efficient mapping at

0.5. Case Study in High-Performance Schedulers: The AppLeS Project 15

run-time. ATR applications may be rescheduled at the end of every iteration if
a new schedule is predicted to perform better than the existing schedule.

0.4.4 Related Work

Application scheduling is not only performed by high-performance schedulers

on computational grids. There are a number of problem solving environments,
program development tools, and network-based libraries which act as “applica-
tions” and use high-performance scheduling techniques to achieve performance.
Application-centric resource management systems such as Autopilot [34] seek

to control resource allocation based on application performance and represent
application-aware systems. Autopilot controls resource allocation based on application-
driven events. A fuzzy logic model is used to determine allocation decisions based

on the “quality” of monitored performance data. A discussion of Autopilot and
additional related work can be found in Chapter 77.

Ninf [30], NetSolve [8], Nile [29], and NEOS [10] represent problem solving
environments which can benefit from high-performance scheduling to achieve
performance. For example, Ninf incorporates “metaserver” agents to gather
network information to optimize client-server-based applications. The system
schedules accesses from a client application to remote libraries with the perfor-
mance goal of optimizing application performance. A proposed collaboration
between NetSolve and AppLeS will focus on further improving the performance
of the NetSolve system. More information about Ninf, NetSolve, and NEOS as
well as additional related work can be found in Chapter ?7?.

0.5 Case Study in High-Performance Schedulers:
The AppLeS Project

To demonstrate the operation of high-performance schedulers in more detail,
we present an overview of the AppLeS high-performance scheduler. AppLeS
(Application-Level Scheduler) [4] is a high-performance scheduler targeted to
multi-user distributed heterogeneous environments. FEach grid application is
scheduled by its own AppLeS which determines and “actuates” a schedule cus-
tomized for the individual application and the target computational grid at
schedule-time.

AppLeS is based on the application-level scheduling paradigm in which ev-
erything in the system is evaluated in terms of its impact on the
application. As a consequence of this approach, resources in the system are

16

evaluated in terms of predicted capacities at execution-time, as well as their
potential for satisfying application resource requirements.

The target platform for AppLeS applications is intended to be a distributed
wide-area and/or local-area network which connects computational resources,
data resources, visualization resources, and “smart instruments”. No resource
management system is assumed, however AppLeS applications are currently
being targeted to the Globus [18] and Legion [24] software systems and their
testbeds, the DOCT testbed [11], and the NPACI metasystem [33]. AppLeS
operates at the user level and does not assume any special permissions. Neither
computation nor communication resources are assumed to be homogeneous, nor
are they assumed to be under uniform administrative control. All resources are
represented by their deliverable performance as measured by such characteristics
as predicted capacity, load, availability, memory, quality of performance infor-
mation, etc.

The application program model assumes an application comprised of com-
municating tasks. No specific programming paradigm or language representa-
tion is assumed. AppLeS agents utilize user preferences (particular machines,
libraries, performance measure), and application-specific and dynamic informa-
tion to determine a performance-efficient custom schedule. The user provides
an application-specific performance prediction model which reflects the compo-
nents of the application, their inter-dependence, and their impact on application
performance. The user may also provide information about the resource re-
quirements of the application. In the default scheduling policy, the AppLeS
agent selects candidate resource configurations, determines an efficient sched-
ule for each configuration, selects the “best” of the schedules according to the
user’s performance measure, and actuates that schedule on the underlying re-
source management system. Users may also provide their own scheduling policy.
The goal of the AppLeS agent is to achieve performance for its application in
the dynamic grid environment. The AppLeS approach is to model the user’s
scheduling process, while incorporating additional information and operating at
machine speeds.

A facility called the Network Weather Service [47] is used to provide
dynamic forecasts of resource load and availability to each AppLeS. Dynamic
Network Weather Service information is used to parameterize performance mod-
els, and to predict the state of grid resources at the time the application will be
scheduled.

AppLeS and the Network Weather Service demonstrate that dynamic in-
formation, prediction, and performance forecasting can be used effectively to
achieve good schedules. Figure 0.1 shows an experiment involving a demonstra-
tion AppLeS developed for a distributed Jacobi application. The Jacobi code

0.5. Case Study in High-Performance Schedulers: The AppLeS Project 17

figure=gresults.ps,height=3.0in,width=3.0in

Figure 0.1: Execution times for Blocked, Non-
Uniform Strip, and AppLeS partitionings for a dis-
tributed 2D Jacobi application. All resources used
for each partitioning.

figure=plot2.eps,height=3.0in,width=3.0in

Figure 0.2: Execution times for Blocked and Ap-
pLeS partitionings when a gateway rebooted. Es-
timated times using the Jacobi performance model
and measured times for the Jacobi AppLeS are

also compared.

used was a regular two-dimensional grid application which iteratively performed
a computation at each grid point after receiving updates from its north, west,
south, and eastern neighbors on the grid. The application was decomposed into
strips and time-balanced ! to achieve its performance goal of minimal execution
time. Performance at schedule time was modeled using a compositional perfor-
mance model parameterized by dynamic parameters representing CPU load and
available bandwidth. The computation and communication component mod-
els were chosen to reflect resource performance in the distributed environment.
More information about the Jacobi2D AppLeS can be found in [5].

The experiments represented by Figure 0.1 compared 3 partitionings: A
blocked HPF-style partitioning which decomposed the NXN Jacobi grid into
equal sized blocks, a non-uniform strip partitioning which used resource ca-
pacity measurements taken at compile-time to assign work to processors, and
a run-time AppLeS strip partitioning which used resource capacity measure-
ments predicted by the Network Weather Service at run-time. The experiments
were run in a local-area production environment consisting of distributed het-
erogeneous workstations in the Parallel Computation Laboratory at U. C. San
Diego and at the San Diego Supercomputer Center. Both computation and com-
munication resources were shared with other users. In the experiment shown in
Figure 0.1, all processors were used by all partitionings. The figure demonstrates
that dynamic information and prediction can be used to provide a performance
advantage for the application in a production environment.

Figure 0.2 illustrates the effectiveness of adaptive scheduling. In this set
of experiments, the gateway between the Parallel Computation Laboratory at
U.C.S.D. and the San Diego Supercomputer Center was rebooted, and the two
sites were connected by an alternative slower network link for a short period of
time. Experiments conducted during this timeframe (for problem sizes around
n = 1800) show that the AppLeS agent (which used resource selection in these
experiments) assessed the poor performance of the gateway and chose an al-
ternative resource configuration, maintaining the performance trajectory of the

'In time-balancing, all processors are assigned some (possibly non-uniform) amount of work
with the goal that they will all finish at roughly the same time.

18

application. The static blocked partitioning was unable to adapt to dynamic con-
ditions, and consequently exhibited poor performance for the application. Such
results are representative of experiments with Jacobi2D and other prototype Ap-
pLeS applications currently being developed, and demonstrate the performance
potential of an adaptive scheduling approach.

0.6 Scheduling the Digital Sky Survey Analysis
Application on the Computational Grid

The previous sections have focused on the development of high-performance
schedulers for the computational grid. In this section, we focus on how such a
scheduler might achieve performance for a specific grid application. In particular,
we focus on the Digital Sky Survey Analysis application described in Chapter
?7XX? to illustrate the scheduling issues involved.

To analyze Digital Sky Survey data, a distributed infrastructure for access-
ing and handling a large amount of distributed data must be in place. The
“application” itself is the analysis of this data to answer statistical questions
about observed objects within the universe. Note that the application must
discover where the relevant data resides and perhaps migrate data to a remote
computational site to perform the analysis.

The Digital Sky Survey Analysis (DSSA) application is representative of an
important class of scalable distributed database problems ([29, 36], etc.) which
require resources to be scheduled carefully in order to achieve performance. In
developing a high-performance scheduler for DSSA, the following issues must be
addressed.

e Efficient strategies for discovering the sites where relevant data
resides and generating the data sets must be developed.
The high-performance scheduler must determine how the relevant data
is/should be decomposed between the Palomar, Sloan, and 2-Mass databases,
and which data sets will be required for the analysis. To generate the data
set needed to perform a statistical analysis, data may need to be sorted
into a temporary file on local disk, with the entire data set accessed by the
statistical analysis program once the data set is complete. If the data is
located within the database, it could be streamed to the statistical analysis
program.

¢ Resource selection and scheduling strategies must be developed.
For the DSSA application, the set of potential data servers is small (Palo-
mar, Sloan, 2-Mass, and archives which replicate the information), however

0.6. Scheduling the Digital Sky Survey Analysis Application on the Computational Grid19
___|

the set of potential compute servers may be large. If the required analysis
is small enough, it could be performed directly at the data server. Alter-
natively, if a large fraction of the database must be manipulated, analysis
could be moved to an alternate location which delivers greater execution
capacity (e.g. if the data is already cached).

The high-performance scheduler must determine whether datasets will be
moved to site(s) where the statistical analysis will be performed, or whether
the statistical analysis will be performed at the data server(s). In this case,
the scheduler must determine a candidate resource set and schedule which
can be accomplished in the minimum execution time.

Both resource selection and scheduling decisions will be based on a per-
formance model which must be developed for the DSSA application.
The performance model will reflect the cost of data decomposition as well
as the costs of migrating data and/or computation. For DSSA, the per-
formance model will build upon database mechanisms for estimating the
cost of execution, augmented by models of statistical analysis operation.
Communication and computation capacities in the model could be assessed
from dynamic information, and should be predicted for the timeframe in
which the application will be scheduled.

¢ A user interface must be developed for the application.

The user interface would provide an accessible representation for the po-
tentially large client base of the application. In addition, the user interface
should be structured so that it could be extended to include additional po-
tential compute resources and data servers. If the interface is web-based,
the time it takes to transmit the request from the client site over the Inter-
net or other networks to potential compute and data sites must be included
in the costs as evaluated by the performance model.

0.6.1 A DSSA AppLeS

The last subsection gave a general description of the high-performance scheduling
issues for DSSA. In this section, we focus on how a DSSA AppLeS would be
developed to make the discussion a bit more concrete.

Recall that each AppLeS pairs with its application to form a new applica-
tion which can develop and actuate a time-dependent, adaptive grid schedule.
Consequently, the DSSA application would be modified somewhat to allow the
DSSA AppLeS to make scheduling decisions for it. The DSSA AppLeS would use
as input application-specific information (login information, a characterization
of application resource requirements, user preferences, etc.), and an adaptable

20

performance model for DSSA to characterize the behavior of the application on
potential resources. Dynamic information required by the performance model
and the AppLeS would be obtained via the Network Weather Service.

The DSSA AppLeS would schedule the application using the following strat-

egy:

1. Select resources.
Resources would be selected by ordering them based on both their deliver-
able performance and their usage by the application. This could be deter-
mined by developing a representative computation (which would likely in-
clude communication since bandwidth is important to DSSA) which could
be assessed using dynamic Network Weather Service information. This
computation would be used to evaluate and prioritize potential resources.

2. For each candidate set of resources, plan a schedule.
The schedule for each candidate set of resources would be based on a
stochastic performance model, parameterized by dynamic resource infor-
mation. The quality of the performance information may also be used to
plan the schedule.

3. Select the schedule from among the candidates that best satisfies the user’s
performance criteria.

4. Actuate the selected schedule by interacting with the underlying resource
management system to initialize and monitor execution of the application.

Although much of the information that would be required by the DSSA Ap-
pLeS would be dynamic or application-specific, experience shows that it could be
obtained efficiently during scheduling or off-line [5]. Since the DSSA application
will be performed repeatedly by researchers, the time spent building an AppLeS
scheduler for it by application developers would be amortized by improved ap-
plication execution performance for users. Moreover, the DSSA AppLeS would
provide a mechanism for achieving performance as the application scales to a
wider set of database servers and potential computational sites.

0.7 Trends and Challenges in High-Performance
Scheduling
High-performance scheduling is critical to the achievement of application per-

formance on the computational grid, and is evolving into an area of very active
research and development. The projects described previously provide a sampling

0.7. Trends and Challenges in High-Performance Scheduling 21

of the current state-of-the-art. Considering these projects as an aggregate, it is
possible to derive a number of trends as well as a set of issues which provide
continuing challenges in high-performance scheduling. In the next subsections,
we touch briefly on both.

0.7.1 Current Trends:

Dynamic Information There is a recognition among developers of grid schedul-
ing software that the underlying system provides an evolving platform. Conse-
quently, many high-performance schedulers utilize dynamic information to create
adaptive schedules. Such schedules better reflect the dynamics of changing ap-
plication resource requirements and dynamically varying system state. This can
be seen, for example, in the MARS project [20] with respect to the retention of
performance information for the purpose of rescheduling, in the AppLeS project
[4] in terms of the use of dynamic system information via the Network Weather
Service, and in terms of the load-balancing approach performed as part of the
Dome system [1].

Using Metalnformation to Improve Performance A number of schedul-
ing projects use information from various sources as well as meta-information in
the form of an assessment of the quality of the information given. This meta-
information can be used in various ways. Autopilot [34] incorporates meta-
information in the fuzzy logic values used for determining resource allocation
decisions. AppLeS [4] uses quality of information (“QoIn”) measures to evaluate
the quality of predictions derived by structural performance models. Such uses
of meta-information parallel some of the important ideas on “meta-data” emerg-
ing from the data analysis and data mining communities. This is not surprising
as many high-performance grid applications are also data-intensive.

Using Realistic Programs Much of the early scheduling literature involved
the development of scheduling policies whose optima were demonstrated for
parallel programs represented by random program graphs. However, in prac-
tice, parallel programs have non-random communication patterns and program
graphs with identifiable structure. There is a trend in the current literature
to illustrate the efficiency of schedulers on programs more representative of the
high-performance codes that would actually be scheduled. Although it is of-
ten infeasible to show that the schedule derived from a given high-performance
scheduler is actually optimal, schedulers are more frequently shown to be efficient
on benchmarks representative of real parallel codes in production environments,

22

engendering confidence that they are likely to develop an efficient schedule for
the user’s code.

Restricted-Domain Schedulers One way of deriving information about ap-
plication behavior and performance is to restrict the applications to be sched-
uled to those which lie within a well-defined domain. Several high-performance
scheduling efforts target a particular class of programs. I0S [7] targets iterative
automatic target recognition programs, whereas Prophet [46] targets SPMD and
parallel pipelined Mentat applications. In addition, the Phase [21] system per-
forms resource selection to to support the efficient execution of pharmaceutical
applications on computational grids.

Restricting the program domain enables a scheduler to better predict ap-
plication behavior, and to use specialized scheduling policies to achieve perfor-
mance. In this way, good performance can be achieved for a restricted class of
programs, in contrast to less efficient performance which may be achieved using
a more broad-based scheduling policy.

Deriving Scheduling Information from Languages Adaptive schedulers
depend heavily on sufficient information about the resource requirements of the
application. Although programmers often know much of this information, the de-
velopment of an adequate interface for utilizing application-specific information
is a difficult problem. However, some researchers are obtaining useful informa-
tion for scheduling from programming languages and abstractions. Efforts to
develop languages that incorporate information about task decomposition, data
decomposition and location, resource requirements, etc. assist in automating the
scheduling process. Projects such as SPP(X) [2] and Dome [1] provide a promis-
ing approach to obtaining performance information relevant to computational
grids from high-level language abstractions.

0.7.2 Challenges

While current efforts to develop high-performance schedulers promise improved
application performance, there are still a number of challenges to be addressed.

Portability vs. Performance The development of portable programs often
focuses on architecture-independence, whereas the development of performance-
efficient programs often focuses on leveraging architectural features. A contin-
uing challenge for parallel and distributed application developers is to develop
code that is both portable and performance-efficient. In grid environments, this

0.7. Trends and Challenges in High-Performance Scheduling 23

is also true; however, portability may sometimes promote performance by al-
lowing an application a choice of platforms on which to execute. The challenge
for the high-performance scheduler is to use good scheduling to minimize the
performance impact of architecture-independence, and to leverage the availabil-
ity of multiple resources and the dynamicism of grid environments to achieve
application performance.

Grid-aware Programming It is currently the case that considerable effort
must be spent to modify programs in order to experience the benefits of schedul-
ing. An important challenge for programmers is to design applications which can
work with high-performance schedulers to leverage the performance potential of
computational grids. Grid-aware programs must be developed to adapt to dy-
namic system state, assess the performance impact of and possibly negotiate for
resources, and be able to select among and leverage multiple potential platforms.

Scalability Although application schedules may involve a managable number
of resources, the resources themselves may be selected from an ever-widening
resource domain. For this reason, it is important that the high-performance
scheduler use a scalable approach for resource selection. Generally, the strategy
to deal with large resource sets involves clustering the resources based on some
metric (similarity with respect to system characteristics, similarity based on
application-specific criteria, etc.) however the determination of how resources
should be clustered, when they should be re-partitioned, and how to deal with
the clusters is an open question and requires further research.

Efficiency The development of high-performance schedulers which not only
promote performance for their applications, but do so in a computationally effi-
cient manner presents an important challenge to developers. The complexity of
resource selection, performance modeling, and calculation of application sched-
ules can all incur substantive overhead depending on the techniques used. Useful
schedulers cannot take more time to schedule than it would take the application
to execute with any choice of schedule. In addition, there may be trade-offs
between the complexity and accuracy of performance models, and the intru-
siveness and precision of dynamic monitors. The scheduler must maximize the
predicted performance of the ultimate schedule in an efficient manner. Devel-
oping performance-efficient schedules with low overhead presents a challenge for
the developers of grid high-performance schedulers.

24

Repeatability One of the most critical problems in developing parallel ap-
plications on any platform is the ability to repeat the program and obtain the
same results. Repeatability is a key component for scheduler development as
both scheduled programs and the scheduler itself must be tested in a variety of
development and production environments before they can be assumed to run
correctly and produce useful results. To achieve repeatability, the grid envi-
ronment must be able to provide trace information about the performance of
single-user and shared resources, and be able to impose consistent orderings and
constraints on multiple executions of the same application.

Many ingenious approaches have been developed to attack the repeatability
problem for parallel programs targeted to MPPs [3], however most assume that
resources are uniform, enjoy the same performance characteristics, and can be
loosely synchronized with respect to one another. Such approaches may not be
applicable to the computational grid where heterogeneous performance charac-
teristics, the impact of other users on shared resources, and the asynchronous
nature of the system makes it extraordinarily difficult to repeat behavior and
diagnose problems.

Multischeduling Finally, high-performance schedulers will not operate “in a
vacuum” — they will co-exist with a number of scheduling mechanisms includ-
ing local resource schedulers, high-throughput schedulers, and perhaps other
high-performance schedulers. Scheduling different resources simultaneously (or
multischeduling) (also known as co-allocation [23]) is difficult. In particular, de-
veloping an integrated scheduling subsystem in which each scheduler is able to
promote the performance of the programs or resources in its domain provides the
ultimate scheduling challenge. This scenario is characteristic of computational
grids, and must be addressed in order to achieve performance for all schedulers
operating in this environment.

In addition to the problem of coordinating different kinds of schedulers, mul-
tiple independent high-performance schedulers will need to be coordinated. In
particular, multiple application schedulers, each acting on behalf of their own ap-
plication, must select resources and implement application schedules. “Thrash-
ing” can occur if all schedulers select a particular resource, sense poor perfor-
mance, and then all select the same alternative resource. This causes instability
in the system and results in poor application performance and poor resource
performance. A strategy must be devised in order to coordinate the activities of
high-performance schedulers so that the system remains stable, and each appli-
cation scheduler can attempt to optimize their own application’s performance.

Finally, just as applications must be scheduled with respect to a particular

0.8. System Support for High-Performance Schedulers 25
___|

time frame, resources must also be allocated with respect to a particular time
frame. The application scheduler and the resource scheduler must cooperate so
that the application scheduler can take advantage of the resource at the time the
resource scheduler can provide it.

0.8 System Support for High-Performance Sched-
ulers

The goal of the high-performance scheduler is the same as the user: to leverage
the best performance possible from the system for the application at schedule-time.
This task can be made considerably easier and more efficient if the underlying
system provides an infrastructure that supports high-performance scheduling. In
the following, we outline requirements for an infrastructure that would support
high-performance schedulers on the computational grid. If such infrastructure
were available, greater integration between the application scheduling and other
activities performed on computational grids would be possible, with potentially
better results.

REQUIREMENTS FOR A GRID INFRASTRUCTURE TO
SUPPORT HIGH-PERFORMANCE SCHEDULING

1. Resource reservation/Quality of Service guarantees

Resource reservation and QoS guarantees would help ensure that the re-
source capacities available to the high-performance scheduler could be ded-
icated to the application for some timeframe. Resource reservation and
Quality of Service guarantees increase the predictability of the system. This
predictability can be used effectively by the high-performance scheduler to
derive performance-efficient application schedules.

When multiple applications must share the same resources, resource reser-
vation and Quality of Service guarantees also provide a unifying notion
of “goods and services” which can be used to drive a computational grid
“economy”. In particular, resource reservations and Quality of Service
guarantees provide a way for competing high-performance schedulers to
quantify the impact of other applications on the system, and negotiate a
performance-efficient application platform. Information on QoS and re-
source reservation for computational grids can be found in Chapter ?7?.

2. Mechanisms for Monitoring and Storing Dynamic Resource In-
formation

Information about dynamic system state and application resource usage
can be used effectively by high-performance and other schedulers to derive
performance-efficient schedules. Autopilot [34] (Chapter ??) provides an
example of a mechanism which gathers resource information (for the pur-
pose of managing resource allocation) based on application-driven events;
the Network Weather Service [47] provides an example of dynamic resource
information which is gathered at regular intervals.

It is often useful for dynamic resource information to be persistent. Time
series analyses and predictive models utilize such information to promote
good schedules, and require the retention of dynamic information. Mecha-
nisms which retain dynamic information must be extensible so that new
categories of information relevant to an application’s resource usage can be
stored, and flexible so that information can be gathered and accessed in a
variety of ways. The Metacomputing Directory System (MDS), developed
for Globus [18], provides an example of a database facility which retains
dynamic resource information such as the number of nodes currently avail-
able and the status of the resource that can be used by schedulers. The
MDS is discussed in Chapter 77.

Although implementations may vary, the information retained in the re-
source information database must be accessible and useful to the high-
performance scheduler. In particular, from the high-performance sched-
uler’s perspective, the database must

e provide information useful to applications executing on distinct re-
sources simultaneously

e provide both static and dynamic information of interest to the appli-
cation

e provide meta-information which indicates the quality of the resource
information (accuracy, lifetime, etc.)

e be able to be queried by several applications simultaneously

e be accessible in real-time

3. High-Level Language Support

High-level language support for scheduling can assist the programmer in
the process of developing grid-aware applications and provide important

0.8. System Support for High-Performance Schedulers 27
___|

information for high-performance schedulers. The Legion system [24] pro-
vides an example of such an approach. High-level language primitives (data
streams, object method invocations, etc.) provide support for building
high-level semantic objects. These objects can be incorporated in various
language paradigms and used for scheduling.

High-level language support ensures uniform semantics across the com-
putational grid. Such support provides an important complement to the
necessary low-level services that must be provided. Since the low-level
services may change over time, high-level language support plays an im-
portant role in defining a consistent set of stable abstractions upon which
programming models can be built.

4. Integration of High-Performance Schedulers with Other Software
Tools

The programmer will use many tools and facilities to develop applications
for the computational grid including compilers, problem solving environ-
ments, libraries, etc. Coordination of the high-performance scheduler with
these tools and facilities can improve the performance of both. For ex-
ample, the compiler can provide a considerable amount of useful infor-
mation about program structure and resource requirements to the high-
performance scheduler. Conversely, scheduling directives within the appli-
cation can provide useful information to the compiler. Coordinating the
activities of compiling and scheduling would enhance them both. Compil-
ing applications for computational grids is addressed in Chapter ??.

In addition, adaptive scheduling can enhance the performance of PSEs.
Tools such as SCIrun [35] and NetSolve [8] can themselves be scheduled to
achieve better performance. The integration of problem solving environ-
ments and high-performance schedulers would provide an execution and
development environment in which the quality of application results, as
well as application execution performance could be addressed. Problem
solving environments for computational grids are addressed in Chapter ?7?.

Finally, programmers rely on support for both performance monitoring
and evaluation to improve the performance of their applications. Tools
such as Pablo [13], and Paradyn [14] can be used to develop performance-
efficient programs. High-performance schedulers often require similar sorts
of dynamic performance information to make scheduling decisions. Co-
ordination between performance monitoring, evaluation, and scheduling
activities would allow such facilities to leverage each other’s information

28

more efficiently, and utilize adaptive techniques for improving application
performance. More information on performance tools can be found in
Chapter ?7?.

5. Assistance for Multischeduling

Finally, the grid infrastructure could provide considerable support for all of
the schedulers that will operate on computational grids. High-performance
schedulers, resource schedulers and job schedulers will share the same re-
sources and in many cases, use the same grid infrastructure to manage
communication, store or access information, reserve resources, etc. One
approach to providing a uniform interface for multiple schedulers is the
Globus Resource Allocation Manager (GRAM) [23], which is being de-
signed to provide services which support resource discovery, resource in-
quiry, MDS access, and other activities useful for scheduling on computa-
tional grids.

When multiple schedulers work together (both high-performance and oth-
erwise), consistency of information and meta-information across the grid
becomes especially important. To obtain consistent information, the com-
putational grid will need to support wide-scale data synchronization. In-
formation interfaces must have the flexibility to provide consistent system-
centric and application-centric information and meta-information, as well
information from the monitoring and forecasting services which seem to be
evolving into a central component of high-performance schedulers.

0.9 Conclusion

Scheduling holds the key to performance in the computational grid environ-
ments; however high-performance scheduling on the computational grid repre-
sents a “brave new world” in which much progress needs to be made. Part of
the difficulty is that distributed applications, resource management systems, and
grid testbeds are all being developed concurrently, comprising the same sort of
“shifting sands” that have made the development of software for parallel envi-
ronments so difficult. Part of the problem lies in the inherent difficulty of the
scheduling problem, whose optimal solution is considered infeasible even in the
simplest environments.

Currently, the most advanced grid applications are targeted to particular
resources known to the developer. Over the next decade, the evolution of infras-
tructure for the grid and the development of sophisticated policies which which

0.9. Conclusion 29

allows the assessment of performance information for all resources which impact
the application will enable users to target their applications to the grid itself,
rather than to specific resources. High-performance schedulers and other sys-
tem components will have an expanded role in which they define the resources
and sophisticated use of performance information for all resources for the grid,
as well as the development of sophisticated means for collecting and utilizing
performance information will enable application developers to target their appli-
cations to the grid itself, rather than to specific resources on the grid and rely
upon high performance schedulers and other system components to identify a
configuration of grid resources that will achieve application performance as well
as perform the necessary selection, allocation accounting, authentication, per-
formance monitoring and other activities required to implement the application
on the grid.

In spite of the difficulty of the grid scheduling problem, promising efforts
are being made. The immense appeal and potential of coordinating networks of
resources to attack our most difficult problems has created enormous excitement
and interest in computational grids from both the scientific and non-scientific
communities. The development of infrastructure and grid-aware applications is
progressing at a rapid pace. In this light, the development of high-performance
schedulers provides a critical component of grid environments, serving as a fun-
damental building block for an infrastructure in which applications must leverage
the deliverable performance of diverse, distributed, and shared resources in order
to achieve their performance potential.

Acknowledgements

I would like to thank my colleague Rich Wolski for many substantive discussions
on this material and comments on the text. I am also grateful to Walfredo Cirne,
John Darlington, Salim Hariri, Ian Foster, Carl Kesselman, Dan Marinescu,
Reagan Moore, Dan Reed, Alexander Reinefeld, Randy Ribler, Jennifer Schopf,
H.J. Siegel, Valerie Taylor, Jon Weissman, and the members of the U.C.S.D.
AppLeS group for useful comments on previous drafts. Finally, I am grateful
to NSF, DARPA, and the DoD Modernization Program for support during the
development of this chapter.

Further Reading
1. [4]

2. [20]

Bibliography

[1]

[2]

[3]

[7]

(8]

J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and
P. Stephan. Dome: Parallel programming in a heterogeneous multi-user
environment. Technical Report TR CMU-CS-95-137, Carnegie Mellon Uni-
versity, April 1995.

P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, and J. Yang. Co-
ordinating heterogeneous parallel computation. Proceedings of the 1996
FEuro-Par Conference.

General Chair B. Miller. Proceedings of the acm/onr workshops on parallel
and distributed debugging.

F. Berman and R. Wolski. The apples project: A status report. In Proceed-
ings of the NEC Symposium on Metacomputing, May 1997.

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G Shao. Application
level scheduling on distributed heterogeneous networks. In Proceedings of
Supercomputing 1996.

N. Bowen, C. Nikolaou, and A. Ghafoor. On the assignment problem of
arbitrary process systems to heterogeneous distributed computer systems.
IEEE Transactions on Computers, 41(3), March 1992.

J. Budenske, R. Ramanujan, and H.J. Siegel. On-line use of off-line derived
mappings for iterative automatic target recognition tasks and a particular
class of hardware platforms. In Proceedings of the Heterogeneous Computing
Workshop, 1997.

Henri Casanova and Jack Dongarra. Netsolve: A network server for solving
computational science problems. Technical Report ¢s-95-313, University of
Tennessee, November 1995.

31

32

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. Cassavant and J. Kuhl. A taxonomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Transactions on Software Engineering,
14(2):141-154, February 1988.

J. Czyzyk, M. Mesnier, and J. More. The network-enabled optimization
system (neos) server. Technical Report MCS-P615-1096, Mathematics and
Computer Science Division, Argonne National Laboratory, October 1996.

DOCT. Distributed object computation testbed.
http://www.sdsc.edu/doct/.

M. Eshagian and R. Freund. Cluster-m paradigms for high-order heteroge-
neous procedural specification computing. In Proceedings of the Heteroge-
neous Computing Workshop, 1992.

Dan Reed et al. Pablo project. http://bugle.cs.uiuc.edu/#overview.

B.P. Miller et. al. The Paradyn Parallel Performance Measurement Tool.
IEEE-COMPUTER, 28(11):37-46, Nov. 1995.

D. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical Report RC 19790 (87657), IBM Research Division, October 1994.

S. M. Figueira and F. Berman. Modeling the effects of contention on the
performance of heterogeneous applications. Proceedings of the High Perfor-
mance Distributed Computing Conference, 1996.

I. Foster, J. Geisler, W. Smith, and S. Tuecke. Software infrastructure for
the i-way high-performance distributed computing experiment. Proceedings
of the 5th High-Performance Distributed Computing Conference, 1996.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputing Applications, 11(2):115—
128, 1997.

R. Freund. Optimal selection theory for superconcurrency. In Proceedings
of Supercomputing ’89.

J. Gehrinf and A. Reinfeld. Mars - a framework for minimizing the job
execution time in a metacomputing environment. Proceedings of Future
General Computer Systems, 1996.

J. Gehring, A. Reinefeld, and A. Weber. Phase and mica: Application
specific metacomputing. Proceedings of the Euro-Par Conference, 1997.

BIBLIOGRAPHY 33

[22] A. Ghafoor and J. Yang. A distributed heterogeneous supercomputing man-
agment system. Computer, 1993.

[23] Globus Resource Allocation Manager (GRAM).
http://www.globus.org/scheduler/grm_spec.html.

[24] A. S. Grimshaw, W. A. Wulf, and the Legion Team. The legion vision of a
worldwide virtual computer. Communications of the ACM, 1997.

[25] B. Hamidzadeh, D. Lilja, and Y. Arif. Dynamic scheduling techniques for
heterogeneous computing systems. Concurrency, Practice and Experience,
7(7), October 1995.

[26] A. Kokhar, V. Prasanna, M. Shaaban, and C. Wang. Heterogeneous com-
puting: Challenges and opportunities. IEEE Computer, 26(6), June 1993.

[27] C. Leangsuksun, J. Potter, and S. Scott. Dynamic task mapping algorithms
for a distributed heterogeneous computing environment. In Proceedings of
the Heterogeneous Computing Workshop, 1995.

[28] D. Lilja. Experiments with a task partitioning model for heterogeneous
computing. In Proceedings of the Heterogeneous Computing Workshop, April
1993.

[29] K. Marzullo, M. Ogg, A. Ricciardi, A. Amoroso, F. Calkins, and E. Rothfus.
Nile: Wide-area computing for high energy physics. Proceedings of the 1996
SIGOPS Conference.

[30] S. Matsuoka, U. Nagashima, and H. Nakada. Ninf : Network based infor-
mation library for globally high performance computing. In Methods and
Applications (POOMA), Santa Fe, 1996.

[31] C. R. Mechoso, J. D. Farrara, and J. A. Spahr. Running a climate model in
a heterogeneous, distributed computer environment. In Proceedings of the
Third IEEE International Symposium on High Performance and Distributed
Computing, pages 79-84, August 1994.

[32] D. Menasce, S. da Silva Porto, and S. Tripathi. Processor assignment in
heterogeneous parallel architectures. Technical Report UMIACS-TR-91-131
CS-TR-2765, University of Maryland, September 1991.

[33] NPACI. National partnership for advanced computational infrastructure,
http://www.npaci.edu.

34

BIBLIOGRAPHY

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. Ribler and D. Reed. The autopilot performance-directed adaptive control
system. International Conference on Suptercomputing, Workshop on Per-
formance Data Mining: Automated Diagnosis, Adaption and Optimization,
1997.

D. Weinstein S. Parker and C. Johnson. The scirun computational steer-
ing software system. In E. Arge, A. Bruaset, and H. Langtangen, editors,
Modern Software Tools in Scientific Computing, 1997.

SARA. Synthetic apperture radar atlas. http://sara.sdsc.edu/.

J. Schopf. Structural prediction models for high-performance distributed
applications. Proceedings of the Cluster Computing Conference, 1997.

J. Schopf and F. Berman. Performance prediction in production environ-
ments. Technical Report CS97-558, U. C. San Diego, September 1997.

S. Selvakumar and C. Siva Ram Murthy. Static task allocation of concurrent
programs for distributed computing systems with processor and resource
heterogeneity. Parallel Computing, 20, 1994.

B. Shirazi, A. Hurson, and K. Kavi. Scheduling and Load Balancing in
Parallel and Distributed Systems. IEEE Computer Society Press, 1995.

H.J. Siegel, John Antonio, Richard Metzger, Min Tan, and Yan Alexander
Li. Heterogeneous computing. In A. Zomaya, editor, Parallel and Dis-
tributed Computing Handbook. McGraw-Hill, 1996.

G. Sih and E. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on
Parallel and Distributed Systems, 4(2):175-187, February 1993.

M. Sirbu and D. Marinescu. A scheduling expert advisor for heterogeneous

environments. In Proceedings of the Heterogeneous Computing Workshop,
1997.

V. Taylor, J. Chen, T. Disz, M. Papka, and R. Stevens. Interactive virtual
reality in simulations: Exploring lag time. IEEE Computational Science
and Engineering, 1996.

H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim,
X. Bing, and B. Ye. The software architecture of a virtual distributed
computing environment. Proceedings of the High-Performance Distributed
Computing Conference, 1997.

BIBLIOGRAPHY 35

[46]

[47]

[48]

[49]

[50]

J. Weissman and X. Zhao. Runtime support for scheduling parallel appli-
cations in heterogeneous nows. Proceedings of the High-Performance Dis-
tributed Computing Conference, 1997.

R. Wolski. Dynamically forecasting network performance to support dy-
namic scheduling using the network weather service. Proceedings of the
High-Performance Distributed Computing Conference, 1997.

R. Wolski. Forecasting network performance to support dynamic scheduling
using the network weather service. Proceedings of the High Performance
Distributed Computing Conference, 1997.

M. Wu and A. Kuppermann. Casa quantum chemical reaction dynamics.
In CASA Gigabit Network Testbed Annual Report, 1994.

Y. Yan, X. Zhang, and M. Yang. An effective and practical performance
prediction model for parallel computing on non-dedicated heterogeneous
nows. Journal of Parallel and Distributed Computing, 35(2), 1996.

