
Chapter 1

Agent Toolkits

1.1 INTRODUCTION

Agent-based applications need a significant amount of enabling infrastructure before even one
message is exchanged between agents. There is a large set of supporting services that must be made
available throughout the agent-based system before the application developer can move on to focus
on the actual application domain, be it eBusiness, Grid computing or Ambient Environments. These
services range from basic communication to discovery, coordination, security, and so on. The sum of
these services come together to provide an environment thatcan support an agent-based system, and
as such can be considered as providing theoperating systemfor agents. Furthermore, there are issues
that cross the bridge between domain-independent infrastructural services and application specific
services. These relate to the architecture of individual agents within the environment and specific
coordination mechanisms that deal with issues such as negotiations [31, 2] or the creation of agent
teams [36] and organisations [37, 20, 46].

Crucially, mainstream development would not be able to practically adopt agent-based ap-
proaches if the underlying operating systems had to be re-written each time or if new agent architec-
tures and complex coordination mechanisms designed for every new application. It is widely accepted
that if agent technologies would move from research labs to mainstream development, as part of
the application developer’s set of technologies for designing and developing distributed applications,
appropriate toolkits were required that would provide the necessary support for developing agents and
deploying the infrastructure required to support agent applications [10, 45]. As a result, the past years
have seen significant efforts being undertaken into the development of appropriate infrastructure for
agent-based systems as well as debate on what are the appropriate concepts to support the develop-
ment of agent-based infrastructure [1]. Furthermore, suchdevelopment efforts often do more than just
designing and developing the enabling infrastructure. They also provide the necessary tools to aid in
the development of applications that operate using that infrastructure. Such tools range from graphical
development environments to management and monitoring services.

1



2 Agents Book

We use the term agent toolkits to describe software that provides the software for deploying
an agent infrastructure as well as aids in the development ofagent applications. Agent toolkits
are intended to provide a significant proportion of the basicbuilding blocks required to support an
operational agent-based system. Ideally, this should allow the application developer to focus on those
issues that are specific to the particular application beingdeveloped instead of issues relating to how
the concepts of agents and multi-agent systems can find practical realization. Of course, like operating
systems development, each toolkit represents the designer’s particular beliefs or philosophy about how
agent-based systems should operate.

The main aim of this chapter is to compare and contrast some ofthe most widely used and
influential toolkits for agent-based systems development.At the same time, it also aims to illustrate
some of the main challenges in developing such toolkits and the variety of methods with which these
challenges have been tackled. As is seen from the reviews within this chapter, the richness of the agent
paradigm makes it especially hard to strike the right balance between what should be implemented
within the toolkits and what must be considered application-specific.

The form of such toolkits is as varied as the large number of toolkits available (Agentlink.org
lists more than 100). Some are integrated development environments that provide a graphical inter-
face; others also include networking capabilities providing some form of middleware, while still more
are simply sets of APIs (application programming interfaces) that a programmer can integrate into
their own solutions. Whatever the case they all necessarily employ some form of agent model and
some even prescribe a certain methodological approach.

The chapter begins by outlining a set of criteria that are used to select the toolkits reviewed in
this chapter, as well as a generic framework for comparing and contrasting them. Subsequently, each
toolkit is presented and the ways it tackles each of the issues identified in the generic agent toolkit
is discussed. Six toolkits are investigated into some detail, but there are also brief outlines of several
other important toolkits. The chapter concludes with an discussion on the main toolkits drawing some
conclusions about the current state of the art and possible future directions.

1.2 REVIEW METHOD

1.2.1 Selection Criteria

The toolkits described here have been selected based on three criteria. Firstly, they should tackle as
wide a range of issues as possible in relation to applicationdevelopment in distributed, heterogeneous
and dynamic computing environments, and should lead to realistic applications rather than the
simulation of application or simplified prototypes. This allows us to touch on as many of the related
subjects as possible and provide a wide range of examples of how similar problems are tackled through
different approaches. Secondly, they should be well documented, and there should be several examples
of their use in significant applications. Examples of the application of toolkits are essential since this
is currently the only way to ensure some appropriate feedback on the viability of the toolkit, beyond



Agent Toolkits 3

Figure 1.1 Generic Toolkit Framework

its conceptual structure. Finally, the toolkits should have a significant user community as evidence of
their acceptance within the wider field of agent-based systems.

1.2.2 Generic Toolkit Framework

In order to evaluate the various toolkits a consistent method of describing them and eventually
comparing and contrasting them is required. Towards this end ageneric toolkit frameworkis proposed,
which imposes a specific structure within which to place and relate the various issues that must be
addressed. This structure is imposed with the caveat that there are a great variety of possible divisions
of concerns and one view may favour a specific set of toolkits and disadvantage others. However, for
the purposes of an effective comparison, it is necessary to commit to one. A division of concerns as
illustrated in Figure 1.1 is employed and detailed below.



4 Agents Book

The first step is to separate the development of individual agents and their interface to the envi-
ronment from coordination and communication between multiple agents. For each toolkit, therefore,
we need to define how a single agent can be constructed and how that agent can perform actions that
will affect its environment. The capabilities that are provided for individual agents are examined at
this stage, such as planning or logical reasoning, as well asthe specific architectures through which
such capabilities are expressed.

When considering multi-agent systems, the focus is on discovery, communication, ontologies
and any coordination mechanisms there may be for the agents.Capabilities provided in this context
are divided into low-level services (e.g. enabling middleware, basic security functions) and high-level
services (e.g. coordination mechanisms, complex securityinfrastructure). Low-level services are, in
essence, generic services that any distributed system infrastructure requires. In this respect some of
the important issues are the ability to transfer messages from one agent to another, low-level discovery
mechanisms, such as the use of multicasting protocols to discover essential infrastructural services,
and security mechanisms for encrypting messages. High-level services are those which are specific to
the operation of an agent-based system. At this level the focus is on agent communication languages
and protocols to support communication, agents that facilitate the discovery of other agents (usually
termed middle agents [14]), ontologies, and coordination mechanisms.

Finally, we investigate the available management servicesfor any resulting applications, relating
to the monitoring of the application and debugging, and the software that is specifically aimed at aiding
the development process such as an integrated development environment, and so on.

1.3 ZEUS

1.3.1 Background

The ZEUS agent toolkit has been under development since 1997at BTexact. It is the result of practical
experience gained while developing two real world multi-agent systems; one for business process
engineering [35] and the other for multimedia information management [42]. At the time of writing,
ZEUS is an open source project available under a license similar to the Mozilla public license and
is written entirely in Java. A dedicated website holds more information about the toolkit, including
manuals and developed examples, as well as links for downloading the toolkit itself1.

According to the ZEUS philosophy, there are five issues that represent the main infrastructural
problems that need to be tackled by an agent toolkit [34].

Information Discovery Information discovery refers to the methods that agents have at their disposal
to find out information about other agents. It is usually resolved by providing services similar to
the White Pages and Yellow Pages we use to find out addresses andtelephone numbers of other

1 http://193.113.209.147/projects/agents/zeus/index.htm



Agent Toolkits 5

people or companies. In ZEUS, this issue is addressed through what are called utility agents
that provide just such services.

Communication For agents to be able to exchange messages, they require a common way of
formulating messages. This is something that agent infrastructure should provide through
the definition of an appropriate agent communication language. ZEUS uses the FIPA agent
communication standard.

Ontology In addition to a common language for formulating messages agents also need common
methods for describing their application domain. Exactly which ontologies are used in any
situation is an application specific issue. ZEUS aids by providing tools for defining ontologies.

Coordination Although it could be argued that coordination is clearly an application-specific task,
ZEUS provides some of the most widely used coordination mechanisms. These can significantly
aid the development process if the provided coordination mechanisms are applicable to the
application at hand.

Integration with legacy software Agent-based systems are often proposed as ideal solutions for
integration of new systems with legacy software. Agents canact as the interlocutor between
legacy software and new systems. ZEUS addresses this issue by providing a means for ZEUS
agents to interface with external programs.

Beyond these issues, the ZEUS design follows a set of basic guidelines: a clear separation
between domain-specific problems and agent-level functionality; a friendly graphical interface for
development; an open and extensible design; and strong support for standards and standardized
technologies as evident by its compliance with the FIPA standards.

1.3.2 Agents

According to the ZEUS perspective, agents are deliberative, so they reason explicitly about which
goals to select and which actions to perform. They are goal-directed, so any action performed is in
support of a specific goal. They are versatile, so they can perform a number of goals and engage in
more than one task. They are truthful, so when dealing with other agents they always state the true
facts. Finally, agents are temporally continuous, so they have a notion of time and can synchronize
based on a clock.

Based on this approach, the ZEUS toolkit provides a set of components that represent specific
agent functionalities such as planning and scheduling algorithms, agent communication language
capabilities (using the FIPA ACL) and communication protocol implementations, ontology support
and coordination.

The assembly of these components readily leads to the construction of what is termed ageneric
ZEUS agent, illustrated in Figure 1.2. Agents can send and receive messages, throughMailbox and
Message Handlercomponents. AResource Databasecomponent has a list of the resources available



6 Agents Book

Figure 1.2 Generic Zeus Agent Architecture



Agent Toolkits 7

to the agent, with the possibility to directly interface with external databases. Through theExecution
Monitor component, agents can interface with external systems suchas legacy systems and also keep
track of actions. TheCoordination Enginecomponent handles the agent’s goals, deciding which to
follow or abandon. It also handles interaction with other agents, based on the available interaction
protocols. Information about other agents, such as name andabilities, is kept in anAcquaintance
Databasecomponent. Finally, thePlanner/Schedulercomponent has the task of producing plans and
the timings for when actions defined in the plans should be performed in reference to specific goals
as requested by theCoordination Engine.

This generic agent has all the rudimentary tools necessary to form the base of an agent
functioning in a variety of domains. Although it is possibleto provide different implementations
for these buildings blocks and therefore obtain different types of generic agents, it does not seem
possible to deviate significantly from the organizational structure of the inter-component relationships.
Nevertheless, since the code for each of these components isprovided as part of the overall Zeus
package, it is possible to configure them in any manner desired or add or replace existing components.
Crucially, the ZEUS development environment assumes this particular configuration for enabling
development via a graphical interface and without direct interaction with these components at the
code level.

1.3.3 Multi-Agent Systems

1.3.3.1 Low-level

All communication in ZEUS is based on message exchange usingthe TCP/IP protocol and ASCII
messages. This is done to allow for maximum portability of agents. As a result, all services are high-
level services that depend on the FIPA ACL and ontologies.

1.3.3.2 High-level Services

Infrastructure support for a multi-agent system in ZEUS revolves aroundutility agents. The term
utility agent is used to differentiate between those agentsthat provide supporting infrastructure and
those that perform the actual application tasks, which are called task agents. There are two types of
such utility agents, as follows.

TheAgent Name Server(ANS) maintains a registry of all known agents (or White Pages) and
provides a mapping between an agent.s name and its logical network location. It is necessary to have
at least one ANS since without it no agent would be able to communicate with another. In larger
applications it may be necessary to have a number of ANS agents in order to support all the agents.
However, there is always a root ANS agent to bootstrap the system, and other utility or task agents
must be provided with the network address of this agent. Thisroot ANS agent also provides a system-
wide clock that other agents refer to so that they can synchronize on registration with the ANS. The



8 Agents Book

Facilitator agent maintains a list of abilities for those agents registered with it (or Yellow Pages). The
Facilitator agent is necessary in order to deal with dynamicchanges in the capabilities of agents.

The operation of a multi-agent system starts with the registration of each agent with the ANS.
Subsequently, agents can retrieve the network address of other agents they wish to communicate with
from the ANS. This implies that the agents have prior knowledge of other agents. names and abilities
and just need the actual network address. Alternatively, ifthey do not have this prior knowledge,
the application requires a Facilitator, which maintains its information by querying the ANS about
registered agents and then queries each agent in turn about its abilities. This approach for discovery
of other agents restricts the flexibility of the system to theneed for a root ANS agent, so some prior
knowledge will always be required. Furthermore, the designof the Facilitator is rudimentary and does
not allow for more sophisticated behaviour like the dynamicregistration and de-registration of agent
capabilities. These are issues that must be handled at the level of the application design, according to
the needs of each application.

Agent communication in ZEUS is based on the exchange of FIPA ACL messages. This is
supported through specific implementations of the Mailbox and MessageHandler components that can
parse such messages and handle the protocols relating to their receipt and transmission. The content
of messages is formulated according to the ontologies describing the domain of operation of the
agent. Ontologies are supported through the Ontology Database component, which allows developers
to equip agents with ontologies that are then used in the formulation of plans and goals and the
description of resources.

Coordination is supported through a variety of approaches.The central approach is based on
variations of the contract-net protocol [?], where there is a Call For Proposals by an Initiator agent
followed by replies from Responding agents, and a negotiation phase that can proceed based on a
number of strategies. Furthermore, ZEUS allows for the definition of roles, such as peer, subordinate,
and superior. Through the definition of roles, multi-agent systems can be given an organizational
structure that can aid coordination between agents. Finally, ZEUS allows for multi-agent planning by
enabling each agent to factor into its planning responses tasks that depend on other agents.

1.3.4 Agent-building software

Perhaps the main strength of ZEUS is the availability of a graphical interface that allows for the
development of an entire multi-agent system application with almost no need to code anything except
the interfaces to external systems. Furthermore, this development environment also suggests a certain
method for the development of applications.

Development begins with the definition or import of the ontologies that are to be used in the
application. AnOntology Editoris provided for this. Then, through theZEUS Agent Editor, each task
agent is configured by defining planning parameters, tasks, available resources, acquaintances, roles
and interaction protocols. Agents are then linked to external programs or resources, such as databases
and legacy software. Finally, the utility agents are configured. At this stage, code generation for each
agent can take place and the agents can be distributed on the platforms from which they will operate.



Agent Toolkits 9

1.3.5 Management Services

ZEUS enables the monitoring and control of a multi-agent system through a variety of perspectives,
using utility agents that interrogate other agents about their operation and then collate and present
the information in an appropriate manner. The Society Tool provides visual information about the
exchange of messages between agents, the Report Tool shows the progress on the main tasks and
execution state of each sub-task, the Agent Viewer allows the monitoring of the internal state of each
agent, the Control Tool allows this state to be altered and the Statistic Tools collects statistics on
individual agents and the society as a whole.

The sum of these services provides a powerful tool for the debugging of applications. However,
by its nature, it creates a significant amount of traffic within a system and places resource demands
on each individual agent. Furthermore, certain types of information, such as the internal state of each
agent, may not be available at all in an environment in which agents come from, or represent, different
organisations. These services, therefore, should be considered as viable in settings where the multi-
agent system is relatively closed, where security concernsare low and where the number of agents is
not too large.

1.4 RETSINA

1.4.1 Background

RETSINA (Reusable Environment for Task Structured Intelligent Network Agents) is a multi-agent
systems toolkit developed over a period of years, and at least since 1995, at the Intelligent Software
Agents laboratory of Carnegie Mellon University’s RoboticInstitute. RETSINA has been used
extensively in a range of applications, such as financial portfolio management, e-commerce, and
mobile communications. The toolkit, available as the RETSINA Agent Foundation Classes, can
operate in Windows, Unix and mobile platforms, and uses a variety of languages (Java, C++, C,
Python, Lisp, Perl) that are tailored to the specific environments. However, the main infrastructural
components are written in Java. A limited version of RETSINAis freely available for non-commercial
use, under license by Carnegie Mellon University2.

The design of RETSINA is based on two central assumptions about agent applications devel-
opment [41]. Firstly, multi-agent systems infrastructureshould support complex social interactions
between agents through the provision of services that are based on predefined conventions on how
social interaction will take place. These predefined conventions refer, mainly, to the use of a common
communication language, protocols and ontologies. From the perspective of the multi-agent system
infrastructure, agents are seen as black boxes, but they areexpected to be able to participate in social

2 http://www-2.cs.cmu.edu/ softagents/



10 Agents Book

Figure 1.3 Retsina Agent Architecture

interactions based on these conventions. Secondly, agentsin a multi-agent system engage in peer-to-
peer relationships. Any societal structures, such as hierarchies, should emerge through these peer-to-
peer interactions, and should not be imposed by a centralized approach. This is in recognition of the
need to sever any ties from centralized control, and allow for truly distributed structures to emerge.
These assumptions for multi-agent systems development lead to a very clear separation between indi-
vidual agents and the supporting infrastructure.

1.4.2 Agents

An agent in RETSINA is understood, in abstract terms, as a standalone survivable piece of code with
communicative and intelligent behaviour. In real terms, itis understood as any piece of software that is
able to interact with other agents, and with the RETSINA multi-agent system infrastructure, following
the conventions defined in RETSINA.

All agents are derived from aBasicAgentclass, which provides the main functions required
for operation in a RETSINA multi-agent system, such as message-handling, logging, visualization,
and discovery of other agents. This agent-specific functionality is separated from operation within
specific operating environments by placing agents in anAgentShell, which provides the necessary
interfaces for interaction with the underlying operating system. Furthermore, the AgentShell provides
basic management functionalities such as starting up or shutting down the agent and a timer module.

The reasoning and planning for agents is handled by the RETSINA Agent architecture, shown
in Figure 1.4. It is based around the interactions between aCommunicationmodule that handles
messages from other agents, aPlanner that derives plans base on a provided set of goals and a plan



Agent Toolkits 11

library, aSchedulerthat uses the output from the Planner to schedule when tasks will be performed,
and anExecution Monitorthat handles the actual performance of actions. These modules are
supported by appropriate knowledge and beliefs, which are divided intoObjectives, Task Structures,
Schedules, Current Actionsand aDomain Facts and Beliefs Database.

RETSINA divides agent functionality into four main classesthat are built on top of the
BasicAgent and represent specializations of the basic architecture to deal with different types of
functionalities.

• Interface Agentsinteract with users by receiving inputs and displaying results.

• Task Agentscarry out the main problem-solving activities by formulating plans and executing
them by coordinating and exchanging information with otheragents.

• Information Agentsinteract with information sources such as databases or web pages. The Task
agents provide the queries, and the information agents are specialized in retrieving the required
information by interfacing with databases, the web, and so on.

• Middle Agentsprovide the infrastructural support for the discovery of services between agents.

Although it is possible for developers to provide their own extensions of the BasicAgent class,
it is suggested that application development begins from the specialized extensions already provided.

1.4.3 Multi-Agent Systems

1.4.3.1 Low-Level Services

Communication in RETSINA is facilitated by two types of low-level services. Firstly, the RETSINA
Communicator module in individual agents enables agent-to-agent communication and abstracts
beyond the underlying physical transmission layer and network type. This allows developers to
focus on communication at the agent level. Secondly, dynamic discovery of high-level infrastructure
services is enabled via the use of a multicast protocol. Onceagents enter a multi-agent system
application, they multicast their presence and can be detected by high-level infrastructural services
that then communicate directly with them. This multicast discovery is based on the Simple Service
Discovery Protocol, which was developed as part of the Universal Plug-n-Play3 ad-hoc networking
effort. It is a lightweight protocol that is intended to be used by service providers to announce the
availability (or otherwise) of a service, and by service requesters to query for specific services. In
RETSINA, a reply to a multicast query is a TCP/IP address and port number that can be used for
communication with the discovered service.

The RETSINA multi-agent system provides some basic security services for the authentication
of agents, and for the protection of communication between agents. A Certificate Authority system
is used for identity protection, through which each agent isguaranteed by a trusted authority.

3 http://www.upnp.org/



12 Agents Book

Communication between agents is protected through the use of a public/private key system and
support for the SSL protocol.

1.4.3.2 High-Level Services

RETSINA views infrastructure as something that should be cleanly separated from multi-agent system
applications and individual agent behaviour. As a result there is no support for specific coordination
mechanisms, organisational structures or any regulatory policies as this are deemed to be application
specific issues. However, although there is no support for specific coordination mechanisms, protocol
specification and interpretation are supported through a protocol engine and language that is based on
finite I/O automata.

Agents exchange messages that are divided into two parts. Firstly, an envelope defines the
sender, receiver, thread of conversation, ontology and ACLused. Within this envelope, content could
be specified using any ACL and appropriate ontologies. RETSINA directly supports the KQML
ACL, by enabling agents to parse KQML messages, and an ontology derived from the Wordnet
Ontology [19]. This functionality is implemented in the BasicAgent.

The basic high-level infrastructural support is provided through Agent Name Servers. An
ANS maps agent identifiers to logical network addresses. There is also support for multiple name
servers and redundant name servers in order to provide robustness and fault redundancy. Each agent
is provided, through the BasicAgent class, with an ANS component that enables registration, de-
registration and lookup for name servers. Agent name servers can be discovered dynamically through
multicast requests. As a result, a multi-agent system can survive without the presence of an ANS, and
without the need for prior knowledge of an ANS.

Middle agents provide the second level of infrastructure support. The main type of middle agent
is theMatchmaker, which provides a mapping between agents and services. Thismapping is created
through advertisements that matchmakers receive from service provider agents. The Matchmaker
then matches a request to service providers and leaves them to handle all subsequent interactions.
Both the advertisements of service availability, and the requests for services, are described using
a specialized language, called LARKS (Language for Advertisement and Request for Knowledge
Sharing) [40]. LARKS is required to provide a standardized description of each service, such as input
and output, pre and post-conditions, the context, and a textual description of the service. The result
is a KQML message that contains a LARKS advertisement, whichuses the appropriate application
ontology to describe the available service. The RETSINA toolkit also provides Broker and Blackboard
middle agents. Brokers completely hide service providers from the service requestor by mediating all
interactions. Blackboard agents simply provide a basic blackboard service where requests are posted
for everyone to see, but capabilities are only known by the service providers who can then choose to
reply to service requestors directly.



Agent Toolkits 13

1.4.4 Agent Building Software

The RETSINA Agent Foundation Classes are integrated withinthe Microsoft VisualStudio develop-
ment environment. A RETSINA Agent AppWizard is available that provides some basic support for
agent development, but there is no step-by-step guidance and the bulk of development involves direct
interaction with code.

For debugging, RETSINA provides a useful graphical tool that enables developers to receive
compose and send KQML messages to agents in order to test their ability to respond to messages.

1.4.5 Management Services

RETSINA considers management as an issue that should be actively supported through the multi-
agent system infrastructure. For this purposes it providesthree types of management. TheLogger is
a service that is able to record the main state transitions between agents for inspection by developers.
Agents provide this information through the Logger module that is implemented in the BasicAgent
class. This logging service can be connected to anActivityVisualizer, which provides a graphical
representation of the activity in a RETSINA application. Finally, aLauncherservice is provided that
can coordinate the configuration and start-up of infrastructural components and agents on diverse
machines, platforms and operating systems from a single control point.

A graphical tool is available specifically for managing Agent Name Servers, which allows the
direct inspection of the information currently registeredwith an ANS and the configuration of the
ANS itself.

As mentioned earlier, these tools are only effective in whatare very controlled situations, where
all agents fall under the same organizational domain, and where there are no issues concerning the
misuse of information on the state of agents.

1.5 IMPACT

1.5.1 Background

IMPACT (Interactive Maryland Platform for Agents Acting Together) is a joint research project
between the University of Maryland in the USA, Bar-Ilan University in Israel, the University of
Koblenz-Landau in Germany, the University of Vienna in Austria, and the University of Milan in Italy.
IMPACT has been used extensively in military applications,such as in the visualization and analysis
of army logistics operations, the simulation of combat complex combat situations and the provision
of support for controlled flight. The development environment and the core of the infrastructural
components are written in Java. At the time of writing IMPACTwas not available for use outside the
project developers, however more information , including user manuals, can be found online4.

4 http://www.cs.umd.edu/projects/impact/



14 Agents Book

The view of what constitutes appropriate infrastructure support and software agent development
is illustrated through 10 desiderata that the IMPACT project aims to meet [39].

• It should always be possible to agentize non-agent programs.

• The methods in which data is stored should be versatile in recognition of the current diversity
in data storage mechanisms.

• The theory of agents should be independent from the specific actions any agent may perform.
Such actions are a parameter of the agent.

• The decision-making mechanisms of each agent should be clearly articulated in order to enable
modification at any point of an agent’s life.

• It should be possible to reason about beliefs, uncertainty and time.

• Security mechanisms are critical to protect the infrastructure from malicious agents, and to
protect agents from other agents assuming false identities.

• There should be some method of providing guarantees as to theperformance of agents.

• A theory of agents needs to be accompanied by an efficient implementation and should be such
as to allow for an efficient implementation.

• Infrastructure reliability is paramount.

• Testing a theory through practical applications is essential.

1.5.2 Agents

Agents in IMPACT are divided into two parts:

• the software code, which consists of data types and functions that can manipulate those data
types; and

• the wrapper, which provides the actual intelligent agent functionality.

The software code could be any software program, and represents the actual interface to the
environment through which the agent effects change in it. The wrapper represents the actual agent
functionality that is able to manipulate the software code according to the behaviour dictated by the
wrapper’s programming. This division is the IMPACT solution to the requirement for being able to
agentify any program through a wrapper.

The wrapper is further divided into a set of basic componentsthat come together to provide the
IMPACT agent architecture, illustrated in Figure 1.4. All actions are regulated by theAgent Program
that specifies which actions an agent should or should not perform in specific situations; the Agent
Program defines what IMPACT terms the agent’sOperating Principles. The Agent Program itself is



Agent Toolkits 15

Figure 1.4 IMPACT Agent Architecture

defined according to anAgent Program Languagethat allows for a wide set of regulatory modalities
(Do, Obliged, Forbidden, Waived and Permitted). AnAction Basecomponent holds descriptions of
all the actions an agent can perform along with the preconditions for the execution of actions.

It is important to stress that IMPACT takes a wider view of what represents an action than many
others. Everything an agent does, including tasks that are traditionally taken for granted or considered
an integral part of the architecture, such as planning or timing, are considered actions that must be
explicitly defined within the Action Base. Actions can be performed concurrently, and are regulated by
aConcurrent Action Mechanismcomponent that decides, based on the current agent state anddesired
actions, whether a composite action can be defined that will achieve the desired actions. Concurrency
is also regulated by a set ofAction Constraintsthat explicitly define when certain actions cannot be
performed concurrently. A set ofIntegrity Constraintsspecify which agent states are legal in a given
context and ensure that the agent does not perform any actions that may violate these constraints. A
Heterogeneous Query Languagecomponent provides the interface with the software code part of the
agent. Finally, an agent is equipped withMetaknowledgethat includes descriptions of what services
the agent is able to provide, and beliefs about other agents,and aMessage Boxcomponent that handles
communication with other agents.

The most interesting feature of the IMPACT agent architecture, which clearly distinguishes it
from other architectures, is the emphasis on ensuring that the agent operates within very well defined



16 Agents Book

parameters. The agent architecture clearly stipulates what actions are allowed, integrity constraints,
action constraints, and so on. This provides a multi-layered solution to the problem of being able
to guarantee “correct” behaviour. Furthermore, the development process of agents in IMPACT also
includes several consistency checks that ensure there are no conflicting rules, such as both forbidding
and permitting an agent to do something. We will not elaborate the details of these consistency
checks here, but the interested reader can refer to the extensive articles on IMPACT elsewhere (eg.
[18, 16, 17]).

1.5.3 Multi-Agent Systems

1.5.3.1 Low-level Services

Agents in IMPACT operate within a dedicated platform, called an Agent Roost, which provides
network connectivity and manages the agents operating within it. It is written in Java and uses Java
Remote Method Invocation (RMI) to communicate with other Agent Roosts, so IMPACT agents can
operate from any platform that can handle Java RMI. The AgentRoost handles the incoming and
outgoing messages for each agent within it and canwakeagents when a message arrives so that they
can process it.

Communication with systems outside the Agent Roosts is achieved through a generic Connec-
tions module, which is then specialized to enable connections to specific systems, such as Oracle
servers.

1.5.3.2 High-level Services

Infrastructure support is based on IMPACT Servers, which provide Yellow Pages services, a type
service, a thesaurus service and a synchronization module.All agents providing services must register
with the IMPACT Server. Services are described based on a standardized HTML-like language.
The service specification requires a service name in terms ofa verb-noun expression (e.g.rent :
car[Japanese]), input and output variables, and service attributes (e.g.cost, response time, etc).
Only authorized developers can introduce new agents in the system and the process is semi-automatic,
since the developer can use a graphical interface to describe the services provided by the agent at the
moment of its introduction into the system.

The Yellow Pages service is a matchmaking service that matches service requests to service
providers. This matchmaking service is enhanced through a similarity matching algorithm that is able
to match a service request to a service provider even if the service request is not defined in the precise
terms with which the service provision has been defined. For example, a request for acar purchase

can be matched to acar seller service provider. This is achieved by maintaining two term hierarchies
within the IMPACT Server, one for nouns and one for verbs, andan agent table. The term hierarchies
contain sets of synonyms that can be used to compute the similarity between two terms. The agent
table contains, for each service provider, a noun term, a verb term and the agent name. If there is



Agent Toolkits 17

no direct match between the service request and an entry in the agent table, the term hierarchies
are used to discover if there is another service that is sufficiently similar to the service request. The
term hierarchies can be updated each time a new service type is registered. This approach provides a
more robust service to agents since it can anticipate inconsistencies between service descriptions and
service requests, and deal with them.

The type and thesaurus services are, in essence, services insupport of the Yellow Pages service.
The type service allows developers to define relationships between types that can then be used to
aid the service discovery process. For example, ajapanese car type can be defined as a sub-type
of car. The thesaurus service allows the matchmaking algorithms to discover that the termcar and
automobile are synonyms and update the relevant term hierarchy.

The issue of reliable infrastructure is tackled by mirroring IMPACT Servers, so as to ensure that
if one server is not available, others can provide essentialservices. The synchronization module has
the task of ensuring that updates in one server are mirrored to other servers.

The issue of communication between agents in IMPACT is not considered as something that
should be stadardized at the infrastructure level. The Message Box is intended to parse any message
and allow the rest of the agent architecture to handle the message in a standardized way. As a result,
it is up to the application developer to provide an appropriate implementation of the Message Box
component. There is also no specific support for coordination between agents.

1.5.4 Agent Building Software

The IMPACT toolkit provides an agent development environment, called AgentDE, that allows
developers to define every aspect of the agent that forms partof the agent wrapper. The AgentDE
can maintain a library of actions, agent programs, service descriptions, and other definitions used
during development so that they can be quickly re-called andreused. Various connections to external
databases are also defined using the AgentDE. Once an agent has been defined, the AgentDE can
perform a number of checks to ensure that the agent fulfils a number of requirements for consistency
and safety. It then produces a binary file, called the agent metadata file (a serialized set of Java objects),
which must then be copied to the target Agent Roost initialization directory. There it is deserialized
by the Agent Roost and placed into operation. A more automated process, where the AgentDE can
directly communicate with active Agent Roosts and transferthe agent metadata file over a network
connection is under development.

1.5.5 Management Software

Management in IMPACT revolves around managing Agent Roosts. It is possible to access both
through graphical interfaces. The Agent Roost interface allows developers to monitor the state of
individual agents in the Roost and the incoming and outgoingmessages in the Roost.



18 Agents Book

1.6 JADE/LEAP

1.6.1 Background

The JADE (Java Agent Development Environment) toolkit provides a FIPA-compliant agent platform
and a package to develop Java agents. It is an open-source project distributed by TILab (Telecom
Italia Labs) that has been under development since 1999 at TILab and through contributions by its
numerous users. At the time of writing, version 3.01b1 is available, and it implements the FIPA2000
specifications. The platform has undergone successful interoperability tests for compliance with the
FIPA specifications.

LEAP (Lightweight Extensible Agent Platform) is the resultof a research project funded by
the European Union and undertaken by a consortium of organisations coordinated by Motorola and
including Broadcom, BT, TILab, Siemens, ADAC, and the University of Parma. The aim of the project
was to provide an agent platform that is suitable for limitedcapability devices, such as PDAs and
mobile phones.

The relationship between the two projects is that LEAP is a lightweight implementation of
the core functionalities of the JADE FIPA platform, and can be used in conjunction with the JADE
libraries for agent development. The latest release of JADEintegrates LEAP so as to provide a unique
toolkit that enables the development of FIPA-compliant agent applications on devices ranging from
limited capability mobile devices to desktop computers.

The JADE toolkit has been widely adopted throughout the world, and there is an active com-
munity that contributes to its development and offers additional tools. Some examples of applications
involving JADE are the development a multi-agent information system supporting the consultation of
a corporate memory based on XML technology, communicating agents for dynamic user profiling,
collective information dissemination and memory management, and agent-based health care services.

In a relatively recent development a Jade Board has been established, governed by Telecom Italia
Labs and Motorola, which is open to all companies and organisations that have an interest in using
and further developing JADE. More information about the Jade Board, additional documentation, and
links to downloading the JADE toolkit can be found online5.

1.6.2 Agents

The JADE toolkit facilitates the development of agents thatcan participate in FIPA-compliant
multi-agent systems. It does not define any specific agent architectures but provides a basic set
of functionalities that are regarded as essential for an autonomous agent architecture [6]. These
are derived by interpreting the minimum concrete programming requirements for satisfying the
characteristics of autonomy and sociality. Autonomy is interpreted as an implementation of agents as
active objects (i.e. with their own thread of operation). The requirement for sociality leads to enabling

5 http://sharon.cselt.it/projects/jade/



Agent Toolkits 19

Figure 1.5 Jade Agent Components

agents to hold multiple conversations on a peer-to-peer basis through an asynchronous messaging
protocol.

This basic single agent infrastructure is provided throughan Agent class, which developers
then extend to provide their own implementations of agents.Programs extending the Agent class
operate within JADE containers that manage the agent lifecycle. Agents can be started, stopped,
removed, suspended and copied. Furthermore, each agent hasaccess to a private message queue,
where messages are stored until the agent chooses to retrieve them, and access to a set of APIs that
allows the formulation of FIPA ACL messages. An outline of the main aspects of the agent class are
illustrated in Figure 1.5.

Specific agent actions take place through a concurrent task model. Each task, or behaviour
as it is termed in JADE, is an extension of the Behaviour classof the JADE toolkit. Each agent
has a behaviour task list, and the Agent class provides methods for adding or removing behaviours.
Once an agent is placed within a container and set into operation, behaviours are executed based on a
round-robin non-pre-emptive scheduling policy. Of course, complex tasks require a more sophisticated
scheduling of behaviours as well as the conditional execution of behaviours. JADE provides models
that are divided along the lines of Simple behaviours, to address tasks not composed of sub-tasks,
and Composite behaviours, to address tasks made up through the composition of several other tasks.
There are also cyclic and one shot implementations of Simplebehaviours, and parallel, sequential and
finite state machine implementations for Composite behaviours. Development is further aided by the
provision of specific implementations of Behaviour to handle basic tasks such as receiving or sending
messages, and support for the set of interaction protocols defined by FIPA.

The LEAP core for JADE offers a lightweight version of the JADE container that can operate
on PDAs. LEAP agents use a device-specific Communicator module, which handles the specific
connectivity protocols of the device and network at hand. Agents for limited devices use the same
task-based model as JADE agents, within the limitations of the device at hand.



20 Agents Book

1.6.3 Multi-Agent Systems

1.6.3.1 Low-level Services

Multi-agent systems in JADE can be divided into three first-order components. A JADE Platform is
made up of a number of Containers that operate on individual machines. Each Container can have a
number of Agents within it. A Platform can be thought of as defining a common application domain,
and agents within this platform have access to the same infrastructural services. Containers handle
the communication between agents and access to Platform services. Communication within JADE
platforms is based on JAVA RMI.

Communication between platforms is based on the FIPA-defined Message Transport Protocol
(MTP) over which ACL messages can be sent. The actual implementation of the MTP can vary, and
FIPA provides specifications for a number of different technologies. As a result, JADE provides a
pluggable MTP framework along with concrete implementations that include an Internet Inter-Orb
Protocol (IIOP) and an HHTP implementation.

Agents on mobile devices can communicate within the JADE platform through a gateway
workstation that provides a translation of messages comingfrom limited devices into either Internet
InterOrb Protocol (IIOP) or Java RMI.

1.6.3.2 High-level Services

The high-level services offered by JADE follow the FIPA specifications, so we will avoid a long
description here as the specifications are covered in another chapter. Each JADE platform has access
to an Agent Management System, which manages the platform and supervises access to it as well
as providing White Pages services. Yellow Pages services areoffered by Directory Facilitators and
several can exist within a FIPA platform. JADE provides implementations of the SL-0 content
language and Agent Management Ontology that is used by the AMS and DF services to communicate.
Finally, FIPA-defined interaction protocols are also supported.

JADE supports the development of user ontologies through a Java package that offers a
set of classes providing the common high-level terms for anyontology, such as Action, Result,
TruePreposition, etc.

Agents in JADE can take advantage of support for mobility to move between containers. At
the time of writing, only inter-platform mobility is supported. Agents can be completely removed
from one container and placed in another, or they can be cloned across many containers. Mobility
introduces the notion of location and other related issues,so JADE provides a mobility ontology that
allows agents to describe such concepts.



Agent Toolkits 21

1.6.4 Agent building software

JADE is a set of APIs that can be use to deploy an agent platformand develop agents. No software
is provided to guide this process. However, there is extensive documentation of the APIs, a detailed
Programmers Guide, and a wealth of examples.

1.6.5 Management Services

A significant number of utilities are provided for managing and monitoring the activity of an agent
platform. A Remote Monitoring Agent (RMA) provides controlof the platform lifecycle and all the
registered agents within the platform. It provides a GUI which, amongst other functions, allows
access and control to individual agents, such as starting and stopping them and sending custom
ACL messages to them. Through the RMA, a separate GUI that allows management of Directory
Facilitators can also be launched. A Dummy Agent utility is agraphical tool that enables developers
to perform all the main activities any agent can perform (i.e. behave like an agent in the platform).
As such, it is a useful debugging tool that can help indicate where communication between agents is
not developing in the desired manner. A Sniffer Agent allowsthe monitoring of messages exchanged
between a group of agents. Finally, an Introspector Agent provides information about and control of
the lifecycle of a single agent.

1.7 JACK

1.7.1 Background

JACK is an agent development environment produced by the Agent Oriented Software Group, which
has its headquarters in Melbourne, Australia. JACK was firstreleased in 1998 and is currently
at Version 4.0. It has a wide user base, both in commercial andacademic environments. It is
commercially available, with special licenses for research purposes. A demonstration version is freely
available.

There are two guiding principles underpinning the development of JACK. Firstly, agent-oriented
development can be thought of as an extension of object-oriented development. As a result, JACK
operates on top of the Java programming language, acting as an extension that provides agent-related
concepts. JACK developers compare it to the relationship between C and C++, where the latter is
an extension of the former for providing object-oriented concepts. Secondly, agents in JACK are
intelligent agents in that they are based on the Belief-Desire-Intention architecture. JACK is also
supportive of agent standards can FIPA-compliant systems can be produced using JACK.

The JACK development environment can be divided into three main components. The JACK
Agent Language is a superset of the Java language, and introduces new semantical and syntactical
features, new base classes, interfaces, and methods to dealwith agent-oriented concepts. The JACK



22 Agents Book

Compiler compiles the JACK Agent language down to pure Java,so that the resulting agents can
operate on any Java platform. Finally, the JACK Agent Kernelis the run-time program within which
JACK agents operate, and provides the underlying agent functionality that is defined within the JACK
Agent Language.

More information about JACK including documentation and access to the toolkit itself can be
found online6.

1.7.2 Agents

Although JACK can support a wide variety of agent architectures, the default architecture, and the
one that is clearly supported through appropriate conceptsin the JACK Agent Language, is the BDI
architecture.

The Agent base class is the central artefact of the JACK Agentlanguage. Through it, developers
define beliefs, plans, external and internal events and capabilities. This class is intended to be extended
to implement application specific agents. Agents schedule actions, including concurrent actions, using
the TaskManager. A timer can provide different notions of time, such as a real-time clock (through the
system clock) and a dilated clock that can be fast-forwarded, slowed down or even stopped. Finally,
the Agent class provides support for sending and receiving messages.

Beliefs represent the knowledge that an agent possesses about the world. A BeliefSet is a
database of beliefs that represents beliefs through a first-order, tuple-based relational model. Although
agents can store information outside a BeliefSet, it is recommended that BeliefSets are used, since
they can provide logical consistency, automatic update of beliefs based on events, and allow powerful
queries on beliefs.

Plans are sequences of actions that agents execute on recording an event. Each plan in JACK
corresponds to a single event, and multiple plans can be declared to handle the same event. Reasoning
capabilities are provided to aid in outlining the required decision-making for deciding which plan to
perform when an event occurs. This reasoning is based on the plan.s relevance to a given situation and
permitted context based on the agent’s beliefs.

Events within the agent architecture are divided into: external events (e.g. messages from other
agents); internal events, initiated by the agent itself; and motivations. Motivations are described as
goals that the agent wants to achieve. Events kick-start action in JACK by activating the required
plans that may, in turn, raise other internal events or causeexternal events.

Capabilities provide means for structuring a set of reasoning elements into a coherent cluster that
can be plugged into agents. This enables the creation of libraries of capabilities that the developer can
use to provide agents with particular functionality. Capabilities can contain within them the relevant
plans, beliefs and events, as well as the final code that will implement the actions required by the plans.
Through this notion, JACK promotes a high level of code re-use and the incremental development of
agents.

6 http://www.agent-software.com



Agent Toolkits 23

1.7.3 Multi-Agent Systems

1.7.3.1 Low-level Services

Networking capabilities in JACK are based on UDP over IP, with a thin layer of management on top
of that to provide reliable peer-to-peer communications.

1.7.3.2 High-level Services

Agent communication between agents is handled by the JACK Kernel. Agents can exchange messages
by specifying the name of the agents they wish to communicatewith, assigned at the time of creation,
and the JACK Kernel takes care of routing the message to the appropriate agent. If an agent resides
on a remote host then, along with the agent name, a portal namemust be specified, to indicate to
the JACK Kernel the logical network address of the remote host. Finally, a rudimentary Agent Name
Server is provided that can provide the required portal namein case it is not known. As mentioned
earlier JACK supports interoperability with other FIPA-compliant agent systems, and to this ends the
FIPA ACL is supported. However, there is relative flexibility to change communications languages
since the MessageEvent objects simply define the message as astring.

JACK provides support for coordination between agents based on Team Oriented Programming.
This coordination mechanism views a group of agents as a whole and assigns goals to a team of
agents, which must then coordinate their activity to achieve the team goal. In order to enable this,
JACK offers a plug-in to the main JACK development environment called SimpleTeam. It does not
specify specific team management techniques (e.g. hierarchical) but allows developers to assign roles,
specify concurrency constraints and define team plans.

1.7.4 Agent-building software

JACK provides a comprehensive, graphical agent development environment. A high-level design
tools allows a multi-agent system application to be designed by defining the agents and relationships
between them, in a notation similar to UML. Details of individual agents can also be specified at this
level. This design can then be used to generate code outlines. A plan-editor allows plans to be specified
as decision diagrams. Along with these high-level tools, there is a component browser that allows
developers to specify the actual agent code using the JACK Agent Language. Finally, a plan tracing
tool and an agent interaction tool allow developers to visualize the monitoring of an application.

1.7.5 Management Services

An application can be monitored through an Agent Tracing Controller. This graphical tool allows a
developer to choose which agents to trace and provides a visual representation of the agents stepping
through their plans.



24 Agents Book

1.8 LIVING MARKETS

1.8.1 Background

The living marketstoolkit is produced by Living Systems AG, which have their headquarters in
Donaueschingen. The company has been developing agent-based solutions since 1996 and their toolkit
is being used in a variety of settings including complex trading processes, logistics and distribution,
and voice and bandwidth trading and settlement. They have a wide client base and have won several
awards including Leading Technology Pioneer as recognisedby the World Economic Forum and Best
German Internet Company.

The living marketstoolkit is divided into a base agent server, which handles the application
domain independent issues relating to agent-based development, and specific solutions for specific
markets (ranging from transportation to intra-enterpriseproduction and deal flow optimisation) are
built on top of the agent server. Similarly to JACK, agent-based development inliving markets
is considered as a natural progression from object-oriented techniques to role and goal-oriented
programming techniques. As such, the adoption of an agent-based approach to building systems
represents aparadigm shiftin dynamic systems development, rather than simply an alternative pattern
of object-oriented development. The base agent server is programmed using Java and the default
communication is done through Remote Method Invocation (RMI). However, there is also support for
a range of industry standards such as XML, Secure Sockets Layer (SSL), Hypertext Transfer Protocol
(HTTP), and the Common Object Request Broker Architecture (CORBA).

Living Systems is primarily a solutions company, so they adapt their toolkit to specific customer
needs as opposed to marketing the toolkit directly. As a result it is harder to identify specific features,
as we have done with other toolkits as there is a range of features adapted to and developed for
specific markets. However, it still represents as interesting show case of what is apragmaticagent
system. More information about the company and the toolkit can be found online7.

1.8.2 Agents

From an abstract level point of view agents inliving marketsare understood as proactive, goal-directed
entities able to perform actions and perceive the environment. They have specific domain expertise
and may adopt roles. Agents, similarly to RETSINA, are specialised into four generic types according
to functionality.

Application agents These are domain specific agents and represent the main core functionality of
the system.

Integration agents These agents are dedicated to integrating the rest of the system with existing
systems outside of theliving marketsenvironment.

7 http://www.living-systems.com



Agent Toolkits 25

Interface agents Interaction with the system by people is handled through theinterface agents.

System Agents These are the agents that handle the management of theliving marketssystem itself
performing tasks such as performance monitoring and load balancing.

At the practical, implementation level agents generally operate within the agent base server,
called LARS (living agents runtime system), and communicate by exchanging XML messages.
Within LARS servers agents occupy their own thread of operation so multiple agents can operate
concurrently.Remote agentsthat operate outside a LARS server (e.g. on a mobile client) are also
supported, albeit within the limitations of the environment within which they operate. In reflection of
the application ofliving marketsin financial domains there is strong support for message encryption
using the RSA encryption algorithm8 and the Blowfish key algorithm9. Once decrypted the XML
messages are stored in a message box that can then be processed by the agent based on a set of logic
rules, the agent’sstandard logicthat defines its basic behaviour. This handles application domain
independent activities such as requests on the status of theagent or requests for moving to another
LARS server. Theliving marketagents also have a set of business rules, which define thebusiness
logic. This is where the logic for dealing with specific business processes in encoded. The business
logic interfaces with apersistence layerthat can allow agents to store or retrieve information from the
file systems or databases.

Beyond the distinction between business and standard logicthere is relative freedom in devel-
oping agent architectures within theliving markets. The business rules can be coded to access a set
of capabilitiesmade available by the server that they can use to achieve their specific tasks. Such
capabilities can also include components that allow the interface with external applications.

1.8.3 Multi-Agent Systems

1.8.3.1 Low-level Services

The low-level services provided by theliving marketstoolkit are primarily concerned with enabling
access to external systems and communication between agents. The LARS servers provide a dedicated
communication channel that enables communication betweenagents within a single server as well as
a special message router agent, which is able to route messages to other message routers residing
on other LARS servers. When agents reside on the same server messages are Java objects passed by
reference between the agents. When communicating externally the default communication method
is Java RMI, alhtough a variety of alternative channels, including strings over basic sockets, can be
supported.

There is strong support for integration of agents with external systems, either through file
transfer or HTTP messages or through application programming interfaces that can be connected

8 RSA (named after its inventors Ron Rivest, Adi Shamir and Leonard Adleman) allows a person to
encrypt a message using apublic keythan can only be decrypted by the holder of aprivate key.

9 Blowfish is a fast symmetric block cipher.



26 Agents Book

to agents. The support for integration extends to Enterprise Java Beans (EJBs) servers through
customised beans that link EJB servers to LARS servers.

The living marketssystems attempts to address the issue of scaling agent systems to deal with
potentially hundreds or thousands of agents interacting (avery realistic expectation in a financial
environment). To this end, LARS servers are designed so as totake advantage of multi-processor
environments and can also be arranged into clusters. In addition, since there is support for mobility
of agents between servers, agents can be moved automatically to the right servers to improve
performance.

1.8.3.2 High-level Services

The living marketstoolkit offers a wide range of high-level services for agentapplications reflecting
the range of application environments it has been used in. For the purposes of this review we focus
on the support offered for business-to-business applications, although several of these issues apply to
other domains as well.

The toolkit divides the required services into four tiers based on functionality. Firstly, agents
need to be able to search for partners in deals, for products or for services. The toolkit supports
means for describing this information and making it available to agents. Secondly, service providers
and service requests need to be matched. Theliving marketstoolkits support a method they term
softmatching. With this method results on searchers can be returned basedon their similarity to the
actual request. The level of similarity required can be specified by the agent. Thirdly, the toolkit
supports a range of dynamic pricing mechanisms that allow agents to decide on the price for service
provision. This mechanisms include English, Dutch, Reverse and Vickrey auctions10, as well as
bilateral and multilateral negotiations. Finally, the last tier deals with the clearing and settlement of
deals supporting physical and financial settlements.

Agent communication is based on the FIPA ACL, packaged within XML messages. The
message channel within the LARS servers and the message router take care of delivering the message
to the appropriate recipient. Finally, there is support fortransaction management across platforms and
databases.

1.8.4 Agent Building Software

Agent development is supported by an integrated graphical agent development environment, theliving
marketsDevelopment Suite. This software allows application developers to visually designagent
scenarios, which are representations of the main agents in the system and the communication flows
between them. For each agent the developed can provide a description of the agent, a list of the main
goals and their relative importance and the services the agent is meant to provide. Based on these
scenarios agent can be created and business logic defined in detail.

10 A description of different auction mechanisms in the context of agent-mediated eCommerce can be
found here [25].



Agent Toolkits 27

1.8.5 Management Software

Management in aliving marketssystem is divided between day-to-day management of entire systems
and more detailed management of the agents and the servers.

General management capabilities are provided through aliving marketsManagement Console.
This application provides a web-based interface that is meant to allow the day-to-day administration
of the application. More detail management and control of individual agent is provided through a
control centre that allows detailed access to each LARS server and the agents residing on the server.
Individual messages can be scrutinized and settings relating to communication infrastructure can be
controlled.

1.9 OTHER TOOLKITS

This chapter focuses on and analyses in some detail six significant toolkits for agent-based develop-
ment. This six can be considered as representative of the range of ideas currently prevalent. However,
they are by no means the only ones. In this section we very briefly describe a few more toolkits that
have had significant use so as to provide a more comprehensiveview of the wide range of propositions
available.

agentTool agentTool [30] is a toolkit developed at Kansas State University in direct support of the
Mutliagent Systems Engineering methodology [15], also developed at KSU. The methodology
specifies seven stages starting from identifying the systemgoals then applying use cases and
deriving roles based on them. Subsequently, agent classes are created, conversations constructed
and agent classes assembled. Finally, the overall system deployment takes place. The agentTool
software supports the construction and assembly of agent classes and conversations, through
graphical tools, that lead to the generation of the actual agent code. The architecture of the
multi-agent system and individual agents is supported through a notion ofconcurrent tasks,
where each task defines a certain decision-making capability. Task are designed graphically as
finite state automata and tasks can integrate both intra-agent and inter-agent relationships.

Agent Factory The Agent Factory [12] is developed at the Practice and Research in Intelligent
Systems and Media (PRISM) Laboratory of the University of Dublin. It provides extensive
support for development through a graphical environment and a distributed run-time platform
that scales from workstations to limited-capability PDAs.There are some FIPA-compliant
aspects such Directory Facilitators and FIPA management agents. Development is supported by
a structured methodology that leads to the implementation of BDI-type agents, The definition
of agents is done through an interpreted programming language based on a formal logic model.

BOND BOND is a FIPA-compliant multi-agent system developed at the University of Central
Florida. The main motivating concept behind the BOND agent infrastructure system is the



28 Agents Book

view of agents as active mobile objects with some level of intelligence [7, 8]. Another
significant design decision is to enable the dynamic reconfiguration of agents [9], to answer
to the dynamically changing requirements placed on agent applications. Agents are build using
BOND objects. These objects represent an extension of conventional Java objects through the
addition of a unique identifier, dynamic properties, communication support, registration with
a local directory, serialization and cloning, multiple inheritance and support for editing via
a graphical interface. A BOND agent is viewed as a finite statemachine with an agenda to
follow (i.e. goals to achieve) based on strategies that are made available to agent. There are
two possibilities for the creation of a BOND agent. They can be created statically based on
the BOND agent framework APIs or dynamically using what is called the BOND Blueprint
language. Through this language the various components of aBOND agent can be described and
are assembled dynamically via abondAgentFactory. BOND agents can also be serialized back
to Blueprint for persistent storage or transfer to other hosts where they can resume operation.

CoABS The CoABS11 (Co-operating Agent Based Systems) project is funded by DARPA (Defense
Advanced Research Projects Agency) and the goal is to build enabling infrastructure that will
allow the integration of agent-based systems developed with other toolkits. In order to achieve
this it makes use of Jini middleware technology, and offers wrappers for each agent that provide
basic infrastructure service in a Jini context such as subscription, security, visualisation and
logging.

DECAF The DECAF (Distributed, Environment-Centred Agent Framework) toolkit is developed at
the University of Delaware [22]. DECAF focuses on the individual agent architectures rather
than the underlying distributed infrastructure, althoughbasic Agent Name Server services are
provided. Agents in DECAF can be programmed used a purpose-made DECAF language that
allows developers to program agents using coarse grain concepts such as agent actions that
abstract away from the more fine-grained JAVA programming languages method calls that
implement the functionality. DECAF agents also benefit fromcarefully thought out planning
(based on TAEMS [44] and execution scheduling facilities [21].

Open Agent Architecture The Open Agent Architecture (OOA) [32] is developed at the Artificial
Intelligence Center of SRI International. Agent communication and coordination is handled by
specialisedFacilitator agents that can handle the distribution of tasks to other agents, enabling
the execution of complex goals, as well as act as global data stores for the agents. Other agents
in the system are divided into application agents, interface agents and meta-agents. Meta-agents
are similar to the facilitator in that they offer coordination support but whereas facilitators
are domain independent meta-agents are domain dependent. Communication between agents
is based on an OOA-specific Interagent communication language. Finally, the toolkit comes
with a range of useful agents already configured such as a Google agent, that implements the
Google APIs for programmatic access and a Wordnet agent.

11 http://coabs.globalinfotek.com/



Agent Toolkits 29

Sensible Agents Sensible Agents [3] is a toolkit is being developed by the Laboratory of Intelligent
Processes and Systems at the University of Texas at Austin. It provides a distributed environ-
ment for agent operation and communication. The main focus is on developing agents that are
able to aid in decision making in environment with limited resources. There is extensive support
for modelling capabilities to provide the appropriate knowledge for agents to reason about the
environment and powerful planning capabilities. Agents are able to plan and make decisions
on goals and actions priorities and the level of control an agent is allowed to take decision can
be adjusted at a global level through appropriate restraining structures ranging from command-
driven slave-master relationships to each agent being locally fully autonomous.

SoFAR The Intelligence, Agents and Mutlimedia Group at Southampton University has developed
the SoFAR (Southampton Framework for Agent Research) toolkit [33]. The focus of SoFAR is
on providing a reliable infrastructure that supports agentcommunication and discovery in the
domain of distributed information management (e.g. handling metadata streams synchronously
with multimedia streams over a wide-area network [13]). Themain contributions are a robust
communications layer that abstracts away the low-level details from the actual agents, extensive
support for managing and integrating ontologies into the agent-based system, and registration
and subscription of agents to services based on contracts. Agents and ontologies can be specified
in XML files, facilitating reuse and abstracting away from programming language issues, which
are then processed by tools provided with the framework to generate the appropriate code for
agents and supporting ontologies.

The chapter, so far, has not touched on toolkits focused on providing infrastructure for mobile
agent systems. There are several such toolkits (e.g. D’Agents [23], Aglets [27], Mole [4], SOMA [5]),
but their focus is on enabling mobility and dealing with the inevitable security issues [11, 26, 43] rather
than on the wider issues of agent-based systems development. The main aim of mobile agent research
is to automate the process of moving code from one computer toanother. In traditional software, the
decision of whether to migrate is made externally to the codethat will eventually migrate while in
mobile agents the decision of whether to migrate is contained within the mobile code unit that may
eventually migrate. Much has been written about the merits of mobile agents (e.g. [28, 24]), with
the most important advantages being locality of reference,a high degree of adaptability and fault-
tolerance. Such systems, however, have also faced significant resistance due to the security concerns
and doubts about their true advantages. Despite such fears the increase in mobile users is making the
issues mobile agent research deals with very relevant. For example, a mobile phone or PDA entering
a new office and seeking services for its user is very similar to a mobile agent moving to a new host.
Even more complicated is the situation where a user travels to an area where service provision is
provided by a different organisation (roaming). The concepts of agents and mobility are now coming
together to provide solutions for such problems (e.g. [38, 29]. As such it can be expected that future
agent-based systems toolkits will have to exploit the lessons learned from mobile agent research and
related them to the issues dealt so far.



30 Agents Book

1.10 DISCUSSION

The six toolkits outlined in this chapter form a representative sample of the current state of the art in
the field. All have a history of at least three years of development and have been used in a significant
number of applications that have proved that agent-based system development can bring true benefits
to the appropriate application domains. As such, they can all be described assuccessfulattempts at
providing an agent toolkit. Nevertheless, few guides existto aid in ascertaining which of these is better.
For example, there is no clear answer to the question of whether a standardized ACL is better than an
application specific one in the case where the application being developed is not envisaged to operate
in an open environment which any agent can enter. This specific issue is further complicated by the
fact that even those toolkits that use a generic ACL, such as the FIPA ACL, may still not effectively
support truly open agent systems since other aspects of the infrastructure constrain agents.

This section attempts to draw some links between the six maintoolkits reviewed in this chapter,
while a summary of their features is provided in Figure 1.6. The different approaches that each toolkit
takes for each of the aspects considered are discussed alongwith some of the relative advantages and
disadvantages they offer.

1.10.1 Agents

Of the six toolkits the only one which does not provide significant structure for an agent architecture
is JADE. However, the task-based model it supports providesan effective framework upon which
to build agent architectures, and it provides some basic pieces of functionality such as handling
messages and participating in coordination protocols. Of the other five architectures, three (ZEUS,
RETSINA, JACK) are essentially variations of the Belief-Desire-Intention approach, with JACK
offering the most “faithful” interpretation of the architecture. It is difficult to argue for which of the
three offers the best implementation, since there are relative advantages for each. ZEUS provides
a more consistent separation of issues of resources and models of other agents; JACK offers an
effective and efficient system for managing beliefs throughthe BeliefSet; and, finally, RETSINA
provides significant supporting infrastructure through the Logger module and powerful scheduling and
monitoring capabilities. To a large extent, the choice might depends on how well specific application
requirements can translate to the exact definitions provided by each. IMPACT departs from the
traditional approaches and places a lot of emphasis on the ability to guarantee that agent behaviour will
follow certain constraints. As such, IMPACT can be considered a pioneer from this point of view. At
the same time, some analysis would be necessary to verify whether the added complexity introduced in
the architecture is worth the guarantees offered for behaviour. Theliving marketsapproach is perhaps
the closest to current industry practise in enterprise application systems since the notion ofbusiness
logic and standard logicwill resonate with similar notions in more standard technologies such as
Enterprise Java Beans.

The only real conclusions that can be drawn is that in order tochoose between them a developer
should carefully weight the advantages and disadvantages in relationship to the specific application



Agent Toolkits 31

Figure 1.6 Review of features for toolkits



32 Agents Book

being developed and the expertise available to the developer. For example, if one is not familiar with
the BDI approach or artificial intelligence planning techniques the effort in learning that may not be
worth the more direct results achievable through a different approach. It is also worth noting that in
domains where there are limited capability devices the morelightweight architectures of JADE and
living marketscould prove much more suitable.

1.10.2 Multi-Agent Systems

1.10.2.1 Low-Level Services

Of the systems reviewed, ZEUS and JACK offer the most lightweight solutions, using the TCP and
UDP protocols respectively over IP networks. This providesflexibility at the cost of a lack of features,
and forces the agent toolkit developers to provide the required functionality. The IMPACT,living
marketsand JADE toolkits use the more heavyweight JAVA RMI12. To a certain extent, this is a
limiting factor, since RMI consumes resources and can complicate the deployment process. In general
it can be argued that remote method invocation techniques run counter to the philosophy of multi-agent
systems, where agents should call on other agents to performtasks using high-level communication
language. RMI is perhaps more suitable for traditional distributed systems where the purpose is to
abstract network issues and allow the remote invocation of methods in a manner that appears similar
to local method invocation.

RETSINA andliving marketsprovide a more balanced use of low-level services. RETSINA
makes interesting use of the relatively lightweight SSDP discovery protocol for dynamic infrastructure
discovery, and allows direct communication between agents. The RETSINA approach indicates how
new generation middleware technology can be highly effective in providing the low-level services
required by multi-agent systems.

RETSINA and ZEUS allows agents to operate as stand-alone programs with all the required
functionality to support participation in and communication with other agents contained in each agent.
This provides significant flexibility, and allows the developer to choose which infrastructural services
an agent needs to participate and, as a consequence, support. JACK, JADE, IMPACT andliving
marketsall provide some sort of container from within which agents should operate. On the one hand,
the benefits of a container are obvious, since the container can contribute significantly to the required
supporting services for all agents, provide a standardizedmeans for handling communications, and
seems to be the only way to support mobility for agents. On theother hand, using a container brings
with it related costs and limits developers significantly inhow much liberty they can have in employing
alternative approaches. Perhaps the solution would be for toolkits to support both modes of operation
to give developers the best of both worlds, asliving marketssupports to a certain extend for agents
operating on limited-capability devices.

12 Alhtough alternatives are possible even within these toolkits RMI is the default and most well-
supported approach



Agent Toolkits 33

1.10.2.2 High-Level Services

The system review has revealed that the single most important high-level service functionality is
the discovery of other agents. The solutions revolve aroundWhite Pages and Yellow Pages services.
ZEUS, RETSINA and JADE provide both, while IMPACT provides only a Yellow Pages service, and
JACK only a White Pages service. Theliving marketstoolkits provides something similar to a Yellow
Pages services along with the notion ofsoftmatching, which allows a relaxation of the matching
criteria, a feature that is very appropriate in business settings.

IMPACT differentiates itself from the others through an alternative approach for Yellow Pages
services by using a simple service description language anda powerful similarity matching algorithm.
This acknowledges that in heterogeneous environments, service descriptions and requests may not
always be consistent and some means are required to deal withthe problem. This approach might
become more common in the emerging environment of the Semantic Web and Web Services.

Nevertheless, since IMPACT does not provide a White Pages service, it excludes the possibility
that an agent may have prior knowledge of which agent it wantsto contact but not the contact address
of that agent. Furthermore, it makes it difficult to monitor exactly which agents are registered in
a multi-agent system. ZEUS and JADE consider this a vital function and require that all agents
register with the White Pages service. JACK seems to assume that in most cases agents will have
prior knowledge of which agents they need to contact and may not even require a White Pages
service. RETSINA is the most flexible toolkit in this respect, since it provides both White and Yellow
Pages services, but does not require that either is available to bootstrap the system since infrastructure
services can be dynamically discovered.

Agent communication languages are clearly supported by allthe systems (ZEUS-FIPA,
RETSINA-KQML, JADE-FIPA, Jack-FIPA andliving markets-FIPA). IMPACT supports message
exchange between agents but does not define a specific agent communication language. The benefits of
a standardized communication language, such as FIPA, are obvious in open environments but are not
as clear in more specialized domains where a simpler approach may provide the required functionality.

Some form of ontology support is available in all the systems, with ZEUS, JADE and JACK
providing a more open approach where support is provided butspecific ontologies are considered
to be an application domain issue. RETSINA provides supportfor large, generic ontologies that
can cover a wide range of domains. IMPACT allows for ontologies todevelopas new agents enter
the system, by allowing developers to relate the new concepts introduced to existing ones. Again,
IMPACT’s approach may indicate that this is a possible path for large-scale heterogeneous systems
where consistency is difficult to achieve. Nevertheless, the process may become unwieldy if too many
new concepts are introduced, and relationships between them must be made by developers.

Although all the systems concerned can claim to support multi-agent systems in heterogeneous
environments, the claim for support foropenheterogeneous systems is much harder to maintain. Open
heterogeneous systems require standardization, such as that provided by FIPA, but at the same time
need to acknowledge that flexible infrastructure support like RETSINA’s is vital, and systems for
dealing with inconsistencies such as IMPACT’s will play a very important role.



34 References

1.10.3 Agent-building software

All the toolkits, with the exception of JADE, provide some agent building software, with JACK’s
andliving marketsbeing the most refined, a clear reflection of their commercialbackground. It could
be argued that what is required is a development environmentlike the one JACK orliving markets
provides, combined with the infrastructural services provided by the other toolkits. Although agent
technologies have progressed significantly, research projects cannot expend the resources required
to develop sophisticated development environments. This is clearly an issue that must be dealt with
through the take-up and support of such technologies by industry.

Another important issue in relation to agent-building software is the methodology used to
develop a system. A refined agent development environment could also act as a guide through the
methodology for an agent-based development. JACK, ZEUS andliving marketsall allow for these
through different routes. However, similarly to infrastructure issues there is as yet no clearly agreed
common methodologies.

1.10.4 Management Services

All of the systems provide some sort of management, but this is clearly an area that still requires
development, and the way in which to proceed is not clear. ZEUS adopts an approach whereby
each agent is interrogated about its actions by specializedagents to provide a visualization of the
whole system. This method is clearly costly. RETSINA provides support for visualization of the
system through the Logger module, bypassing the usual agentcommunication channels. This is
still expensive, but can be more effective than the ZEUS approach. JADE allows monitoring of
activity by interrogating containers about the agents operating within them. Finally, JACK provides
a comprehensive approach for visualization that is integrated with the development environment.
However, it is unclear how these methods scale, and how large-scale open agent systems could be
managed by these means.

References

[1] Ronald Ashri, Michael Luck, and Mark d’Inverno. Infrastructre Support for Agent-based Development. In M. d’Inverno,
M. Luck, M. Fisher, and C. Preist, editors,Foundations and Applications of Multi-Agent Systems, volume 2403 ofLNAI,
pages 73–88. Springer, 2002.

[2] Ronald Ashri, Iyad Rahwan, and Michael Luck. Architectures for Negotiating Agents. In V. Marik, J. Muller, and
M. Pechoucek, editors,Mutli-Agent Systems and Applications III, volume 2691 ofLNAI, pages 136–146. Springer, 2003.

[3] K.S. Barber, R. McKay, M. MacMahon, C.E. Martin, D.N. Lam,A. Goel, D.C. Han, and J. Kim. Sensible Agents: An
Implemented Multi-Agent System and Testbed. InProceedings of the Fifth International Conference on Autonomous
Agents, pages 92–99, 2001.

[4] Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Strasser, and Wolfgan Theilmann. MOLE: A mobile agent
system.Software - Practice and Experience, 32(6):575–603, 2002.



References 35

[5] P. Bellavista, A. Corradi, and C. Stefanelli. A secure and open mobile agent programming environment. InProccedings
of the Fourth International Symposium on Autonomous Decentralized Systems, pages 238–245. IEEE Computer Society
Press, 1999.

[6] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.Developing Multi-agent Systems with JADE. In C. Castel-
franchi and Y. Lesperance, editors,Intelligent Agents VII: Agent Theories Architectures and Languages, volume 1986,
pages 89–103. Springer, 2000.

[7] Ladislau Boloni, Kyungkoo Jun, Krzysztof Palacz, Radu Sion, and Dan C. Marinescu. The Bond Agent System and
Applications. In D. Kotz and F. Mattern, editors,Agent Systems, Mobile Agents, and Applications, volume 1882 of
LNCS. Springer, 2000.

[8] Ladislau Boloni and Dan C. Marinescu. An object-oriented framework for building collaborative network agents. In
A. Kandle, K Hoffman, D. Mlynek, and N.H. Teodorescu, editors, Intelligent Systems and Interfaces, pages 31–64.
Kluwer Publishing, 2000.

[9] Ladislay Boloni and Dan C. Marinescu. Agent Surgey: The Case for Mutable Agents. In José D. P. Rolim, editor,Parallel
and Distributed Processing, 15 IPDPS 2000 Workshops, volume 1800 ofLNCS, pages 578–585, 2000.

[10] J. M. Bradshaw, M. Greaves, H. Holmack, T. Karygiannis, W. Jansen, B. G. Silverman, N. Suri, and A. Wong. Agents
for the Masses.IEEE Intelligent Systems, 14(2):53–63, 1999.

[11] Joris Claessens, Bart Preneel, and Joos Vandewallw. (How) can mobile agents do secure electronic transactions on
untrusted hosts? A survey of the seecurity issues and the current solutions, volume=3, year=2003.ACM Transactions on
Internet Technology, (1):28–48.

[12] Rem Collier, Gregory O’Hoare, Terry Lowen, and Colm Rooney. Beyond Prototyping in the Factory of Agents. In
Vladimir Marik, Jorg Muller, and Michal Pechoucek, editors,Multi-Agent Systems and Applications III, volume 2691 of
LNAI, pages 383–393, 2003.

[13] Don Cruischank, Luc Moreau, and David De Roure. Architectural Design of a Multi-Agent System for Handling Metadata
Streams. InThe 5th ACM International Conference on Autonomous Agents, pages 505–512, 2001.

[14] K. Decker, K. Sycara, and M. Williamson. Middle-Agents for the Internet. InProceedings of the 15th Joint Conference
on Artificial Intelligence, pages 578–573. Morgan Kaufmann, 1997.

[15] Scott A. DelOach, Eric T. Matson, and Yonghua Li. Multiagent Systems Engineering.The International Journal of
Software Engineering and Knowledge Engineering, 11(3), 2001.

[16] Thomas Eiter and V.S. Subrahmanian. Heterogeneous Active Agents, II: Algorithms and Complexity.Artificial
Intelligence, 108(1–2):257–307, 1999.

[17] Thomas Eiter, V.S. Subrahmanian, and George Pick. Heterogeneous Active Agents, I:Semantics.Artificial Intelligence,
108(1–2):179–255, 1999.

[18] Thomas Eiter, V.S. Subtahmanian, and Timothy Rogers. Heterogeneous Active Agents, III:Polunomially implementable
agents.Artificial Intelligence, 117(1):107–167, 2000.

[19] C. Fellbaum.WordNet: An Electronic Lexical Database. MIT Press, 1998.

[20] J. Ferber and O. Gutknetch. A meta-model for the analysis of organisations in multi-agent systems. InProceedings of
the Third International Conference on Multi-Agent Systems, pages 128–135, 1998.

[21] John Graham.Real-Time Scheduling in Distributed Multi-AGent Systems. PhD thesis, University of Delaware, 2001.

[22] John Graham and Keith Decker. Towards a Distributed Environment-Centered Agent Framework. In N.R. Jennings
and Y. Lesperance, editors,Intelligent Agents VI Agent Theories, Architectures, and Languages, volume 1757 ofLNCS.
Springer, 1999.



36 References

[23] Robert Gray, David Kotz, George Cybenko, and Daniela Rus. D’Agents: Security in a multiple-language, mobile agent
system. In Giovanni Vigna, editor,Mobile Agents and Security, volume 1419 ofLNCS, pages 154–187. Springer-Verlag,
1998.

[24] Robert S. Gray, George Cybenko, David Kotz, and DanielaRus. Mobile agents: Motivations and State of the Art. In
Jeffrey Bradshaw, editor,Handbook of Agent Technology. AAAI/MIT Press, 2001.

[25] M. He, N.R. Jennings, and H. Leung. On agent-mediated electronic commerce.IEEE Trans on Knowledge and Data
Engineering, 15(4), 2003.

[26] Yang Kun, Guo Xin, and Liu Dayou. Security in mobile agentsystem: problems and approaches.ACM SIGOPS Operating
Systems Review, 34(1):21–28, 2000.

[27] Danny Lange and Mitsuru Oshima.Programming and Deploying Java(tm) Mobile Agents with Aglets(tm). Addisson-
Wesley, 1998.

[28] Danny B. Lange and Mitsuru Oshima. Seven good reasons formobile agents.Communications of the ACM, 42(3):88–89,
1999.

[29] Chung Fan Liu and Chyi Nan Chen. A sliding-agent-group communication model for constructing a robust roaming
environment over internet.Mobile Networks and Applications, 8(1):61–74, 2003.

[30] Scott A. De Loach and Mark Wood. Developing Multiagent Systems with agentTool. In C. Castelfranchi and
Y. Lesperance, editors,Intelligent Agents VII - Agent Theories, Architectures andLanguages, volume 1986 ofLNCS,
pages 46–60, 2001.

[31] A. R. Lomuscio, M. Wooldridge, and N.R. Jennings. A classification scheme for negotiation in electronic commerce.
International Journal of Group Decision and Negotiation, 12(1):31–56, 2003.

[32] David L. Martin, Adam J. Cheyer, and Douglas B.Moran. The Open Agent Architecture: A framework for building
distributed software systems.Applied Artificial Intelligence, 13(1-2):91–128, 1999.

[33] Luc Moreau, Norlizza Mohamad Zaini, Don Cruishanck, andDavid De Roure.

[34] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A Tool-Kitfor Building Distributed Multi-Agent Systems.Applied
Artifical Intelligence, 13(1):129–186, 1999.

[35] P.D. O’Brien and M.E. Wiegand.Agents of Change in Business Process Management, volume 1198 ofLNAI, pages
132–145. Springer, 1997.

[36] David V. Pynadath and Milind Tambe. The Communicative Multiagent Team Decision Problem: Analyzing Teamwork
Theories and Models.Journal of Artificial Intelligence and Research, 16:389–423, 2002.

[37] Juan Antonio Rodriguez-Aguilar and Carles Sierra. Enabling Open Agent Institutions. In Kerstin Dautenhahn, AlanH.
Bond, Lola Canamero, and Bruce Edmonds, editors,Socially Intelligent Agents: Creating relationships withcomputers
and robots. Kluwer, 2002.

[38] George Samaras and Christoforos Panayiotou. Personalised portals for the wireless user based on mobile agents. In
Procerdings of the second international workshop on Mobilecommerce, pages 70–74. ACM Press, 2002.

[39] V.S. Subrahmanian, Piero Bonatti, Jurgen Dix, Thomas Eiter, Sarit Kraus, Fatma Ozcan, and Robert Ross.Heterogeneous
Agent Systems. MIT Press, 2000.

[40] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: DynamicMatchmaking Among Heterogeneous Software Agents
in Cyberspace.Autonomous Agents and Multi-Agent Systems, (5):173–203, 2002.

[41] Katia Sycara, Massimo Paolucci, Martin van Velsen, and Joseph Giampapa. The RETSINA MAS Infrastructure.
Autonomous Agents and MAS, 7(1–2), 2003.



References 37

[42] R. Titmuss, I.B. Crabtree, and C.S. Winter.Agents, Mobility and Multimedia Information, volume 1198 ofLNAI, pages
146–159. Springer-Verlag, 1997.

[43] Christian F. Tschudin. Mobile agent security. In Matthias Klusch, editor,Intelligent Information Agents, pages 431–446.
Springer-Verlag, 1999.

[44] Tom Wagner, Bryan Horling, Victor Lesser, John Phelps,and Valerie Guralnik. The Struggle for Reuse: Pros and Cons
of Generalization in Taems and its Impact on Technology Transition. In Proceedings of the ISCA 12th International
Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE-2003), 2003.

[45] M. Winikoff, L. Padgham, and J. Harland. Simplifying the Development of Intelligent Agents. InAI2001: Advances in
Artificial Intelligence. 14th Australian, pages 557–568, 2001.

[46] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Organisational rules as an abstraction for the analysis and designof
multi-agent systems.INternational Journal of Software Engineering and Knowledge Engineering, 11(3):303–328, 2001.


