Chapter 1

Agent Toolkits
1.1 INTRODUCTION

Agent-based applications need a significant amount of ewpbhfrastructure before even one
message is exchanged between agents. There is a large sppofting services that must be made
available throughout the agent-based system before tHeatign developer can move on to focus
on the actual application domain, be it eBusiness, Grid agimg or Ambient Environments. These
services range from basic communication to discovery,dination, security, and so on. The sum of
these services come together to provide an environmentaémasupport an agent-based system, and
as such can be considered as providingaperating systerfor agents. Furthermore, there are issues
that cross the bridge between domain-independent infigtsial services and application specific
services. These relate to the architecture of individuanég within the environment and specific
coordination mechanisms that deal with issues such asiadgos [31, 2] or the creation of agent
teams [36] and organisations [37, 20, 46].

Crucially, mainstream development would not be able to tralty adopt agent-based ap-
proaches if the underlying operating systems had to be téewieach time or if new agent architec-
tures and complex coordination mechanisms designed foy eegv application. It is widely accepted
that if agent technologies would move from research labs amstream development, as part of
the application developer’s set of technologies for désigand developing distributed applications,
appropriate toolkits were required that would provide thegssary support for developing agents and
deploying the infrastructure required to support agentiegions [10, 45]. As a result, the past years
have seen significant efforts being undertaken into theldpireent of appropriate infrastructure for
agent-based systems as well as debate on what are the aat@aoncepts to support the develop-
ment of agent-based infrastructure [1]. Furthermore, siasielopment efforts often do more than just
designing and developing the enabling infrastructureyTadigo provide the necessary tools to aid in
the development of applications that operate using thedstfucture. Such tools range from graphical
development environments to management and monitoringcsest

1



2 Agents Book

We use the term agent toolkits to describe software thatigeesvthe software for deploying
an agent infrastructure as well as aids in the developmerstgeht applications. Agent toolkits
are intended to provide a significant proportion of the basitding blocks required to support an
operational agent-based system. Ideally, this shouldvale application developer to focus on those
issues that are specific to the particular application bdagloped instead of issues relating to how
the concepts of agents and multi-agent systems can findgada&talization. Of course, like operating
systems development, each toolkit represents the de&igraeticular beliefs or philosophy about how
agent-based systems should operate.

The main aim of this chapter is to compare and contrast sontkeofost widely used and
influential toolkits for agent-based systems developménthe same time, it also aims to illustrate
some of the main challenges in developing such toolkits hed/ariety of methods with which these
challenges have been tackled. As is seen from the reviewgwtiitis chapter, the richness of the agent
paradigm makes it especially hard to strike the right badametween what should be implemented
within the toolkits and what must be considered applicatipacific.

The form of such toolkits is as varied as the large number @kits available (Agentlink.org
lists more than 100). Some are integrated development@mients that provide a graphical inter-
face; others also include networking capabilities prawiggsome form of middleware, while still more
are simply sets of APIs (application programming inter8dhat a programmer can integrate into
their own solutions. Whatever the case they all necessariyl@/ some form of agent model and
some even prescribe a certain methodological approach.

The chapter begins by outlining a set of criteria that aral useselect the toolkits reviewed in
this chapter, as well as a generic framework for comparimtgcamtrasting them. Subsequently, each
toolkit is presented and the ways it tackles each of the ssglentified in the generic agent toolkit
is discussed. Six toolkits are investigated into some Kéxai there are also brief outlines of several
other important toolkits. The chapter concludes with agwhsion on the main toolkits drawing some
conclusions about the current state of the art and possihlesf directions.

1.2 REVIEW METHOD
1.2.1 Selection Criteria

The toolkits described here have been selected based andtiteria. Firstly, they should tackle as
wide a range of issues as possible in relation to applicatewelopment in distributed, heterogeneous
and dynamic computing environments, and should lead tdstabpplications rather than the
simulation of application or simplified prototypes. Thitomls us to touch on as many of the related
subjects as possible and provide a wide range of exampleswadimilar problems are tackled through
different approaches. Secondly, they should be well doctede and there should be several examples
of their use in significant applications. Examples of theli@ation of toolkits are essential since this
is currently the only way to ensure some appropriate feddbadhe viability of the toolkit, beyond



Agent Toolkits 3

Environment

High-level services (e.g. agent communication language, middle agents ,
coordination)

Low-level services (e.g. discovery, message passing)

Agent-building software (e.g Management Services (e.g.
graphical environment) visualisation)

Figurel.1 Generic Toolkit Framework

its conceptual structure. Finally, the toolkits shouldénawsignificant user community as evidence of
their acceptance within the wider field of agent-based syste

1.2.2 Generic Toolkit Framework

In order to evaluate the various toolkits a consistent nebtbbdescribing them and eventually
comparing and contrasting them is required. Towards tldssgeneric toolkit frameworks proposed,
which imposes a specific structure within which to place aridte the various issues that must be
addressed. This structure is imposed with the caveat thed Hire a great variety of possible divisions
of concerns and one view may favour a specific set of toolkitsdisadvantage others. However, for
the purposes of an effective comparison, it is necessargronit to one. A division of concerns as
illustrated in Figure 1.1 is employed and detailed below.



4 Agents Book

The first step is to separate the development of individuahtsgand their interface to the envi-
ronment from coordination and communication between pleltigents. For each toolkit, therefore,
we need to define how a single agent can be constructed anchhbagent can perform actions that
will affect its environment. The capabilities that are pd®d for individual agents are examined at
this stage, such as planning or logical reasoning, as welespecific architectures through which
such capabilities are expressed.

When considering multi-agent systems, the focus is on d&gpeommunication, ontologies
and any coordination mechanisms there may be for the ageapmbilities provided in this context
are divided into low-level services (e.g. enabling middiesy basic security functions) and high-level
services (e.g. coordination mechanisms, complex secufitgstructure). Low-level services are, in
essence, generic services that any distributed systeastniicture requires. In this respect some of
the important issues are the ability to transfer messagasdne agent to another, low-level discovery
mechanisms, such as the use of multicasting protocols towhs essential infrastructural services,
and security mechanisms for encrypting messages. High-devvices are those which are specific to
the operation of an agent-based system. At this level thesf@con agent communication languages
and protocols to support communication, agents that famlithe discovery of other agents (usually
termed middle agents [14]), ontologies, and coordinati@cmanisms.

Finally, we investigate the available management servaremny resulting applications, relating
to the monitoring of the application and debugging, and dfnare that is specifically aimed at aiding
the development process such as an integrated developmermtrenent, and so on.

13 ZEUS
1.3.1 Background

The ZEUS agent toolkit has been under development sincedtd®Vexact. It is the result of practical
experience gained while developing two real world multeaigsystems; one for business process
engineering [35] and the other for multimedia informatioamagement [42]. At the time of writing,
ZEUS is an open source project available under a licensdasitoi the Mozilla public license and
is written entirely in Java. A dedicated website holds maorfermation about the toolkit, including
manuals and developed examples, as well as links for dowimigahe toolkit itself*.

According to the ZEUS philosophy, there are five issues @atasent the main infrastructural
problems that need to be tackled by an agent toolkit [34].

Information Discovery Information discovery refers to the methods that agents hatheir disposal
to find out information about other agents. It is usually hest by providing services similar to
the White Pages and Yellow Pages we use to find out addresséslgpitbne numbers of other

1 http://193.113.209.147/projects/agents/zeus/irdiex.



Agent Toolkits 5

people or companies. In ZEUS, this issue is addressed thrahgt are called utility agents
that provide just such services.

Communication For agents to be able to exchange messages, they require raotomay of
formulating messages. This is something that agent imfretstre should provide through
the definition of an appropriate agent communication lagguZ EUS uses the FIPA agent
communication standard.

Ontology In addition to a common language for formulating messagestagalso need common
methods for describing their application domain. Exactlyick ontologies are used in any
situation is an application specific issue. ZEUS aids by ipiing tools for defining ontologies.

Coordination Although it could be argued that coordination is clearly apleation-specific task,
ZEUS provides some of the most widely used coordination meisims. These can significantly
aid the development process if the provided coordinatiocharisms are applicable to the
application at hand.

Integration with legacy software Agent-based systems are often proposed as ideal solutions f
integration of new systems with legacy software. Agents aetnas the interlocutor between
legacy software and new systems. ZEUS addresses this igqureviding a means for ZEUS
agents to interface with external programs.

Beyond these issues, the ZEUS design follows a set of basielqes: a clear separation
between domain-specific problems and agent-level funaliign a friendly graphical interface for
development; an open and extensible design; and strongodufmp standards and standardized
technologies as evident by its compliance with the FIPAd&aths.

132 Agents

According to the ZEUS perspective, agents are deliberaswehey reason explicitly about which
goals to select and which actions to perform. They are gwattkd, so any action performed is in
support of a specific goal. They are versatile, so they cafopera number of goals and engage in
more than one task. They are truthful, so when dealing witleroagents they always state the true
facts. Finally, agents are temporally continuous, so theyeha notion of time and can synchronize
based on a clock.

Based on this approach, the ZEUS toolkit provides a set ofpcorants that represent specific
agent functionalities such as planning and schedulingrigifigos, agent communication language
capabilities (using the FIPA ACL) and communication prafonplementations, ontology support
and coordination.

The assembly of these components readily leads to the oetistr of what is termed generic
ZEUS agentillustrated in Figure 1.2. Agents can send and receive agess througtMailbox and
Message Handlecomponents. Resource Databassomponent has a list of the resources available



incoming/outgoing

Agents Book

messages
\ Generic Agent Architecture
Mailbox <4—Pp| MessageHandler
4
y
Execution Coordination Acquaintance
il il |- il |-
Bxternal Systems <& Monitor il Engine il Database
A
A
Planner/
Scheduler
A A
A Y
Task/Plan Resource L
Database Database i
A A
Ontology
Database

Figurel.2 Generic Zeus Agent Architecture

External

Databases



Agent Toolkits 7

to the agent, with the possibility to directly interface kvéxternal databases. Through feecution
Monitor component, agents can interface with external systemsasilggacy systems and also keep
track of actions. Th&oordination Enginecomponent handles the agent’s goals, deciding which to
follow or abandon. It also handles interaction with otheeratlg, based on the available interaction
protocols. Information about other agents, such as nameahiities, is kept in anAcquaintance
Databasecomponent. Finally, th@lanner/Schedulecomponent has the task of producing plans and
the timings for when actions defined in the plans should b&opeed in reference to specific goals
as requested by theoordination Engine

This generic agent has all the rudimentary tools necessarfprin the base of an agent
functioning in a variety of domains. Although it is possilite provide different implementations
for these buildings blocks and therefore obtain differgmes of generic agents, it does not seem
possible to deviate significantly from the organizatiomalcture of the inter-component relationships.
Nevertheless, since the code for each of these componepts\gled as part of the overall Zeus
package, it is possible to configure them in any manner desiradd or replace existing components.
Crucially, the ZEUS development environment assumes taiiqular configuration for enabling
development via a graphical interface and without diretérarction with these components at the
code level.

1.3.3 Multi-Agent Systems
1.3.3.1 Low-level

All communication in ZEUS is based on message exchange tisend CP/IP protocol and ASCII
messages. This is done to allow for maximum portability afrag. As a result, all services are high-
level services that depend on the FIPA ACL and ontologies.

1.3.3.2 High-level Services

Infrastructure support for a multi-agent system in ZEUSohees arouncutility agents The term
utility agent is used to differentiate between those ag#ratsprovide supporting infrastructure and
those that perform the actual application tasks, which allea task agents. There are two types of
such utility agents, as follows.

The Agent Name ServgANS) maintains a registry of all known agents (or White Pagesl
provides a mapping between an agent.s name and its logiwabrkelocation. It is necessary to have
at least one ANS since without it no agent would be able to camoate with another. In larger
applications it may be necessary to have a number of ANS sgewtrder to support all the agents.
However, there is always a root ANS agent to bootstrap theesysand other utility or task agents
must be provided with the network address of this agent. TusANS agent also provides a system-
wide clock that other agents refer to so that they can symitemn registration with the ANS. The



8 Agents Book

Facilitator agent maintains a list of abilities for those agents reggstavith it (or Yellow Pages). The
Facilitator agent is necessary in order to deal with dynashanges in the capabilities of agents.

The operation of a multi-agent system starts with the regfisn of each agent with the ANS.
Subsequently, agents can retrieve the network addresherfagents they wish to communicate with
from the ANS. This implies that the agents have prior knogtedf other agents. names and abilities
and just need the actual network address. Alternativelihdf/ do not have this prior knowledge,
the application requires a Facilitator, which maintairssiitformation by querying the ANS about
registered agents and then queries each agent in turn abalilities. This approach for discovery
of other agents restricts the flexibility of the system to leed for a root ANS agent, so some prior
knowledge will always be required. Furthermore, the desighe Facilitator is rudimentary and does
not allow for more sophisticated behaviour like the dynaremistration and de-registration of agent
capabilities. These are issues that must be handled atleofethe application design, according to
the needs of each application.

Agent communication in ZEUS is based on the exchange of FIRA Aessages. This is
supported through specific implementations of the Mailbuck lessageHandler components that can
parse such messages and handle the protocols relatingrtoetteipt and transmission. The content
of messages is formulated according to the ontologies ibé@sgrthe domain of operation of the
agent. Ontologies are supported through the Ontology Batabomponent, which allows developers
to equip agents with ontologies that are then used in thedtation of plans and goals and the
description of resources.

Coordination is supported through a variety of approaciis. central approach is based on
variations of the contract-net protocd]|[ where there is a Call For Proposals by an Initiator agent
followed by replies from Responding agents, and a negotigthase that can proceed based on a
number of strategies. Furthermore, ZEUS allows for the d&fimof roles, such as peer, subordinate,
and superior. Through the definition of roles, multi-ageygtems can be given an organizational
structure that can aid coordination between agents. FjriZHUS allows for multi-agent planning by
enabling each agent to factor into its planning responsés téiat depend on other agents.

134 Agent-building software

Perhaps the main strength of ZEUS is the availability of ghial interface that allows for the
development of an entire multi-agent system applicatiadh alimost no need to code anything except
the interfaces to external systems. Furthermore, thisloeweent environment also suggests a certain
method for the development of applications.

Development begins with the definition or import of the oatpés that are to be used in the
application. AnOntology Editoris provided for this. Then, through tl#=US Agent Editgreach task
agent is configured by defining planning parameters, tastidable resources, acquaintances, roles
and interaction protocols. Agents are then linked to egorograms or resources, such as databases
and legacy software. Finally, the utility agents are configu At this stage, code generation for each
agent can take place and the agents can be distributed otatf@ms from which they will operate.



Agent Toolkits 9

135 Management Services

ZEUS enables the monitoring and control of a multi-agentesyshrough a variety of perspectives,
using utility agents that interrogate other agents abaeit thperation and then collate and present
the information in an appropriate manner. The Society Taolides visual information about the
exchange of messages between agents, the Report Tool dewwsogress on the main tasks and
execution state of each sub-task, the Agent Viewer allo@srtbnitoring of the internal state of each
agent, the Control Tool allows this state to be altered amdStatistic Tools collects statistics on
individual agents and the society as a whole.

The sum of these services provides a powerful tool for theigging of applications. However,
by its nature, it creates a significant amount of traffic withisystem and places resource demands
on each individual agent. Furthermore, certain types afrimftion, such as the internal state of each
agent, may not be available at all in an environment in whgdmés come from, or represent, different
organisations. These services, therefore, should bedsmasi as viable in settings where the multi-
agent system is relatively closed, where security concammsow and where the number of agents is
not too large.

1.4 RETSINA
14.1 Background

RETSINA (Reusable Environment for Task Structured Ingeltit Network Agents) is a multi-agent
systems toolkit developed over a period of years, and at $#ase 1995, at the Intelligent Software
Agents laboratory of Carnegie Mellon University’s Robotitstitute. RETSINA has been used
extensively in a range of applications, such as financiatf@a management, e-commerce, and
mobile communications. The toolkit, available as the REWVSIAgent Foundation Classes, can
operate in Windows, Unix and mobile platforms, and uses &waof languages (Java, C++, C,
Python, Lisp, Perl) that are tailored to the specific envinents. However, the main infrastructural
components are written in Java. A limited version of RETSIls&eely available for non-commercial
use, under license by Carnegie Mellon University

The design of RETSINA is based on two central assumptiongtadgent applications devel-
opment [41]. Firstly, multi-agent systems infrastructat®muld support complex social interactions
between agents through the provision of services that esecban predefined conventions on how
social interaction will take place. These predefined cotiwan refer, mainly, to the use of a common
communication language, protocols and ontologies. Frarptrspective of the multi-agent system
infrastructure, agents are seen as black boxes, but thexpeeted to be able to participate in social

2 http://Iwww-2.cs.cmu.edu/ softagents/



10 Agents Book

Current Domain Facts and
L Task —
Objectives Structures Schedule Action [ Beliefs Database

\ |
\ I
\

\ \

\ \
\ \ |

I Execution
£ — 1 1 Communications }b Planner }» Scheduler }b Monitor
A N |

7~ 7<
| |
| |
| |

™~ ™~
[
|
|

control flow—p»
Plan Library — — —dataflow — — >

Figure1.3 Retsina Agent Architecture

interactions based on these conventions. Secondly, aigeatsulti-agent system engage in peer-to-
peer relationships. Any societal structures, such asieigies, should emerge through these peer-to-
peer interactions, and should not be imposed by a centdadipproach. This is in recognition of the
need to sever any ties from centralized control, and allawiridy distributed structures to emerge.
These assumptions for multi-agent systems developmatdemvery clear separation between indi-
vidual agents and the supporting infrastructure.

14.2 Agents

An agent in RETSINA is understood, in abstract terms, asralsiane survivable piece of code with
communicative and intelligent behaviour. In real termss itnderstood as any piece of software that is
able to interact with other agents, and with the RETSINA ivagient system infrastructure, following
the conventions defined in RETSINA.

All agents are derived from BasicAgentclass, which provides the main functions required
for operation in a RETSINA multi-agent system, such as nges$endling, logging, visualization,
and discovery of other agents. This agent-specific funatitgnis separated from operation within
specific operating environments by placing agents irAgantShejlwhich provides the necessary
interfaces for interaction with the underlying operatiggtem. Furthermore, the AgentShell provides
basic management functionalities such as starting up dtisguown the agent and a timer module.

The reasoning and planning for agents is handled by the REA 8lgent architecture, shown
in Figure 1.4. It is based around the interactions betwe&ommunicatiormodule that handles
messages from other agentRlannerthat derives plans base on a provided set of goals and a plan



Agent Toolkits 11

library, aScheduletthat uses the output from the Planner to schedule when taksewperformed,
and anExecution Monitorthat handles the actual performance of actions. These me®dale
supported by appropriate knowledge and beliefs, which midedl into Objectives Task Structures
SchedulesCurrent Actionsand aDomain Facts and Beliefs Database

RETSINA divides agent functionality into four main classtat are built on top of the
BasicAgent and represent specializations of the basicitaothre to deal with different types of
functionalities.

¢ Interface Agentiteract with users by receiving inputs and displaying ktssu

e Task Agentsarry out the main problem-solving activities by formutatiplans and executing
them by coordinating and exchanging information with othgents.

e Information Agentinteract with information sources such as databases or ages The Task
agents provide the queries, and the information agentgam@adized in retrieving the required
information by interfacing with databases, the web, andrso o

o Middle Agentgprovide the infrastructural support for the discovery af/gges between agents.

Although it is possible for developers to provide their owtemsions of the BasicAgent class,
it is suggested that application development begins frarsgecialized extensions already provided.

1.4.3 Multi-Agent Systems
1.4.3.1 Low-Level Services

Communication in RETSINA is facilitated by two types of Idewel services. Firstly, the RETSINA
Communicator module in individual agents enables agewaggnt communication and abstracts
beyond the underlying physical transmission layer and odtvwype. This allows developers to
focus on communication at the agent level. Secondly, dyoalscovery of high-level infrastructure
services is enabled via the use of a multicast protocol. Gagants enter a multi-agent system
application, they multicast their presence and can be tbetday high-level infrastructural services
that then communicate directly with them. This multicastcdivery is based on the Simple Service
Discovery Protocol, which was developed as part of the UsalePlug-n-Play ad-hoc networking
effort. It is a lightweight protocol that is intended to beedsby service providers to announce the
availability (or otherwise) of a service, and by serviceugesfers to query for specific services. In
RETSINA, a reply to a multicast query is a TCP/IP address antl umber that can be used for
communication with the discovered service.

The RETSINA multi-agent system provides some basic secseitvices for the authentication
of agents, and for the protection of communication betwegmes. A Certificate Authority system
is used for identity protection, through which each agengusranteed by a trusted authority.

3 http://www.upnp.org/



12 Agents Book

Communication between agents is protected through the usepaoblic/private key system and
support for the SSL protocol.

1.4.3.2 High-Level Services

RETSINA views infrastructure as something that should bamly separated from multi-agent system
applications and individual agent behaviour. As a res@tdhs no support for specific coordination
mechanisms, organisational structures or any regulatligips as this are deemed to be application
specific issues. However, although there is no support feciip coordination mechanisms, protocol
specification and interpretation are supported througl®pol engine and language that is based on
finite /O automata.

Agents exchange messages that are divided into two partlyFian envelope defines the
sender, receiver, thread of conversation, ontology and A€#d. Within this envelope, content could
be specified using any ACL and appropriate ontologies. REASdirectly supports the KQML
ACL, by enabling agents to parse KQML messages, and an gytalerived from the Wordnet
Ontology [19]. This functionality is implemented in the Basgent.

The basic high-level infrastructural support is providédotigh Agent Name Serverén
ANS maps agent identifiers to logical network addressestéeTltsealso support for multiple name
servers and redundant name servers in order to providetraassand fault redundancy. Each agent
is provided, through the BasicAgent class, with an ANS conepb that enables registration, de-
registration and lookup for name servers. Agent name sepaeT be discovered dynamically through
multicast requests. As a result, a multi-agent system caiveuwithout the presence of an ANS, and
without the need for prior knowledge of an ANS.

Middle agents provide the second level of infrastructuggsut. The main type of middle agent
is theMatchmakeywhich provides a mapping between agents and servicesnldpping is created
through advertisements that matchmakers receive fromiceeprovider agents. The Matchmaker
then matches a request to service providers and leaves théantle all subsequent interactions.
Both the advertisements of service availability, and thguests for services, are described using
a specialized language, called LARKS (Language for Adsertient and Request for Knowledge
Sharing) [40]. LARKS is required to provide a standardizeddatiption of each service, such as input
and output, pre and post-conditions, the context, and aaéexescription of the service. The result
is a KQML message that contains a LARKS advertisement, whggs the appropriate application
ontology to describe the available service. The RETSINAKibalso provides Broker and Blackboard
middle agents. Brokers completely hide service providensifthe service requestor by mediating all
interactions. Blackboard agents simply provide a basickilaard service where requests are posted
for everyone to see, but capabilities are only known by tineice providers who can then choose to
reply to service requestors directly.



Agent Toolkits 13

144 Agent Building Software

The RETSINA Agent Foundation Classes are integrated withénMicrosoft VisualStudio develop-
ment environment. A RETSINA Agent AppWizard is availablattprovides some basic support for
agent development, but there is no step-by-step guidartttharbulk of development involves direct
interaction with code.

For debugging, RETSINA provides a useful graphical toot #@ables developers to receive
compose and send KQML messages to agents in order to tasalfiléy to respond to messages.

145 Management Services

RETSINA considers management as an issue that should welgcdupported through the multi-
agent system infrastructure. For this purposes it provide=e types of management. Theggeris

a service that is able to record the main state transitiotvedes agents for inspection by developers.
Agents provide this information through the Logger modtiattis implemented in the BasicAgent
class. This logging service can be connected tdAativityVisualizer which provides a graphical
representation of the activity in a RETSINA applicatiomdlly, aLauncherservice is provided that
can coordinate the configuration and start-up of infrastimat components and agents on diverse
machines, platforms and operating systems from a singlealqoint.

A graphical tool is available specifically for managing Agé&tame Servers, which allows the
direct inspection of the information currently registesgith an ANS and the configuration of the
ANS itself.

As mentioned earlier, these tools are only effective in vanatvery controlled situations, where
all agents fall under the same organizational domain, anerevthere are no issues concerning the
misuse of information on the state of agents.

15 IMPACT
151 Background

IMPACT (Interactive Maryland Platform for Agents Acting dether) is a joint research project
between the University of Maryland in the USA, Bar-llan Usisity in Israel, the University of
Koblenz-Landau in Germany, the University of Vienna in Aigstand the University of Milan in Italy.
IMPACT has been used extensively in military applicatiangh as in the visualization and analysis
of army logistics operations, the simulation of combat ctaxgombat situations and the provision
of support for controlled flight. The development envirominand the core of the infrastructural
components are written in Java. At the time of writing IMPA@&s not available for use outside the
project developers, however more information , includisgrumanuals, can be found onlihe

4 http://Iwww.cs.umd.edu/projects/impact/



14 Agents Book

The view of what constitutes appropriate infrastructuggosut and software agent development
is illustrated through 10 desiderata that the IMPACT progms to meet [39].

e It should always be possible to agentize non-agent programs

e The methods in which data is stored should be versatile iogmition of the current diversity
in data storage mechanisms.

e The theory of agents should be independent from the speciiimng any agent may perform.
Such actions are a parameter of the agent.

e The decision-making mechanisms of each agent should bdycketiculated in order to enable
modification at any point of an agent’s life.

e |t should be possible to reason about beliefs, uncertaimytiane.

e Security mechanisms are critical to protect the infrastmecfrom malicious agents, and to
protect agents from other agents assuming false identities

e There should be some method of providing guarantees as fretfermance of agents.

e Atheory of agents needs to be accompanied by an efficienemmgahtation and should be such
as to allow for an efficient implementation.

e Infrastructure reliability is paramount.

e Testing a theory through practical applications is esaénti
152 Agents

Agents in IMPACT are divided into two parts:

¢ the software code, which consists of data types and furetioat can manipulate those data
types; and

o the wrapper, which provides the actual intelligent agentfionality.

The software code could be any software program, and repeeige actual interface to the
environment through which the agent effects change in ie Whapper represents the actual agent
functionality that is able to manipulate the software codeoading to the behaviour dictated by the
wrapper's programming. This division is the IMPACT solutito the requirement for being able to
agentify any program through a wrapper.

The wrapper is further divided into a set of basic compon#rascome together to provide the
IMPACT agent architecture, illustrated in Figure 1.4. Adtians are regulated by thegent Program
that specifies which actions an agent should or should ndonperin specific situations; the Agent
Program defines what IMPACT terms the age@jserating PrinciplesThe Agent Program itself is



Agent Toolkits 15

| Security

AgentProgram |—— Message Box -
| Metaknoweldge \
- . Concurrency
- Action Integrity -
ActionBase . . action
Constraints Constraints mechanism

by

Heterogeneous Query Language

Function Calls / \

| Data |

Action Code

Figure1.4 IMPACT Agent Architecture

defined according to aigent Program Languagihat allows for a wide set of regulatory modalities
(Do, Obliged, Forbidden, Waived and Permitted). Action Basecomponent holds descriptions of
all the actions an agent can perform along with the precmmditfor the execution of actions.

Itis important to stress that IMPACT takes a wider view of wtegpresents an action than many
others. Everything an agent does, including tasks thatad@ibnally taken for granted or considered
an integral part of the architecture, such as planning ointiimare considered actions that must be
explicitly defined within the Action Base. Actions can befpemed concurrently, and are regulated by
aConcurrent Action Mechanisoomponent that decides, based on the current agent statkesineld
actions, whether a composite action can be defined that etilege the desired actions. Concurrency
is also regulated by a set #iction Constraintghat explicitly define when certain actions cannot be
performed concurrently. A set tfitegrity Constraintspecify which agent states are legal in a given
context and ensure that the agent does not perform any adctiahmay violate these constraints. A
Heterogeneous Query Languagemponent provides the interface with the software codegddhe
agent. Finally, an agent is equipped wittetaknowledgehat includes descriptions of what services
the agent is able to provide, and beliefs about other agemisaMessage Bogomponent that handles
communication with other agents.

The most interesting feature of the IMPACT agent architetwhich clearly distinguishes it
from other architectures, is the emphasis on ensuring lilesigent operates within very well defined



16 Agents Book

parameters. The agent architecture clearly stipulates adteons are allowed, integrity constraints,
action constraints, and so on. This provides a multi-layesg@ution to the problem of being able
to guarantee “correct” behaviour. Furthermore, the dgaraknt process of agents in IMPACT also
includes several consistency checks that ensure ther@aanflicting rules, such as both forbidding
and permitting an agent to do something. We will not elalmothe details of these consistency
checks here, but the interested reader can refer to thesbxtearticles on IMPACT elsewhere (eg.
[18, 16, 17]).

153 Multi-Agent Systems
1.5.3.1 Low-level Services

Agents in IMPACT operate within a dedicated platform, cdln Agent Roost, which provides
network connectivity and manages the agents operatingnwitht is written in Java and uses Java
Remote Method Invocation (RMI) to communicate with otherAgRoosts, so IMPACT agents can
operate from any platform that can handle Java RMI. The Agadst handles the incoming and
outgoing messages for each agent within it andwakeagents when a message arrives so that they
can process it.

Communication with systems outside the Agent Roosts iseaeldithrough a generic Connec-
tions module, which is then specialized to enable connestto specific systems, such as Oracle
servers.

1.5.3.2 High-level Services

Infrastructure support is based on IMPACT Servers, whiabvide Yellow Pages services, a type
service, a thesaurus service and a synchronization modllilgents providing services must register
with the IMPACT Server. Services are described based onralatdized HTML-like language.
The service specification requires a service name in ternas\varb-noun expression (e.gent :
car[Japanese]), input and output variables, and service attributes (eogt, response time, etc).
Only authorized developers can introduce new agents inyterm and the process is semi-automatic,
since the developer can use a graphical interface to destrébservices provided by the agent at the
moment of its introduction into the system.

The Yellow Pages service is a matchmaking service that raatskrvice requests to service
providers. This matchmaking service is enhanced throughitasity matching algorithm that is able
to match a service request to a service provider even if tivicgerequest is not defined in the precise
terms with which the service provision has been defined. kamgle, a request for @r_purchase
can be matched to@r_seller service provider. This is achieved by maintaining two tererdrchies
within the IMPACT Server, one for nouns and one for verbs, amdgent table. The term hierarchies
contain sets of synonyms that can be used to compute theasimibetween two terms. The agent
table contains, for each service provider, a noun term, b teem and the agent name. If there is



Agent Toolkits 17

no direct match between the service request and an entreiadbnt table, the term hierarchies
are used to discover if there is another service that is geritly similar to the service request. The
term hierarchies can be updated each time a new servicedypgistered. This approach provides a
more robust service to agents since it can anticipate inst@meies between service descriptions and
service requests, and deal with them.

The type and thesaurus services are, in essence, servaiggiart of the Yellow Pages service.
The type service allows developers to define relationshgteden types that can then be used to
aid the service discovery process. For examplgganese_car type can be defined as a sub-type
of car. The thesaurus service allows the matchmaking algoritlontscover that the terrar and
automobile are synonyms and update the relevant term hierarchy.

The issue of reliable infrastructure is tackled by mirrgriMPACT Servers, so as to ensure that
if one server is not available, others can provide essesgialices. The synchronization module has
the task of ensuring that updates in one server are mirrorether servers.

The issue of communication between agents in IMPACT is nosidered as something that
should be stadardized at the infrastructure level. The Mgs8ox is intended to parse any message
and allow the rest of the agent architecture to handle thesagesin a standardized way. As a result,
it is up to the application developer to provide an apprdprimplementation of the Message Box
component. There is also no specific support for coordindietween agents.

154 Agent Building Software

The IMPACT toolkit provides an agent development environtnealled AgentDE, that allows
developers to define every aspect of the agent that formsopéine agent wrapper. The AgentDE
can maintain a library of actions, agent programs, serveseidptions, and other definitions used
during development so that they can be quickly re-calledranded. Various connections to external
databases are also defined using the AgentDE. Once an ageheéa defined, the AgentDE can
perform a number of checks to ensure that the agent fulfilsaben of requirements for consistency
and safety. It then produces a binary file, called the agetddaéa file (a serialized set of Java objects),
which must then be copied to the target Agent Roost iniédilan directory. There it is deserialized
by the Agent Roost and placed into operation. A more autadnatecess, where the AgentDE can
directly communicate with active Agent Roosts and trangferagent metadata file over a network
connection is under development.

155 Management Software

Management in IMPACT revolves around managing Agent Rodstis possible to access both
through graphical interfaces. The Agent Roost interfat@nal developers to monitor the state of
individual agents in the Roost and the incoming and outgoiegsages in the Roost.



18 Agents Book

1.6 JADE/LEAP
1.6.1 Background

The JADE (Java Agent Development Environment) toolkit juleg a FIPA-compliant agent platform
and a package to develop Java agents. It is an open-souljeetpstributed by TlLab (Telecom
Italia Labs) that has been under development since 1999 atbTdnd through contributions by its
numerous users. At the time of writing, version 3.01b1 islakée, and it implements the FIPA2000
specifications. The platform has undergone successfubjmeability tests for compliance with the
FIPA specifications.

LEAP (Lightweight Extensible Agent Platform) is the resafta research project funded by
the European Union and undertaken by a consortium of orgémis coordinated by Motorola and
including Broadcom, BT, TlLab, Siemens, ADAC, and the Unsity of Parma. The aim of the project
was to provide an agent platform that is suitable for limibegbability devices, such as PDAs and
mobile phones.

The relationship between the two projects is that LEAP isgatlveight implementation of
the core functionalities of the JADE FIPA platform, and canused in conjunction with the JADE
libraries for agent development. The latest release of J&dgrates LEAP so as to provide a unique
toolkit that enables the development of FIPA-compliantraggplications on devices ranging from
limited capability mobile devices to desktop computers.

The JADE toolkit has been widely adopted throughout the ayaahd there is an active com-
munity that contributes to its development and offers aoldiitl tools. Some examples of applications
involving JADE are the development a multi-agent informatsystem supporting the consultation of
a corporate memory based on XML technology, communicatgents for dynamic user profiling,
collective information dissemination and memory managgnand agent-based health care services.

In arelatively recent development a Jade Board has bedrlisbtd, governed by Telecom lItalia
Labs and Motorola, which is open to all companies and orgdiniss that have an interest in using
and further developing JADE. More information about theeJBdard, additional documentation, and
links to downloading the JADE toolkit can be found onlihe

16.2 Agents

The JADE toolkit facilitates the development of agents tbah participate in FIPA-compliant
multi-agent systems. It does not define any specific agettitactures but provides a basic set
of functionalities that are regarded as essential for aoreumous agent architecture [6]. These
are derived by interpreting the minimum concrete programgmiequirements for satisfying the
characteristics of autonomy and sociality. Autonomy iglipteted as an implementation of agents as
active objects (i.e. with their own thread of operation)eTaquirement for sociality leads to enabling

5  http://sharon.cselt.it/projects/jade/



Agent Toolkits 19

Beliefs
Behaviour, | | | | Behaviour, Capabilities
Application-
Inbox of ACL Behaviour LifeCycle (:ngﬂiir:
Messages Scheduler Manager

Figurel5 Jade Agent Components

agents to hold multiple conversations on a peer-to-peds llaough an asynchronous messaging
protocol.

This basic single agent infrastructure is provided thromaghAgent class, which developers
then extend to provide their own implementations of agetegrams extending the Agent class
operate within JADE containers that manage the agent bfecyAgents can be started, stopped,
removed, suspended and copied. Furthermore, each ageattess to a private message queue,
where messages are stored until the agent chooses to edtnmw, and access to a set of APIs that
allows the formulation of FIPA ACL messages. An outline af thain aspects of the agent class are
illustrated in Figure 1.5.

Specific agent actions take place through a concurrent tasleinEach task, or behaviour
as it is termed in JADE, is an extension of the Behaviour ct#sthe JADE toolkit. Each agent
has a behaviour task list, and the Agent class provides rdsttos adding or removing behaviours.
Once an agent is placed within a container and set into aperditehaviours are executed based on a
round-robin non-pre-emptive scheduling policy. Of coyucsenplex tasks require a more sophisticated
scheduling of behaviours as well as the conditional exeouti behaviours. JADE provides models
that are divided along the lines of Simple behaviours, tor@skitasks not composed of sub-tasks,
and Composite behaviours, to address tasks made up throegiomposition of several other tasks.
There are also cyclic and one shot implementations of Sitvgtaviours, and parallel, sequential and
finite state machine implementations for Composite behasidevelopment is further aided by the
provision of specific implementations of Behaviour to hangthsic tasks such as receiving or sending
messages, and support for the set of interaction protoedilset! by FIPA.

The LEAP core for JADE offers a lightweight version of the JABontainer that can operate
on PDAs. LEAP agents use a device-specific Communicator hapethich handles the specific
connectivity protocols of the device and network at handemg for limited devices use the same
task-based model as JADE agents, within the limitations@fevice at hand.



20 Agents Book

1.6.3 Multi-Agent Systems

1.6.3.1 Low-level Services

Multi-agent systems in JADE can be divided into three firsteo components. A JADE Platform is
made up of a number of Containers that operate on individaahines. Each Container can have a
number of Agents within it. A Platform can be thought of asmiefy a common application domain,
and agents within this platform have access to the samestnficural services. Containers handle
the communication between agents and access to Platfomces®rCommunication within JADE
platforms is based on JAVA RMI.

Communication between platforms is based on the FIPA-d#flessage Transport Protocol
(MTP) over which ACL messages can be sent. The actual impitatien of the MTP can vary, and
FIPA provides specifications for a number of different tembgies. As a result, JADE provides a
pluggable MTP framework along with concrete implementaithat include an Internet Inter-Orb
Protocol (IIOP) and an HHTP implementation.

Agents on mobile devices can communicate within the JADEfgia through a gateway
workstation that provides a translation of messages coffinang limited devices into either Internet
InterOrb Protocol (110OP) or Java RMI.

1.6.3.2 High-level Services

The high-level services offered by JADE follow the FIPA dfieations, so we will avoid a long
description here as the specifications are covered in anciiapter. Each JADE platform has access
to an Agent Management System, which manages the platfochs@pervises access to it as well
as providing White Pages services. Yellow Pages servicesfmed by Directory Facilitators and
several can exist within a FIPA platform. JADE provides ismentations of the SL-0 content
language and Agent Management Ontology that is used by th® ahdl DF services to communicate.
Finally, FIPA-defined interaction protocols are also supgzh

JADE supports the development of user ontologies througlava package that offers a
set of classes providing the common high-level terms for amiplogy, such as Action, Result,
TruePreposition, etc.

Agents in JADE can take advantage of support for mobility mvenbetween containers. At
the time of writing, only inter-platform mobility is suppted. Agents can be completely removed
from one container and placed in another, or they can be dlaneoss many containers. Mobility
introduces the notion of location and other related isss@gADE provides a mobility ontology that
allows agents to describe such concepts.



Agent Toolkits 21

1.6.4 Agent building software

JADE is a set of APIs that can be use to deploy an agent platbowindevelop agents. No software
is provided to guide this process. However, there is exterdbcumentation of the APls, a detailed
Programmers Guide, and a wealth of examples.

16,5 Management Services

A significant number of utilities are provided for managinglanonitoring the activity of an agent
platform. A Remote Monitoring Agent (RMA) provides contwaf the platform lifecycle and all the
registered agents within the platform. It provides a GUI ahhiamongst other functions, allows
access and control to individual agents, such as startidgstopping them and sending custom
ACL messages to them. Through the RMA, a separate GUI thawvalmanagement of Directory
Facilitators can also be launched. A Dummy Agent utility graphical tool that enables developers
to perform all the main activities any agent can perform fiehave like an agent in the platform).
As such, it is a useful debugging tool that can help indicatene communication between agents is
not developing in the desired manner. A Sniffer Agent alltkessmonitoring of messages exchanged
between a group of agents. Finally, an Introspector Agemtiges information about and control of
the lifecycle of a single agent.

1.7 JACK
1.7.1 Background

JACK is an agent development environment produced by thetX@edented Software Group, which
has its headquarters in Melbourne, Australia. JACK was fefased in 1998 and is currently
at Version 4.0. It has a wide user base, both in commercial aoadlemic environments. It is
commercially available, with special licenses for reskqmarposes. A demonstration version is freely
available.

There are two guiding principles underpinning the develepnof JACK. Firstly, agent-oriented
development can be thought of as an extension of objeamededevelopment. As a result, JACK
operates on top of the Java programming language, acting eg@nsion that provides agent-related
concepts. JACK developers compare it to the relationshiprdeen C and C++, where the latter is
an extension of the former for providing object-orientecha@pts. Secondly, agents in JACK are
intelligent agents in that they are based on the Belief4dsitention architecture. JACK is also
supportive of agent standards can FIPA-compliant system$e produced using JACK.

The JACK development environment can be divided into thrasnmmomponents. The JACK
Agent Language is a superset of the Java language, andun&edew semantical and syntactical
features, new base classes, interfaces, and methods twitlealgent-oriented concepts. The JACK



22 Agents Book

Compiler compiles the JACK Agent language down to pure Jswahat the resulting agents can
operate on any Java platform. Finally, the JACK Agent Kersghe run-time program within which
JACK agents operate, and provides the underlying agentiunadity that is defined within the JACK
Agent Language.

More information about JACK including documentation andess to the toolkit itself can be
found online®.

1.7.2 Agents

Although JACK can support a wide variety of agent architezsyuthe default architecture, and the
one that is clearly supported through appropriate condapte JACK Agent Language, is the BDI
architecture.

The Agent base class is the central artefact of the JACK Algeguage. Through it, developers
define beliefs, plans, external and internal events andbilétjes. This class is intended to be extended
to implement application specific agents. Agents schediiierss, including concurrent actions, using
the TaskManager. A timer can provide different notionswitj such as a real-time clock (through the
system clock) and a dilated clock that can be fast-forwardiegved down or even stopped. Finally,
the Agent class provides support for sending and receiviegsages.

Beliefs represent the knowledge that an agent possesses thigoworld. A BeliefSet is a
database of beliefs that represents beliefs through aofidgtr, tuple-based relational model. Although
agents can store information outside a BeliefSet, it ismenended that BeliefSets are used, since
they can provide logical consistency, automatic updateebéfs based on events, and allow powerful
queries on beliefs.

Plans are sequences of actions that agents execute oningcardevent. Each plan in JACK
corresponds to a single event, and multiple plans can bamecio handle the same event. Reasoning
capabilities are provided to aid in outlining the requirettidion-making for deciding which plan to
perform when an event occurs. This reasoning is based olahespelevance to a given situation and
permitted context based on the agent’s beliefs.

Events within the agent architecture are divided into: mxkevents (e.g. messages from other
agents); internal events, initiated by the agent itselfl arotivations. Motivations are described as
goals that the agent wants to achieve. Events kick-staidragt JACK by activating the required
plans that may, in turn, raise other internal events or cayrnal events.

Capabilities provide means for structuring a set of reagpaiements into a coherent cluster that
can be plugged into agents. This enables the creation afil# of capabilities that the developer can
use to provide agents with particular functionality. Cdfiéds can contain within them the relevant
plans, beliefs and events, as well as the final code thatwgilement the actions required by the plans.
Through this notion, JACK promotes a high level of code re-aisd the incremental development of
agents.

6 http://www.agent-software.com



Agent Toolkits 23

1.7.3 Multi-Agent Systems
1.7.3.1 Low-level Services

Networking capabilities in JACK are based on UDP over IPhwitthin layer of management on top
of that to provide reliable peer-to-peer communications.

1.7.3.2 High-level Services

Agent communication between agents is handled by the JAGKd{eAgents can exchange messages
by specifying the name of the agents they wish to communiegte assigned at the time of creation,
and the JACK Kernel takes care of routing the message to theppate agent. If an agent resides
on a remote host then, along with the agent name, a portal mausé be specified, to indicate to
the JACK Kernel the logical network address of the remote.Hésally, a rudimentary Agent Name
Server is provided that can provide the required portal nemoase it is not known. As mentioned
earlier JACK supports interoperability with other FIPArgpliant agent systems, and to this ends the
FIPA ACL is supported. However, there is relative flexilyilitb change communications languages
since the MessageEvent objects simply define the messagstrasya

JACK provides support for coordination between agentsdasdeam Oriented Programming.
This coordination mechanism views a group of agents as aenduodl assigns goals to a team of
agents, which must then coordinate their activity to achithe team goal. In order to enable this,
JACK offers a plug-in to the main JACK development environinealled SimpleTeam. It does not
specify specific team management techniques (e.g. hiécatthut allows developers to assign roles,
specify concurrency constraints and define team plans.

174 Agent-building software

JACK provides a comprehensive, graphical agent developmevironment. A high-level design
tools allows a multi-agent system application to be designedefining the agents and relationships
between them, in a notation similar to UML. Details of indival agents can also be specified at this
level. This design can then be used to generate code outhinean-editor allows plans to be specified
as decision diagrams. Along with these high-level toolerghs a component browser that allows
developers to specify the actual agent code using the JAG&h®Rganguage. Finally, a plan tracing
tool and an agent interaction tool allow developers to igadahe monitoring of an application.

175 Management Services
An application can be monitored through an Agent Tracingt€@dler. This graphical tool allows a

developer to choose which agents to trace and provides alvegpresentation of the agents stepping
through their plans.



24 Agents Book

18 LIVING MARKETS
1.8.1 Background

The living marketstoolkit is produced by Living Systems AG, which have theiatiguarters in
Donaueschingen. The company has been developing agesd-daistions since 1996 and their toolkit
is being used in a variety of settings including complexitrggrocesses, logistics and distribution,
and voice and bandwidth trading and settlement. They havel@alient base and have won several
awards including Leading Technology Pioneer as recogtogede World Economic Forum and Best
German Internet Company.

The living marketstoolkit is divided into a base agent server, which handlesapplication
domain independent issues relating to agent-based dewetdpand specific solutions for specific
markets (ranging from transportation to intra-enterppsaduction and deal flow optimisation) are
built on top of the agent server. Similarly to JACK, agensdsh development ifiving markets
is considered as a natural progression from object-orietgehniques to role and goal-oriented
programming techniques. As such, the adoption of an agesgeb approach to building systems
represents paradigm shifin dynamic systems development, rather than simply anraltize pattern
of object-oriented development. The base agent serverogrgammed using Java and the default
communication is done through Remote Method Invocation jfRMbwever, there is also support for
a range of industry standards such as XML, Secure Sockets (8§L), Hypertext Transfer Protocol
(HTTP), and the Common Object Request Broker ArchitectG@RBA).

Living Systems is primarily a solutions company, so theypadaeir toolkit to specific customer
needs as opposed to marketing the toolkit directly. As dtréss harder to identify specific features,
as we have done with other toolkits as there is a range of femtadapted to and developed for
specific markets. However, it still represents as intemgsshow case of what is pragmaticagent
system. More information about the company and the too#ittoe found onliné.

18.2 Agents

From an abstract level point of view agentdiuing marketsare understood as proactive, goal-directed
entities able to perform actions and perceive the enviromikhey have specific domain expertise
and may adopt roles. Agents, similarly to RETSINA, are saléesgd into four generic types according
to functionality.

Application agents These are domain specific agents and represent the mainwuargohality of
the system.

Integration agents These agents are dedicated to integrating the rest of thensywith existing
systems outside of thevzing marketsenvironment.

7  http://Iwww.living-systems.com



Agent Toolkits 25

Interface agents Interaction with the system by people is handled throughrttesface agents.

System Agents These are the agents that handle the management bfitlgemarketssystem itself
performing tasks such as performance monitoring and lokohbimg.

At the practical, implementation level agents generallgrape within the agent base server,
called LARS (living agents runtime system), and commumiday exchanging XML messages.
Within LARS servers agents occupy their own thread of op@maso multiple agents can operate
concurrently.Remote agentthat operate outside a LARS server (e.g. on a mobile cliemt)latso
supported, albeit within the limitations of the environrhesithin which they operate. In reflection of
the application ofiving marketsin financial domains there is strong support for messageyption
using the RSA encryption algorithfhand the Blowfish key algorithrd. Once decrypted the XML
messages are stored in a message box that can then be pideesise agent based on a set of logic
rules, the agent'standard logicthat defines its basic behaviour. This handles applicatmmnain
independent activities such as requests on the status afgerg or requests for moving to another
LARS server. Thdiving marketagents also have a set of business rules, which definbusiaess
logic. This is where the logic for dealing with specific businesscesses in encoded. The business
logic interfaces with gersistence layethat can allow agents to store or retrieve information from t
file systems or databases.

Beyond the distinction between business and standard fbgie is relative freedom in devel-
oping agent architectures within thiging markets The business rules can be coded to access a set
of capabilitiesmade available by the server that they can use to achievegpetific tasks. Such
capabilities can also include components that allow theriate with external applications.

1.8.3 Multi-Agent Systems
1.8.3.1 Low-level Services

The low-level services provided by thiging marketstoolkit are primarily concerned with enabling
access to external systems and communication betweersa@betL ARS servers provide a dedicated
communication channel that enables communication betagents within a single server as well as
a special message router agent, which is able to route nessagther message routers residing
on other LARS servers. When agents reside on the same serssages are Java objects passed by
reference between the agents. When communicating extethalldefault communication method
is Java RMI, alhtough a variety of alternative channelsluidiog strings over basic sockets, can be
supported.

There is strong support for integration of agents with exeisystems, either through file
transfer or HTTP messages or through application programnmterfaces that can be connected

8 RSA (named after its inventors Ron Rivest, Adi Shamir and beddleman) allows a person to
encrypt a message usingablic keythan can only be decrypted by the holder gfrivate key
9 Blowfish is a fast symmetric block cipher.



26 Agents Book

to agents. The support for integration extends to Entexplmva Beans (EJBs) servers through
customised beans that link EJB servers to LARS servers.

Theliving marketssystems attempts to address the issue of scaling ageninsysiedeal with
potentially hundreds or thousands of agents interactinge(s realistic expectation in a financial
environment). To this end, LARS servers are designed so takéoadvantage of multi-processor
environments and can also be arranged into clusters. Iti@ddsince there is support for mobility
of agents between servers, agents can be moved automaticathe right servers to improve
performance.

1.8.3.2 High-level Services

Theliving marketstoolkit offers a wide range of high-level services for agapplications reflecting
the range of application environments it has been used intheopurposes of this review we focus
on the support offered for business-to-business appicatialthough several of these issues apply to
other domains as well.

The toolkit divides the required services into four tiersdx on functionality. Firstly, agents
need to be able to search for partners in deals, for productsrservices. The toolkit supports
means for describing this information and making it avddab agents. Secondly, service providers
and service requests need to be matched. liMireg marketstoolkits support a method they term
softmatching With this method results on searchers can be returned lmas#tkir similarity to the
actual request. The level of similarity required can be Bigecby the agent. Thirdly, the toolkit
supports a range of dynamic pricing mechanisms that all@mtzgo decide on the price for service
provision. This mechanisms include English, Dutch, Revemsd Vickrey auctions?, as well as
bilateral and multilateral negotiations. Finally, thetlier deals with the clearing and settlement of
deals supporting physical and financial settlements.

Agent communication is based on the FIPA ACL, packaged witkML messages. The
message channel within the LARS servers and the messa@e take: care of delivering the message
to the appropriate recipient. Finally, there is supportfansaction management across platforms and
databases.

1.84 Agent Building Software

Agent development is supported by an integrated graphigaitalevelopment environment, tiheéng
marketsDevelopment Suite. This software allows application depets to visually desigagent
scenarios which are representations of the main agents in the systeinth®& communication flows
between them. For each agent the developed can provide @pdiescof the agent, a list of the main
goals and their relative importance and the services thatageneant to provide. Based on these
scenarios agent can be created and business logic definethih d

10 A description of different auction mechanisms in the cantéagent-mediated eCommerce can be
found here [25].



Agent Toolkits 27

1.85 Management Software

Management in dving marketssystem is divided between day-to-day management of enyterns
and more detailed management of the agents and the servers.

General management capabilities are provided throdgling marketsManagement Console.
This application provides a web-based interface that isntnteeallow the day-to-day administration
of the application. More detail management and control dividual agent is provided through a
control centre that allows detailed access to each LARSesamnd the agents residing on the server.
Individual messages can be scrutinized and settingsniglédi communication infrastructure can be
controlled.

19 OTHER TOOLKITS

This chapter focuses on and analyses in some detail siXisaymti toolkits for agent-based develop-
ment. This six can be considered as representative of tige @frideas currently prevalent. However,
they are by no means the only ones. In this section we verflyodescribe a few more toolkits that
have had significant use so as to provide a more comprehessiwef the wide range of propositions
available.

agentTool agentTool [30] is a toolkit developed at Kansas State Usitein direct support of the
Mutliagent Systems Engineering methodology [15], alscettgyed at KSU. The methodology
specifies seven stages starting from identifying the sysfeats then applying use cases and
deriving roles based on them. Subsequently, agent classeseated, conversations constructed
and agent classes assembled. Finally, the overall systployteent takes place. The agentTool
software supports the construction and assembly of agasse$ and conversations, through
graphical tools, that lead to the generation of the actuahtagode. The architecture of the
multi-agent system and individual agents is supportedutinca notion ofconcurrent tasks
where each task defines a certain decision-making capabgisk are designed graphically as
finite state automata and tasks can integrate both intratagel inter-agent relationships.

Agent Factory The Agent Factory [12] is developed at the Practice and Relsda Intelligent
Systems and Media (PRISM) Laboratory of the University oblu It provides extensive
support for development through a graphical environmedtaadistributed run-time platform
that scales from workstations to limited-capability PDA%ere are some FIPA-compliant
aspects such Directory Facilitators and FIPA managemeamtagDevelopment is supported by
a structured methodology that leads to the implementatid@Dd-type agents, The definition
of agents is done through an interpreted programming lagggbased on a formal logic model.

BOND BOND is a FIPA-compliant multi-agent system developed a& tniversity of Central
Florida. The main motivating concept behind the BOND agefastructure system is the



28 Agents Book

view of agents as active mobile objects with some level oéliigence [7, 8]. Another
significant design decision is to enable the dynamic recaordigpn of agents [9], to answer
to the dynamically changing requirements placed on agepiicapions. Agents are build using
BOND objects. These objects represent an extension of ntioval Java objects through the
addition of a unique identifier, dynamic properties, comioation support, registration with
a local directory, serialization and cloning, multiple émtance and support for editing via
a graphical interface. A BOND agent is viewed as a finite staéehine with an agenda to
follow (i.e. goals to achieve) based on strategies that aadenavailable to agent. There are
two possibilities for the creation of a BOND agent. They cancbeated statically based on
the BOND agent framework APIs or dynamically using what ikechithe BOND Blueprint
language. Through this language the various component8OND agent can be described and
are assembled dynamically vialmndAgentFactoryBOND agents can also be serialized back
to Blueprint for persistent storage or transfer to othetdhiadhere they can resume operation.

CoABS The CoABS!! (Co-operating Agent Based Systems) project is funded by PAMDefense
Advanced Research Projects Agency) and the goal is to bndblag infrastructure that will
allow the integration of agent-based systems developddatfiter toolkits. In order to achieve
this it makes use of Jini middleware technology, and offenappers for each agent that provide
basic infrastructure service in a Jini context such as sigigm, security, visualisation and

logging.

DECAF The DECAF (Distributed, Environment-Centred Agent Fraroey toolkit is developed at
the University of Delaware [22]. DECAF focuses on the indisal agent architectures rather
than the underlying distributed infrastructure, althobgisic Agent Name Server services are
provided. Agents in DECAF can be programmed used a purpesmECAF language that
allows developers to program agents using coarse grairept;isuch as agent actions that
abstract away from the more fine-grained JAVA programminggleages method calls that
implement the functionality. DECAF agents also benefit froamefully thought out planning
(based on TAEMS [44] and execution scheduling facilities][2

Open Agent Architecture The Open Agent Architecture (OOA) [32] is developed at théfiial
Intelligence Center of SRI International. Agent commutiaraand coordination is handled by
specialisedracilitator agents that can handle the distribution of tasks to othemtagenabling
the execution of complex goals, as well as act as global datassfor the agents. Other agents
in the system are divided into application agents, interfagents and meta-agents. Meta-agents
are similar to the facilitator in that they offer coordir@ti support but whereas facilitators
are domain independent meta-agents are domain depenaeniihication between agents
is based on an OOA-specific Interagent communication lagguginally, the toolkit comes
with a range of useful agents already configured such as al&aggnt, that implements the
Google APIs for programmatic access and a Wordnet agent.

11 http://coabs.globalinfotek.com/



Agent Toolkits 29

Sensible Agents Sensible Agents [3] is a toolkit is being developed by thedratory of Intelligent
Processes and Systems at the University of Texas at Ausprovides a distributed environ-
ment for agent operation and communication. The main fogas ideveloping agents that are
able to aid in decision making in environment with limitedoarces. There is extensive support
for modelling capabilities to provide the appropriate kielge for agents to reason about the
environment and powerful planning capabilities. Agents able to plan and make decisions
on goals and actions priorities and the level of control aenags allowed to take decision can
be adjusted at a global level through appropriate restrgisiructures ranging from command-
driven slave-master relationships to each agent beindiydadly autonomous.

SoFAR The Intelligence, Agents and Mutlimedia Group at Southampiniversity has developed
the SoFAR (Southampton Framework for Agent Research) itd8I&]. The focus of SOFAR is
on providing a reliable infrastructure that supports agemhmunication and discovery in the
domain of distributed information management (e.g. hawgdihetadata streams synchronously
with multimedia streams over a wide-area network [13]). Tir@n contributions are a robust
communications layer that abstracts away the low-levelitbefrom the actual agents, extensive
support for managing and integrating ontologies into thenadpased system, and registration
and subscription of agents to services based on contragesntéand ontologies can be specified
in XML files, facilitating reuse and abstracting away fronegramming language issues, which
are then processed by tools provided with the framework teigge the appropriate code for
agents and supporting ontologies.

The chapter, so far, has not touched on toolkits focused aviging infrastructure for mobile
agent systems. There are several such toolkits (e.g. D%&d28], Aglets [27], Mole [4], SOMA [5]),
but their focus is on enabling mobility and dealing with thenitable security issues [11, 26, 43] rather
than on the wider issues of agent-based systems develophtentain aim of mobile agent research
is to automate the process of moving code from one computandther. In traditional software, the
decision of whether to migrate is made externally to the dbdé will eventually migrate while in
mobile agents the decision of whether to migrate is conthimithin the mobile code unit that may
eventually migrate. Much has been written about the mefitqabile agents (e.g. [28, 24]), with
the most important advantages being locality of refereadeigh degree of adaptability and fault-
tolerance. Such systems, however, have also faced signifiesistance due to the security concerns
and doubts about their true advantages. Despite such feansdrease in mobile users is making the
issues mobile agent research deals with very relevant.Xaangle, a mobile phone or PDA entering
a new office and seeking services for its user is very similar mobile agent moving to a new host.
Even more complicated is the situation where a user travedmtarea where service provision is
provided by a different organisatioroaming. The concepts of agents and mobility are now coming
together to provide solutions for such problems (e.g. [28, &s such it can be expected that future
agent-based systems toolkits will have to exploit the lesdearned from mobile agent research and
related them to the issues dealt so far.



30 Agents Book

110 DISCUSSION

The six toolkits outlined in this chapter form a represeémeasample of the current state of the art in
the field. All have a history of at least three years of develept and have been used in a significant
number of applications that have proved that agent-basgdraydevelopment can bring true benefits
to the appropriate application domains. As such, they clpeatiescribed asuccessfuattempts at
providing an agent toolkit. Nevertheless, few guides erisid in ascertaining which of these is better.
For example, there is no clear answer to the question of whetktandardized ACL is better than an
application specific one in the case where the applicatiomlseveloped is not envisaged to operate
in an open environment which any agent can enter. This spéssfile is further complicated by the
fact that even those toolkits that use a generic ACL, sucha&PA ACL, may still not effectively
support truly open agent systems since other aspects afftlastructure constrain agents.

This section attempts to draw some links between the six toalkits reviewed in this chapter,
while a summary of their features is provided in Figure 1!6e @ifferent approaches that each toolkit
takes for each of the aspects considered are discussedveitbrgpme of the relative advantages and
disadvantages they offer.

1.10.1 Agents

Of the six toolkits the only one which does not provide siguifit structure for an agent architecture
is JADE. However, the task-based model it supports provategffective framework upon which
to build agent architectures, and it provides some basicepi®f functionality such as handling
messages and participating in coordination protocols.h®fdther five architectures, three (ZEUS,
RETSINA, JACK) are essentially variations of the Beliefdre-Intention approach, with JACK
offering the most “faithful” interpretation of the architire. It is difficult to argue for which of the
three offers the best implementation, since there areivelatlvantages for each. ZEUS provides
a more consistent separation of issues of resources andisnaidether agents; JACK offers an
effective and efficient system for managing beliefs throtigd BeliefSet; and, finally, RETSINA
provides significant supporting infrastructure throughltbgger module and powerful scheduling and
monitoring capabilities. To a large extent, the choice magpends on how well specific application
requirements can translate to the exact definitions pravige each. IMPACT departs from the
traditional approaches and places a lot of emphasis on tlity &dbguarantee that agent behaviour will
follow certain constraints. As such, IMPACT can be consdea pioneer from this point of view. At
the same time, some analysis would be necessary to verifthetiie added complexity introduced in
the architecture is worth the guarantees offered for belavi heliving marketsapproach is perhaps
the closest to current industry practise in enterpriseiegjgbn systems since the notion lafisiness
logic and standard logicwill resonate with similar notions in more standard teclogs such as
Enterprise Java Beans.

The only real conclusions that can be drawn is that in ordehtmse between them a developer
should carefully weight the advantages and disadvantagesdtionship to the specific application



Agent Toolkits

Toolkit Agents Multi-agent SyStems Agent-building| Management
Name Low-level services | High-level services Software Services
‘; Goal-directed v TCP/IP v FIPAACL v Graphical v System
v '\Plllglrt\l;ti?kan d Communication v Agent Name Agent visualisation
Scheduling 9 Server development v Statistics
v" Support for v Match-making environment on system
ZEUS coordination protocols services (yellow v Automatic performance
pages) code generation
v Coordination
protocols based on
Contract Net
variations
v Goal-directed v Communicator v KQML v Integraton | v Agent
gcheF:jlﬁlri]r?mg and Module abstract v Agent Name with Microsoft Activity
v Agent% specialised in underlying network Server Visual Studio visualisation
Information Agents, protocols v Matchmaker v Agent
Interface Agents, Task v Support fora services (yellow Name Server
Agents and Middle Agents | variety of protocols pages), Broker and Management
RETSINA within the toolkit Blackboard
v Multicast v' LARKS Service
discovery based on Description Language
the Simple Service v" WordNet
Discovery Protocol Ontology
v Security based
on public keys and
Certificate Authorities
v Agent Program v AgentRoostsact | v Yellow Pages v Basic v Agent
Language with regulatory | 4 containers for v Thesaurus Agent Roosts
rpodglltles ind fo agents v Type Server Development managed
IMPACT | con cu?r?e?\(t)rggt?onsr v RMI-based v Synchronisation Environment through
v Strong safety communication v Service similarity graphical
checking (Operating between Agent matching algorithm interface
Principles, Integrity Roosts
Constraints)
v’ Task-based model v Agent Containers | v Fully compliant v Application | v Remote
‘gg:‘aﬁg‘%lg' Egr?tl:g’l and v RMl-based with FIPA Programming Monitoring
Finite S’tate?\/lachine communication specifications Interfaces with Agent
behaviours v FIPA Message no graphical v Directory
v/ Communications Transport Protocol - support Facilitator GUI
JADE Support based on FIPA IIOP and HTTP v Dummy
standards support Agent
v Sniffer
Agent
v Introspector
Agent
v Agent language as v UDP v FIPAACL v Fully v Agent
:"/Xteg%‘l’_"mcg dtal"a communication with v Basic Agent Integrated Tracing
v Planning capabilities thin management Name Server Graphical Controller
JACK v Modular structures layer v Support for Development v Plan
allowing grouping of plans Teams-Oriented Environment execution
and actions Programming with graphical visualisation
representation
of plans
v' Standard and v RMl-based v FIPAACL v Fully v Back-office
3US"IIJeesr:ilsqtgl:ce layer communication v Negotiation Integrated web-based
living v EJB integration é ORSBlfpgg I_fo:_| e gtratzgle.s Graphical Management
, , s uction protocols | Development Console
markets and Sockets support Environment v Detailed
v RSAand administration
Blowfish encryption of agents and
v Load-balancing servers

Figure1l.6 Review of features for toolkits




32 Agents Book

being developed and the expertise available to the develBpeexample, if one is not familiar with
the BDI approach or artificial intelligence planning teajugs the effort in learning that may not be
worth the more direct results achievable through a diffeagproach. It is also worth noting that in
domains where there are limited capability devices the rightweight architectures of JADE and
living marketscould prove much more suitable.

1.10.2 Multi-Agent Systems
1.10.2.1 Low-Level Services

Of the systems reviewed, ZEUS and JACK offer the most ligighiesolutions, using the TCP and
UDP protocols respectively over IP networks. This provitliesbility at the cost of a lack of features,
and forces the agent toolkit developers to provide the reduiunctionality. The IMPACT]Jiving
marketsand JADE toolkits use the more heavyweight JAVA RMI To a certain extent, this is a
limiting factor, since RMI consumes resources and can cimatigl the deployment process. In general
it can be argued that remote method invocation techniguesaunter to the philosophy of multi-agent
systems, where agents should call on other agents to petésia using high-level communication
language. RMI is perhaps more suitable for traditionalritisted systems where the purpose is to
abstract network issues and allow the remote invocationethods in a manner that appears similar
to local method invocation.

RETSINA andliving marketsprovide a more balanced use of low-level services. RETSINA
makes interesting use of the relatively lightweight SSB¥ealWvery protocol for dynamic infrastructure
discovery, and allows direct communication between agéits RETSINA approach indicates how
new generation middleware technology can be highly effedtn providing the low-level services
required by multi-agent systems.

RETSINA and ZEUS allows agents to operate as stand-alorgraores with all the required
functionality to support participation in and communioativith other agents contained in each agent.
This provides significant flexibility, and allows the deveds to choose which infrastructural services
an agent needs to participate and, as a consequence, supfolK, JADE, IMPACT andliving
marketsall provide some sort of container from within which agertsidd operate. On the one hand,
the benefits of a container are obvious, since the contaarecantribute significantly to the required
supporting services for all agents, provide a standardmedns for handling communications, and
seems to be the only way to support mobility for agents. Orother hand, using a container brings
with it related costs and limits developers significantliaw much liberty they can have in employing
alternative approaches. Perhaps the solution would bedtkits to support both modes of operation
to give developers the best of both worlds limgg marketssupports to a certain extend for agents
operating on limited-capability devices.

12 Alhtough alternatives are possible even within thesékitsoRMI is the default and most well-
supported approach



Agent Toolkits 33

1.10.2.2 High-Level Services

The system review has revealed that the single most impoligh-level service functionality is
the discovery of other agents. The solutions revolve ardWhite Pages and Yellow Pages services.
ZEUS, RETSINA and JADE provide both, while IMPACT providedya Yellow Pages service, and
JACK only a White Pages service. Tlidng marketgoolkits provides something similar to a Yellow
Pages services along with the notion safftmatching which allows a relaxation of the matching
criteria, a feature that is very appropriate in businesinggst

IMPACT differentiates itself from the others through areatiative approach for Yellow Pages
services by using a simple service description language aosverful similarity matching algorithm.
This acknowledges that in heterogeneous environmentgcsatescriptions and requests may not
always be consistent and some means are required to deatheitbroblem. This approach might
become more common in the emerging environment of the SémaAlb and Web Services.

Nevertheless, since IMPACT does not provide a White Pagegseit excludes the possibility
that an agent may have prior knowledge of which agent it wantsntact but not the contact address
of that agent. Furthermore, it makes it difficult to monito@etly which agents are registered in
a multi-agent system. ZEUS and JADE consider this a vitattion and require that all agents
register with the White Pages service. JACK seems to assuaténtimost cases agents will have
prior knowledge of which agents they need to contact and nwyewen require a White Pages
service. RETSINA is the most flexible toolkit in this respesihce it provides both White and Yellow
Pages services, but does not require that either is avaiialblootstrap the system since infrastructure
services can be dynamically discovered.

Agent communication languages are clearly supported bythall systems (ZEUS-FIPA,
RETSINA-KQML, JADE-FIPA, Jack-FIPA andiving marketsFIPA). IMPACT supports message
exchange between agents but does not define a specific agantitication language. The benefits of
a standardized communication language, such as FIPA, sieustin open environments but are not
as clear in more specialized domains where a simpler approag provide the required functionality.

Some form of ontology support is available in all the systewith ZEUS, JADE and JACK
providing a more open approach where support is providedspetific ontologies are considered
to be an application domain issue. RETSINA provides supfmriarge, generic ontologies that
can cover a wide range of domains. IMPACT allows for ontasgiodevelopas new agents enter
the system, by allowing developers to relate the new cosdeptoduced to existing ones. Again,
IMPACT's approach may indicate that this is a possible pathdrge-scale heterogeneous systems
where consistency is difficult to achieve. Neverthelesspitocess may become unwieldy if too many
new concepts are introduced, and relationships betweemtingst be made by developers.

Although all the systems concerned can claim to supportiragknt systems in heterogeneous
environments, the claim for support fopenheterogeneous systems is much harder to maintain. Open
heterogeneous systems require standardization, suclatgsrtvided by FIPA, but at the same time
need to acknowledge that flexible infrastructure suppée RETSINAS is vital, and systems for
dealing with inconsistencies such as IMPACT's will play ayenportant role.



34 References

1.10.3 Agent-building software

All the toolkits, with the exception of JADE, provide someead) building software, with JACK's
andliving marketsbeing the most refined, a clear reflection of their commelmakground. It could
be argued that what is required is a development environiikenthe one JACK ofiving markets
provides, combined with the infrastructural services fted by the other toolkits. Although agent
technologies have progressed significantly, researctegsgannot expend the resources required
to develop sophisticated development environments. Bhiteiarly an issue that must be dealt with
through the take-up and support of such technologies bysinglu

Another important issue in relation to agent-building waifte is the methodology used to
develop a system. A refined agent development environmeritl @so act as a guide through the
methodology for an agent-based development. JACK, ZEUSlimimdj marketsall allow for these
through different routes. However, similarly to infragtture issues there is as yet no clearly agreed
common methodologies.

1.10.4 Management Services

All of the systems provide some sort of management, but thiddarly an area that still requires
development, and the way in which to proceed is not clear. ZEdopts an approach whereby
each agent is interrogated about its actions by speciafigedits to provide a visualization of the
whole system. This method is clearly costly. RETSINA pr@gdsupport for visualization of the
system through the Logger module, bypassing the usual agenmunication channels. This is
still expensive, but can be more effective than the ZEUS @gugr. JADE allows monitoring of
activity by interrogating containers about the agents ajirey within them. Finally, JACK provides
a comprehensive approach for visualization that is integravith the development environment.
However, it is unclear how these methods scale, and how-kErgle open agent systems could be
managed by these means.

References

[1] Ronald Ashri, Michael Luck, and Mark d’Inverno. Infrasttre Support for Agent-based Development. In M. d’'Inverno
M. Luck, M. Fisher, and C. Preist, editofsundations and Applications of Multi-Agent Systewaume 2403 of.NAlI,
pages 73-88. Springer, 2002.

[2] Ronald Ashri, lyad Rahwan, and Michael Luck. Architeets for Negotiating Agents. In V. Marik, J. Muller, and
M. Pechoucek, editors/utli-Agent Systems and Applications Nblume 2691 of NAI, pages 136-146. Springer, 2003.

[3] K.S. Barber, R. McKay, M. MacMahon, C.E. Martin, D.N. Lad, Goel, D.C. Han, and J. Kim. Sensible Agents: An
Implemented Multi-Agent System and Testbed. Proceedings of the Fifth International Conference on Aotabus
Agents pages 92-99, 2001.

[4] Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Stemsand Wolfgan Theilmann. MOLE: A mobile agent
system.Software - Practice and Experienc#2(6):575-603, 2002.



(5]

(6]

(7]

(8]

(9
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]

[21]
[22]

References 35

P. Bellavista, A. Corradi, and C. Stefanelli. A securel@pen mobile agent programming environmentPtaccedings
of the Fourth International Symposium on Autonomous Deakred Systemgpages 238-245. IEEE Computer Society
Press, 1999.

Fabio Bellifemine, Agostino Poggi, and Giovanni RimasBeveloping Multi-agent Systems with JADE. In C. Castel-
franchi and Y. Lesperance, editotatelligent Agents VII: Agent Theories Architectures armhguagesvolume 1986,
pages 89-103. Springer, 2000.

Ladislau Boloni, Kyungkoo Jun, Krzysztof Palacz, Radar and Dan C. Marinescu. The Bond Agent System and
Applications. In D. Kotz and F. Mattern, editorAgent Systems, Mobile Agents, and Applicatiomume 1882 of
LNCS Springer, 2000.

Ladislau Boloni and Dan C. Marinescu. An object-orighfeamework for building collaborative network agents. In
A. Kandle, K Hoffman, D. Mlynek, and N.H. Teodorescu, editdreelligent Systems and Interfacgszages 31-64.
Kluwer Publishing, 2000.

Ladislay Boloni and Dan C. Marinescu. Agent Surgey: Ttes€for Mutable Agents. In Je®. P. Rolim, editorParallel
and Distributed Processing, 15 IPDPS 2000 Workshepiime 1800 of NCS pages 578-585, 2000.

J. M. Bradshaw, M. Greaves, H. Holmack, T. Karygiannis,Jahsen, B. G. Silverman, N. Suri, and A. Wong. Agents
for the MassesIEEE Intelligent System4d4(2):53-63, 1999.

Joris Claessens, Bart Preneel, and Joos Vandewallvaw)titan mobile agents do secure electronic transactions on
untrusted hosts? A survey of the seecurity issues and thentwolutions, volume=3, year=2008CM Transactions on
Internet Technology(1):28-48.

Rem Collier, Gregory O’'Hoare, Terry Lowen, and Colm Rey. Beyond Prototyping in the Factory of Agents. In
Vladimir Marik, Jorg Muller, and Michal Pechoucek, editokulti-Agent Systems and Applications, Nblume 2691 of
LNAI, pages 383-393, 2003.

Don Cruischank, Luc Moreau, and David De Roure. Ardttiteal Design of a Multi-Agent System for Handling Metadata
Streams. IMThe 5th ACM International Conference on Autonomous Ageatses 505-512, 2001.

K. Decker, K. Sycara, and M. Williamson. Middle-Agents the Internet. IrProceedings of the 15th Joint Conference
on Artificial Intelligence pages 578-573. Morgan Kaufmann, 1997.

Scott A. DelOach, Eric T. Matson, and Yonghua Li. Mulfemt Systems Engineeringlhe International Journal of
Software Engineering and Knowledge Engineerihty3), 2001.

Thomas Eiter and V.S. Subrahmanian. Heterogeneous eAétients, II: Algorithms and Complexity. Artificial
Intelligence 108(1-2):257-307, 1999.

Thomas Eiter, V.S. Subrahmanian, and George Pick. Hg¢erous Active Agents, |:Semantidattificial Intelligence
108(1-2):179-255, 1999.

Thomas Eiter, V.S. Subtahmanian, and Timothy Rogers. rdgémeous Active Agents, Ill:Polunomially implementable
agents Atrtificial Intelligence 117(1):107-167, 2000.

C. Fellbaum WordNet: An Electronic Lexical DatabasMIT Press, 1998.

J. Ferber and O. Gutknetch. A meta-model for the analylsisganisations in multi-agent systems. Rmoceedings of
the Third International Conference on Multi-Agent Systepages 128—-135, 1998.

John GrahamReal-Time Scheduling in Distributed Multi-AGent SysteRitD thesis, University of Delaware, 2001.

John Graham and Keith Decker. Towards a Distributedifenment-Centered Agent Framework. In N.R. Jennings
and Y. Lesperance, editodsitelligent Agents VI Agent Theories, Architectures, andduagesvolume 1757 oLNCS
Springer, 1999.



36

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

References

Robert Gray, David Kotz, George Cybenko, and Daniela.R‘Agents: Security in a multiple-language, mobile agent
system. In Giovanni Vigna, editd¥lobile Agents and Securityolume 1419 of:NCS pages 154-187. Springer-Verlag,
1998.

Robert S. Gray, George Cybenko, David Kotz, and Dariala. Mobile agents: Motivations and State of the Art. In
Jeffrey Bradshaw, editoHandbook of Agent Technologg&AAI/MIT Press, 2001.

M. He, N.R. Jennings, and H. Leung. On agent-mediatectreleic commerce IEEE Trans on Knowledge and Data
Engineering 15(4), 2003.

Yang Kun, Guo Xin, and Liu Dayou. Security in mobile ageystem: problems and approach®€M SIGOPS Operating
Systems Revigws4(1):21-28, 2000.

Danny Lange and Mitsuru Oshim#&rogramming and Deploying Java(tm) Mobile Agents with £ften) Addisson-
Wesley, 1998.

Danny B. Lange and Mitsuru Oshima. Seven good reasomadbile agentsCommunications of the ACM2(3):88-89,
1999.

Chung Fan Liu and Chyi Nan Chen. A sliding-agent-groemmunication model for constructing a robust roaming
environment over interneMobile Networks and Application8(1):61—-74, 2003.

Scott A. De Loach and Mark Wood. Developing Multiagents&@ms with agentTool. In C. Castelfranchi and
Y. Lesperance, editorsntelligent Agents VII - Agent Theories, Architectures armchguagesvolume 1986 ofLNCS
pages 46-60, 2001.

A. R. Lomuscio, M. Wooldridge, and N.R. Jennings. A clfisation scheme for negotiation in electronic commerce.
International Journal of Group Decision and Negotiatjdr?(1):31-56, 2003.

David L. Martin, Adam J. Cheyer, and Douglas B.Moran. eT@pen Agent Architecture: A framework for building
distributed software systemApplied Artificial Intelligence13(1-2):91-128, 1999.

Luc Moreau, Norlizza Mohamad Zaini, Don Cruishanck, &avid De Roure.

H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A Tool-Kat Building Distributed Multi-Agent SystemsApplied
Artifical Intelligence 13(1):129-186, 1999.

P.D. O’Brien and M.E. WiegandAgents of Change in Business Process Managemehtme 1198 ofLNAI, pages
132-145. Springer, 1997.

David V. Pynadath and Milind Tambe. The Communicative Naglent Team Decision Problem: Analyzing Teamwork
Theories and Modelslournal of Atrtificial Intelligence and Research6:389-423, 2002.

Juan Antonio Rodriguez-Aguilar and Carles Sierra. ltting Open Agent Institutions. In Kerstin Dautenhahn, Akn
Bond, Lola Canamero, and Bruce Edmonds, editBrgially Intelligent Agents: Creating relationships witbmputers
and robots Kluwer, 2002.

George Samaras and Christoforos Panayiotou. Persedghortals for the wireless user based on mobile agents. In
Procerdings of the second international workshop on Mobidmmercepages 70—74. ACM Press, 2002.

V.S. Subrahmanian, Piero Bonatti, Jurgen Dix, ThomasrE&arit Kraus, Fatma Ozcan, and Robert Rbleterogeneous
Agent SystemsMIT Press, 2000.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamitatchmaking Among Heterogeneous Software Agents
in CyberspaceAutonomous Agents and Multi-Agent SystgiBis173—-203, 2002.

Katia Sycara, Massimo Paolucci, Martin van Velsen, aodeph Giampapa. The RETSINA MAS Infrastructure.
Autonomous Agents and MAK1-2), 2003.



(42]

(43]

[44]

(45]

(46]

References 37

R. Titmuss, I.B. Crabtree, and C.S. Wintémgents, Mobility and Multimedia Informatipmolume 1198 oL NAI, pages
146-159. Springer-Verlag, 1997.

Christian F. Tschudin. Mobile agent security. In M&@thKIlusch, editorintelligent Information Agentpages 431-446.
Springer-Verlag, 1999.

Tom Wagner, Bryan Horling, Victor Lesser, John Phebpsd Valerie Guralnik. The Struggle for Reuse: Pros and Cons
of Generalization in Taems and its Impact on Technology Ttiamsi In Proceedings of the ISCA 12th International
Conference on Intelligent and Adaptive Systems and Scftiragineering (IASSE-2003)003.

M. Winikoff, L. Padgham, and J. Harland. Simplifying the&lopment of Intelligent Agents. KI2001: Advances in
Artificial Intelligence. 14th Australiarpages 557-568, 2001.

F. Zambonelli, N.R. Jennings, and M. Wooldridge. Orgatibnal rules as an abstraction for the analysis and de$ign
multi-agent systemdNternational Journal of Software Engineering and KnovgedEngineering11(3):303-328, 2001.



