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Abstract

In this paper, we describe a platform called IMPACT to support multiagent interactions.
The platform provides a set of servers (yellow pages, thesaurus, registration, type and interface)
that facilitate agent interoperability in an application independent manner. In IMPACT, agents
have an associated set of service descriptions, specifying the services they provide. We develop
an HTML-like language for such service descriptions. When an agent wishes to identify another
agent that provides a service, the requested service must be matched, using metric approach,
against existing service descriptions. We provide a formal framework within which this may be
done, and develop algorithms to compute the k£ nearest matches, as well as all matches within a
given distance from the requested service. We report on experiments evaluating our algorithms
with large data sets.

Subject Area: Agent models and architectures

1 Introduction

During the last few years, there has been tremendous interest in the area of Software Agents. The

Webster Dictionary defines an agent as:
1. “One who exerts power, or has the power to act; an actor.”

2. “One who acts for, or in the place of, another, by authority from him; one intrusted with the

business of another; a substitute; a deputy; a factor.”

3. “An active power or cause; that which has the power to produce an effect; as, a physical,

chemical, or medicinal agent; as, heat is a powerful agent. ”

Consequently, a simplistic definition of a “software agent” is any software program that satisfies
any of the above criteria. As these criteria are very broad, almost any program which accomplishes
something (even one that merely changes the value of a register in memory) is an agent as it
produces an effect.

In this paper, we focus on sets of interacting agents and ask ourselves the following questions:
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1. What properties does a program need to have in order to meaningfully and efficiently interact

with other (similar) programs ?

2. If a program P does not have the aforementioned properties, is there a way to expand it
(without delving into the internal code of P) so that the resulting program does have the

desired properties ?

3. How should we specify the circumstances under which one agent seeks support from another

“helper” agent and how are these “helper” agents identified?

4. What underlying software layer is needed to support interactions between multiple programs

possessing the properties alluded to in (1) above?

The above questions admit a multiplicity of answers, each of which will potentially lead to
different implementation strategies. In this paper, we will present one set of answers to the above

questions. In particular:

1. We will use the word “agent” to denote any program P that has the ability to:

(a) express the services that P can offer to other agents;
(b) express what inputs it needs from other agents to provide these services;

(c) understand (perhaps with help from the underlying software layer) the requests and/or

messages it receives.

2. We provide an HTML-like (called Agent Service Description Language) language within which
agents may specify the services they provide, as well as the inputs they require for each service,
and the outputs provided. This HTML-like description may be appended as “glue” on top of

a program.

3. We develop an extension of this HTML-like language (Agent Cooperation Language) that
allows the (human) owner of an agent to extend the range of services provided by the agent

possibly by cooperating with another agent or agents.

4. We specify a set of servers including those briefly listed below that form the underlying

software layer for multiagent interactions.

(a) Yellow Pages Server: This server takes as input, a request to find an agent that provides

a service, and returns as output, a ranked list of such agents.

(b) Registration Server: This server is used when a new agent is introduced into the existing
set of agents. It indexes the services offered by different agents, and is used by the yellow

pages agent to retrieve agents providing a specified service.

(c) Type Server: This server maintains an ontology of types, both standard data types like

reals,integers, char, as well as semantic types like country,currency, etc.



(d) Thesaurus Server: This server provides the services usually provided by a thesaurus.

(e) Human Interface: This interface allows a human to access all the above.

5. We describe a software system called IMPACT (short for “Interactive Maryland Platform
for Agents Collaborating Together”) that implements the above theory, and we describe

some experiments on agent interaction, as well as some applications that we have built using
IMPACT.

2 Agent Service Description Language

Any agent A created by a programmer consists of a piece of code implementing a set of services,
together with a description of what these services are. While different languages may be used
to implement the code of the agent, we require that all service descriptions be provided in a
single HTML-like language that we now specify. This language is now described using a series of
definitions. In the sequel, we will use the expressions “verb” and “noun” in their usual English
language sense.

Intuitively, a specification of a single service consists of;

¢ Service Name: This is a verb-noun(noun) expression describing the service. For exam-
ple, plans:travel() is a service name specifying a service for travel planning. Similarly,

sell:car(Japanese) is a service name describing a service that sells Japanese cars.

e Inputs: Services assume that the users of the service will provide zero or more inputs. The
service description must include a specification of what inputs are expected, and which of
these inputs are mandatory. This specification must provide an “English” name for each
input, as well as a semantic type for that input. For example, destination:city specifies

that we have an input called destination of type city (which could be an enumerated type).

e Outputs: FEach service must specify the outputs that it provides and each output is specified

in the same way as an input.

e Attributes: In addition, services may have attributes associated with them such as cost (for

using the service), average time of responses to requests for that service, etc.
In order to define service names, we first introduce the concept of a noun-term.

Definition 2.1 (Noun Term) If ny,ny are nouns (where ny, but not n1, may also be the empty
string) in English, then n1(nz) is a noun term. In this case, ny is called the root of this noun term.

When ny is empty, we will often abuse notation and write ny instead of nq().

For examples, car(Japanese), tickets(plane) are noun terms. Noun terms by themselves mean

nothing. However, noun terms considered jointly with a verb define a service name.



Definition 2.2 (Service Name) [fv is a verb in English, and ny(ng) is a noun term, then both

v and v : ny(ny) are service names.

Thus, the reader will notice that a verb by itself can constitute a service, e.g. the verb search may
be a service name. Similarly, sell:car(Japanese) defines a service name as well. Fach service
expects the client which is requesting the service to provide certain inputs having a specified type.

Before defining input specifications, we therefore need to formally define types.

Definition 2.3 (Type/Type Hierarchy) A type 7 is a set whose elements are called “values”
of 7. The pair (T, <) is called a type hierarchy if 7 is a set of types, and < is a partial ordering
onT.

Definition 2.4 (Type Variable) Associated with any type hierarchy (7,<), is a set V1 of sym-
bols called type variables.

Intuitively, a type variable ranges over the values of a given type. For instance, Author may be a
type variable ranging over strings. When specifying the inputs required to invoke a service, we need

to specify variables and their associated types. This is done in the usual way, as defined below.

Definition 2.5 (Item) If s is a variable ranging over objects of type T, then s : T is called an

item.

For example, Author:String, Document:Ascii file, and Addr:Netaddress are all valid items,
if one assumes that the types “String”, “Ascii_file” and “Netaddress” are all well defined. As is
common in most imperative programming languages, the syntactic object s : 7 may be read as
saying “The variable s may assume values drawn from the type 7.”

Most services require zero, one, or more inputs. Some of these inputs are mandatory (i.e. the
service cannot or will not honor a request for the service if these inputs are not provided), while
others are discretionary (the service would like them, but does not insist they be provided). For
example, the sell:car(Japanese) service may require that the model and maxcost fields be filled,
but may not require a sunroof field to be filled in (though the user may specify that he wants or

does not want a sunroof if he so desires). This is captured in the following definition.

Definition 2.6 (Item Atom) Ifs: T is an item, then (I)s: 7(\I) (resp. (MI)s : 7(\MI)) is called

an input (resp. mandatory input) item atom, and (0)s : 7(\0) is called an output item atom.

Fach input item is either mandatory or not. For example (MI)model:japanese_car(\MI) is a manda-
tory input item atom, while (I)sunroof:boolean(\I) is a non-mandatory input item atom. Similarly,
(0)cost:real(\0), (0)specs:car_spec_record(\0) and (0)financing_plan:finance_record(\0) are all valid

output item atoms.

Definition 2.7 (Service Description) If sn is a service name, and iy,...,i, are input item

atoms, miq,..., mip are mandatory input item atoms, and o1,...,0, are output item atoms, then



sn
My, ..., Mg
yeeeyln
015...,0p

(\s)

is called a service description.

For example, Travelocity is a well known web site (www.travelocity.com) providing travel services.
Using our service description language, we may describe Travelocity’s route serive (to find a route

between two points on a map) as follows:

(s)
find:route
(MI) from _streetnumber:integer (\MI)
(MI) from street:string (\MI)
(MI) from _city:city (\MI)
(MI) from state:us_states (\MI)
(MI) to_streetnumber:integer (\MI)
(MI) to_street:string (\MI)
(MI) to_city:city (\MI)
(MI) to_state:us_states (\MI)
( map:file (\0)

(\s)

The full version of this paper shows how a wide sample of well known services available through the
World Wide Web may be described using our service description language. These examples run a

wide gamut, ranging from travel services, bibliographic search services, and mortgage services.

3 IMPACT Architecture: Design and Implementation

The IMPACT architecture shown in Figure 1 supports the interactions that occur between a set
of agents that may be located at geographically dispersed sites on a network. Agents are shown
in Figure 1 as a white box (representing the code that implements the agent), surrounded by a
yellow “wrapper” which contains the agent service description. As we have already discussed these
wrappers in great detail in Section 2 above, we will not go into this in greater detail here.
Instead, we will concentrate on the IMPACT software layer that provides the infrastructure
upon which different IMPACT agents may interact. The servers constituting this layer are shown
as pink rectangles in Figure 1. This layer does not necessarily reside at one location on the network
— multiple copies of it may be replicated and scattered across the network. Each copy of the
IMPACT software layer also has a synchronization component that updates other copies when
the software layer itself gets modified. The synchronization component is shown in green in Figure 1.
Before discussing the individual components of the IMPACT architecture, we need to un-

derstand how service descriptions are used. An agent A specifies descriptions of the services it
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Figure 1: IMPACT Architecture

provides so that other agents or humans can access those services. Furthermore, an agent B
may use terminology different from agent A to describe a service that it is seeking. For example,
agent B may want to find agents that provide cars. Agent A may specify that it offers the ser-
vice sell:car(Japanese), but agent B may be searching for a service specified as provide:car.
Here, different terms are used to denote a similar service — however, determining that these two
syntactically different expressions are semantically similar is nontrivial. The IMPACT architec-
ture maintains a set of data structures (together with traversal algorithms) that facilitates such

retrievals.

1. First, a Yellow Pages server maintains two weighted hierarchies — a verb hierarchy and a noun
hierarchy. The nodes in the verb hierarchy are sets of synonym verbs, while the nodes in
the noun hierarchy are sets of synonymous noun-terms (exactly what it takes for two noun
terms to be synonymous will be described later). If node N is an ancestor of node N’ in
either of these hierarchies, it means that the labels of N are more general than those of N'.
For example, the verb provide is more general than sell, and the noun car is more general
than car(Japanese). Weights on the edges denote degrees of dissimilarity — the larger the
weight, the less similar the nodes involved. The Yellow Pages Server implements a similarity
measure through which the user (or an agent) may identify which agents provide (a service
similar to) a desired service. The Yellow Pages Server also implements a variety of retrieval

algorithms to compute these similarities efficiently.

2. New agents, when created and ready for release, are registered with a Registration Server.
This registration server provides an interface through which the data structures maintained
by the Yellow Pages Server may be updated to reflect the services provided by the new agent.

It also provides valuable browsing services which may be used by the owner of the new agent



to see what terms exist currently in the verb and noun hierarchies and how can be used
to characterize the services of the new agent. This allows the owner to modify the service
description of its agent to take into account, existing terminology rather than expand the

existing vocabulary needlessly.

3. The browsing supported by the Registration Server includes not only the noun and verb hier-
archies, but also access to other servers such as a Type Server that maintains type information
as a hierarchy (e.g. the type “city” may be a subtype of the type “place”) which is used to
specify the 7 component of an “item” s : 7 as described earlier. Similarly, a Thesaurus Server
allows the owner of a new agent to browse a thesaurus and find words similar to the ones he

is using to describe services.

4. Last but not least, when the owner of an agent wishes to register the agent and commits to
such a registration, the IMPACT software layer he accesses the registration service from
must notify other mirror, replicated copies of this fact so that consistency across different
versions of the IMPACT software layer is maintained. This is done by the IMPACT

software layer.

3.1 Yellow Pages Server

In this section, we will first describe the data structures maintained by the Yellow Pages Server.
There are three such structures — two hierarchies that are described in Section 3.1.1 below, and an
agent table described in Section 3.1.2. Agents may ask the yellow pages server to identify other
agents that provide certain services. These requests may take several different forms which we will
describe in this section. Algorithms to process these requests will be presented in Sections 3.1.3
and 3.1.4.

3.1.1 Term Hierarchies

In this section, we will provide a general definition of a Term-Hierarchy. Both the noun hierarchy
and verb hierarchy alluded to earlier in this paper will turn out to be special cases of the general
concept of a term-hierarchy. We start by assuming that there is a set & whose elements are called
terms, and an equivalence relation ~ on . Intuitively, one can think of ¥ as a set of words, and the
relation ~ as a representation of synonymity. For example, ¥ could be a set of verbs, and v; ~ vg

may indicate that verbs vy, v9 are synonymous.

Definition 3.1 (¥-node) A ¥-node is any subset N C ¥ that is closed under ~, i.e.
l.zeN&y~z=>y€eN.
2. z,ye N =>z~y.

In other words, Y.-nodes are equivalence classes of X.
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Figure 2: An example verb hierarchy

For example, suppose Y1 consists of just a few terms given by:
Yy = A{explore,investigate}.

If we use the symbol ~; to denote the ordinary notion of equivalence amongst these terms, the

following are Y{-nodes:

Ny = A{car,automobile}.

Ny = Atruck, pickup}.

Definition 3.2 (X-Hierarchy) A X-Hierarchy is a weighted, directed acyclic graph SH = (T, E, p)
such that:

1. each vertex of T is a Y-node;
2. ifty,1o € T, then t; and ty are disjoint;
3. @ is a mapping from E to Z% indicating a positive distance between two neighboring vertices'.

When SH is fixed, we use triples of the form (#1,%2,d) to denote an edge from #; to ¢tz (in SH)
having p(t1,%2) = d.

Figures 2 and 3 show a sample verb and noun-term hierarchy respectively. The fact that
the edge between node {seek,search} and {provide} has a weight of 5, while the edge between
{seek, search} and {scan} has a weight of 3, indicates that {scan} is more similar to {seek, search}

than {provide}.

Definition 3.3 (X-Path) A X-Path between two nodest,t’ € T in the X-Hierarchy SH = (T, E, p)
is a sequence ty,...,t, such that: t1 = t,t, =1t and for all 1 <i < mn, (t;,t;41) € E. The length of
such a path is (n — 1). The cost of this path is the sum of the weights of the edges along the path.

We do not require g to satisfy any metric axioms at this point in time.
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Figure 3: An example noun hierarchy

We are now ready to define the notion of distance between two nodes in a hierarchy.

Definition 3.4 (Distance) Consider a X-hierarchy, SH = (T, E, p), and suppose wy,wq € ¥ are

terms. Then the distance between wq, w3, denoted dsy (w1, wy) w.r.t. SH is defined as:

0 if there exists t € T such that {wy,wy} Ct
dsy(wi,w3) = cost(Ppmin) if there is a Y-path between wy,wz and pp, is a least cost such path
o0 otherwise

It is easy to see that given any X-hierarchy, SH = (T, F, p), the distance function, ds induced by
it is well defined and satisfies the triangle inequality.

As the reader has already noted, service names in IMPACT are of the form verb:noun_term.
Typically, this leads to two hierarchies, one for verbs and one for noun-terms, which we will denote
by ¥, = (Ty, By, 9v) and X,y = (Tht, Ent, ont), respectively. When human beings or agents access

the Yellow Pages server, they specify a service vg : ntg, and make one of two requests:

k-Nearest Neighbor Request: I'ind the £ “nearest” pairs (v, nt) in the hierarchy such that there

exists an agent who provides that service and identify that agent.

6-Range Search Find all pairs (v, nt) within a specified “distance” ¢ such that there is an agent

who provides that service, and identify that agent.

However, thus far, we have only defined distances on ¥, and X,; individually — no notion of distance
has been proposed thus far between pairs of verbs and noun-terms. We now define what it means

to combine two distance functions on two hierarchies.

Definition 3.5 (Composite Distance Function) Suppose we have two different hierarchies ¥y =
(T, E1,91) and ¥g = (Ta, Eq, p2). Let dy,dy be the distance functions induced by Y1, Yo, respec-
tively. Consider two pairs of words, (w1, w}), (w2, w)) € ¥1 X 3. A composite distance function

cd, is any mapping from (X1 X ¥q) x (X1 X ¥9) to ZT such that:



. Cd((wlvwi)v (w%wl?)) = Cd((w27w/2)v (whwi))

o cd((wy,w)), (wy,w))) =0.

If dq(wy,wq) < di(wy,ws) then cd((wy, w)), (wa, wh)) < ed((wq, w)), (ws, wh)).
o If dy(wy,wh) < do(wh, wh) then ed((wy,w)), (we, wh)) < ed((wy, w)), (wa, ws)).
d Cd((wlv wi)v (w37 wé)) < Cd((wh wi)v (w27 w/Q)) + Cd((w27 w/2)7 (w37 wé))

The reader may wonder whether that last item in the above definition is redundant. It turns out

that it is not redundant (but due to space restrictions, we do not present a proof of this here).

3.1.2 Agent Table

The agent table is a relational table containing three attributes — Verb, NounTerm and Agent. The
table has NounTerm as its primary key, and Verb as the secondary key. The last column, “Agent”,

is an agent id. Intuitively, suppose the tuple
(rent, car(Japanese), agentl)

is in this table. This means that agentl provides the service (rent,car(Japanese)). The table below
shows an example agent table. Notice that in this table, there are two agents that provide the

service (rent,car(Japanese)).

Verb | Noun Term Agent
rent | car(Japanese) | agentl
rent | car(American) | agent3

rent | vehicle() agent6
hire | Honda() agent4
rent | car(Japanese) | agent2
sell | Mazda() agent2
rent | vehicle() agent3

In IMPACT, the agent table is implemented as an Oracle relation. We have implemented an
operation called search_agent_table which takes three arguments — a verb V', a noun term N7, and
in integer K. This function searches the agent table to find at most K agents that provide the

exact service (V, NT'). In fact, this function first executes the SQL query:

SELECT Agents
FROM AgentTable
WHERE Verb = V AND NounTerm=NT.

This SQL query returns a set of agents. If this set has K or more elements, then the search_agent_table
function returns K of these, otherwise (i.e. if this set has less than K elements) it returns the entire

set.
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3.1.3 k-Nearest Neighbor Request Algorithm

In this section, we will develop an algorithm find_nn to solve the k-nearest neighbor problem. Given

a pair (v, nt) specifying a desired service, this algorithm will return a set of k agents that provide the

most closely matching services. The most closely matching services are determined by examining;:

e The verb hierarchy,

e the noun hierarchy, and

e the thesaurus.

Closeness between (v,nt) and another pair (v',nt’) is determined using the distance functions

associated with the verb and noun-term hierarchies, together with a composite distance function

cd specified by the agent invoking the find_nn algorithm. In addition to using the above structures

and the agent table, our algorithm uses the following internal data structures and/or subroutines:

1.

Todo: This is a list of verb-noun term pairs maintained in increasing order of distance from the
verb-noun term pair that is requested in an explicit call (either the initial call or a recursive

call) to the find_nn function. This list is not necessarily complete.

. ANSTABLE: This is a table consisting of at most & entries (k£ being the number of agents

requested). At any given point in time during execution of the find_nn algorithm, ANSTABLE

will contain the best answers found thus far.

. num_ans: This function merely keeps track of the number of answers in ANSTABLFE.

. next_nbr: This function takes as input, the list Todo mentioned above, and a pair (V, NT).

Intuitively, Todo consists of verb noun-term pairs that have not yet been relaxed. Suppose
(V1, NTy) is the first verb noun term pair in this list. The candidate-relazations, er(Vy, NTy)
of (Vi, NT}) are defined as follows:

o If V'is an immediate neighbor of V; in the verb hierarchy, then (V’, NTy)is in er(Vy, NT1).

e If NT' is an immediate neighbor of NT; in the noun-term hierarchy, then (Vi, NT') is
in er(Vy, NTY).

The function next_nbr removes (V1, NT) from the T'odo List, and then inserts all members
of er(Vy, NT1) into the Todo list while maintaining the property that the Todo-list is in
ascending order of the distance from (V, NT'). The function nezt_nbr returns as output, the

first member of the Todo list that has not been examined before.

. relaz_thesaurus: This function is similar to accesses the thesaurus and the verb/noun term

hierarchies. When invoked with the input pair (V, NT'), it does the following:

e If V is not in the verb hierarchy, then it searches the thesaurus for a verb V' that is in

the verb hierarchy and is synonymous with V', and sets V to V.

11



e If NT is not in the noun-term hierarchy, then it searches the thesaurus for a noun-term
NT’ that is in the noun-term hierarchy and is synonymous with NT and sets NT to
NT'.

If either V or NT after this step is still not in the verb or noun-term hierarchy, respectively,
then it returns a pair of the form (JERROR,-). Otherwise, it returns the pair (V, NT').

For example, we may have a thesaurus which contains (amongst other words), the following:

Word Synonyms

explore inquire,examine,probe.investigate
vehicle carrier, carriage,van,wagon,car,track
car(Japanese) | Honda,Nissan,Mazda,Toyota

scan browse,glance,skim

provide supply, hand-over

seek search, lookup

rent hire,lease

car(American) | Chevy, Neon, Dodge

12



Algorithm 1 find_nn(V:verb, NT:noun-term, K:integer)

done = false;
Vini = V; NTin; = NT;
create(Todo, V, NT);
ClosedList = NIL;
ANSTABLE = 0;
if VveX, & NTe X,; then
{
SOL = search_agent_table(V,NT,K);
while —done do
{
insert((V,NT),ClosedList);
insert(SOL,ANSTABLE);
n = num_ans(ANSTABLE);
if n > K then done = true
else
{
(V’,NT’) = nezt_nbr(Todo);
if V’=4FERROR then done = true
else
{
V=V;NT=NT
SOL = search_agent_table(V,NT,K-n);
} (% end inner if x)
} (% end middle if x)
} (x end while *)
} (% end outer if x)
else
{ (* search thesaurus %)
(V’,NT’) = relaz_thesaurus(V,NT);
if V’=4FRROR then return FRROR
else find_nn(V' ,NT’ K)
}
return ANSTABLE;
end

Example 3.1 Consider the verb and noun-term hierarchies given in Figures 2 and 3 respectively
and the agent table shown above and the thesaurus shown above. Furthermore, suppose the
composite distance function, cd, is addition.

Consider the call find_nn(rent, car(),2) which requests 2 agents that rent cars. Initially, V;,; =
rent and NT;,; = car(). The list Todo contains (rent,car()) when first created. Since rent € ¥, and
car() € Y., we execute search_agent_table (rent, car(),2). This returns the empty set since there
is no agent providing the service rent:car(). (rent,car()) is now relaxed by calling the function
next_nbr which returns (rent, vehicle()). The list Todo now contains the {(rent,car(Japanese)),1),
(rent, car(American)),1),(provide, car()), 3) } The call search_agent_table (rent, vehicle(),2) will
return agent6 which provides rent:vehicle() service. This result is inserted into ANSTA BLEwith
its composite distance function value of 1. As we still need to find another answer, the next_nbr
function is called again. This call returns the (rent,car(Japanese)) verb, noun-term pair and the call

search_agent_table (rent, car(Japanese),1) results in agentl which provides rent:car(Japanese).

13



Note that although agent2 also provides the rent:car(Japanese) service, search_agent_table func-
tion only returns agentl because only one is requested. Now that there are two answers in the
ANSTABLFE, the find_nn function terminates by returning {(agent6,1), (agent1,1)}.

3.1.4 Range Neighbor Search Algorithm

The range search algorithm below allows the IMPACT server to answer queries of the form “Find
all the agents that provide a service (V', NT’) which is within a distance D of a requested service
(V,NT).”

In the algorithm below, Todo is a list of nodes to be processed. The algorithm has two steps.
The first step is the while loop. This step finds all pairs (V*, NT*) that are within the speci-
fied distance D from (V, NT). This step uses a function called Ezpand that behaves as follows.
Expand(V,NT,V', NT', D) first computes the set {(V¥, NT*)| the distance between (V¥, NT*) and
(V,NT)is less than or equal to D and (VF, NT*) € er(V/,NT') and (VF#, NT*) is not in RelazList
}. It then adds this set to the T'odo set and returns the result.

The second step executes a select operation on the Agent Table, finding all agents that offer

any of the service names identified in the first step.

Algorithm 2 range(V:verb, NT:noun-term,D:real)

RelazList = NIL;
Todo = {(V,NT)};
while Todo # NIL do
{

(V!',NT") = first element of Todo,

RelazList = RelazList U{(V',NT")};

Todo = (Todo — {(V',NT")}) U Expand(V,NT,V',NT', D);
};
Return U(‘/IVNTI)E RelazList (WAgents (O'Verb:V’ & NounTerm=NT' (AgentTable)))a

end

3.2 Registration Server

Whenever a new agent is created by a programmer, this new agent must be registered with the

IMPACT server. In particular, the new agent A must have the following associated specifications:

o A set Svc(A) of services that are provided by agent A;

e Lor each service s € Svc(A), a description of the inputs required from clients wishing to make

use of that service, together with a description of the outputs provided.
The registration server provides the following facilities to make this possible.

1. Hierarchy Search and Browsing: First, it contains an interface through which the user
can browse the existing verb and noun-term hierarches to see if there are words in these

hierarchies that can be used to describe the services of agent A. The registration server also
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supports querying the hierarchy, i.e. the user can ask if the word honda is in the noun-
term hierarchy, and if so, an appropriate part of the noun-term hierarchy above, below, and

including honda is displayed to the user.

2. Hierarchy Updates: Once this is done and the user has determined exactly how he wants
to specify his agent’s services, the registration server inserts any new words introduced by the
user (which were not previously in the hierarchies) into the hierarchies, in consultation with
the user. Only authorized users (e.g. those allowed to introduce new agents to the system)

are permitted to make hierarchy updates.

3. Agent Table Update: Once the previous two steps have been performed, the registration

server updates the agent table to reflect the new services offered by the agent.

3.3 Type Server

The type server can be accessed either directly (this is the mode agents will use to access it) or
through a graphical user interface via the registration server (which is the mode users will use
when registering a new agent). In the latter case, the type server allows the user to browse and/or
search the type hierarchy in the same way as in registration server’s hierarchy search and browsing
capabilities described above.

In the former case, agents may contact the type server with queries of the form “Is type 7
a subtype of type 737”7 Such queries arise when one agent wants to see if it can pipe certain
information it has (of type 1) to another agent that requires inputs of type 5. Answering such a

query involves nothing more than a straightforward traversal of the type hierarchy.

3.4 Thesaurus Server

The thesaurus server, which we are building on top of a commercial thesaurus system (the ThesDB
Thesaurus Engine from Wintertree Software) supports only one request type. This request type
provides a word as input, and requests all synonyms as output. The thesaurus server, in addition to
providing synonyms as output, “marks” those synonymous that appear in one of the two hierarchies
(verb, noun-term).

The thesaurus server can be accessed directly or through the registration server — in the latter

case, a graphical user interface is available for human users.

3.5 Synchronization Component

One problem with the use of IMPACT servers is that they may become a performance bottleneck.
In order to avoid this, we allow multiple, mirrored copies of an IMPACT server to be deployed at
different network sites. This solves the bottleneck problem, but raises the problem of consistency
across the mirrored servers. To ensure that all servers are accessing the same data, we have
introduced a synchronization module. Users and agents do not access the synchronization module.

Everytime one copy of data structures maintained by an IMPACT server is updated, these updates
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are time-stamped and propagated to all the other servers. Each server incorporates the updates
according to the time-stamps. If a server performs a local update before it should have incorporated
a remote update, then a rollback is performed as in classical databases [8].

Notice that the data structures of the IMPACT server are only updated when a new agent (or
a new service) is added to an existing agent’s service repertoire. As the use of existing agents and
interactions between existing agents is typically much more frequent than such new agent/service

introductions, this is not expected to place much burden on the system.

4 Implementation and Experiments

At this point, we have implemented the algorithms underlying all parts of the IMPACT archi-
tecture shown in Figure 1 except for the synchronization component, though we do remark that
some graphical interfaces are still under construction. Wherever possible, we have tried to use
commercially available software — for example, the thesaurus we use in IMPACT is ThesDB, and
the agent table is implemented using Oracle. The IMPACT servers themselves are distributed
— for example, the agent table implemented in Oracle does not have to be on the same machine
as the registration agent — the administrator of an IMPACT server can choose to put them on
different machines if s/he wants.

In this paper, we merely report on experiments associated with our nearest neighbor and range
query algorithms. We evaluated the performance of these algorithms as the number of nearest
neighbors requested increased in number, and as the range of the range query increased in size. In
all cases, we used a NASA hierarchy consisting of 17,445 words (solely for experimental purposes,
the same hierarchy was used as both a verb and a noun hierarchy although the IMPACT prototype
uses different hierarchies). Weights on all edges in the hierarchies were assumed to be 1 and the
composite distance function was taken to be sum.

Figure 4 shows the performance of the k nearest neighbor algorithm as k is increased from 1 to
20. For any given k we consider 100 queries, generated randomly. Figure 4(a) shows the average
time taken for these 100 queries. Notice that in some cases, even though k& neighbors may be
requested, we may only get back &’ < k answers. Figure 4(b) shows the average time per retrieved
answer. As the reader will notice, the average time varied between 0 and 1 second, and rose more
or less linearly as k increased. However, when considering the average time per retrieved answer
(Figure 4b) we notice that the time taken is more of less constant, fluctuating near 0.2 seconds.

Figure 5 shows the performance of the range query algorithm. Again, we ran 100 queries, and
increased the range from 1 to 20 units. Figure 5(a) shows the average time taken for these 100
queries, while Figure 5(b) shows the average time per retrieved answer. The average time per range
query stays more or less constant at 1.6 seconds. This number is higher than in the case of k nearest
neighbors, but is easily explained by the observation that the number of retrieved answers within
r radial units may be significantly larger than r. The average time taken per retrieved answer for

range queries is around 0.5 seconds.
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5 Related Work

There has been substantial work on “matchmaking” in which agents advertise their services, and
matchmakers match an agent requesting a service with one (or more) that provides it. Two of the
best known examples of this class of work are given below.

Kuokka and Harada[10] present the SHADE and COINS systems for matchmaking. SHADE
uses logical rules to support matchmaking — the logic used is a subset of KIF and is very expressive.
In contrast, COINS assumes that a message is a document (represented by a weighted term vector)
and retrieves the “most similar” advertised services using the SMART algorithm of Salton[12].

Decker, Sycara, and Williamson[3] present matchmakers that store capability advertisements
of different agents. They look for ezact matches between requested services and retrieved services,
and concentrate their efforts on architectures that support load balancing and protection of privacy
of different agents.

Our effort differs from the above in the following ways: first, our service descriptions use a very
simple, restricted language similar to HTML. By restricting our language, we are able to very clearly
articulate what we mean by “similar” matches in terms of nearest neighbor and range queries, as
well as provide very efficient algorithms (as demonstrated by our experiments) to implement these
operations. Second, the user (or owner of an agent) can expand the underlying ontologies (verb,
noun-term hierarches) arbitrarily as needed, and we provide him software tools to do so. To
date, we have explicitly encoded (in our language) service descriptions of over forty well known
independendently developed programs available on the Web, and this number is increasing on a
regular basis. However, we do not address issues such as load balancing and privacy issues addressed
by Decker et. al. [3].

With respect to agent architectures, there have been numerous proposals in the literature (e.g.,
[4, 6, 1]) which have been broadly classified by Genesereth and Ketchpel[5] into four categories: in
the first category, each agent has an associated “transducer” that converts all incoming messages
and requests into a form that is intelligible to the agent. This is clearly not what happens in
IMPACT - as noted in [5], the transducer has to anticipate what other agents will send us
and translate that — something which is clearly difficult to do. The second approach is based on
wrappers which “inject code into a program to allow it to communicate” [5, p.51]. The IMPACT
architecture provides a language (the service description language) for expressing such wrappers,
together with accompanying algorithms. The third approach described in [5] is to completely
rewrite the code implementing an agent which is obviously a very expensive alternative. Last but
not least, there is the mediation approach proposed by Wiederhold[14], whch assumes that all
agents will communicate with a mediator which in turn may send messages to other agents. In
contrast, our framework allows point to point communication between agents without having to go
through a mediator.

There has also been extensive work on collaborative problem solving and negation in multiagent
systems (e.g., [2, 7,9, 11, 13]). As our approach supports point to point inter-agent communication,

such negotiations can be built on top of our architecture, and thus this body of work complements
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ours.

6 Conclusions

IMPACT is a platform for the creation and deployment of multiagent applications. In this paper,
we have described the IMPACT architecture and specified how multiple agents may interact with
each other by utilizing certain common services, provided by the IMPACT service layer, that
contains a set of servers. Multiple copies of the IMPACT service layer may be replicated and
mirrored on the network. Agents may access these servers to register the services they provide, as
well as to find agents that provide services they need.

In particular, in this paper, we have proposed an HTML-like syntax through which agents may
describe their services. We have also specified how the IMPACT server identifies agents that
provide services “similar” to a requested service. Similarly is computed through two technical
means — through a certain kind of “k-nearest neighbor” search in a metric space, and through
certain “range” queries in a metric space. We develop algorithms for such retrievals, and report on
how these algorithms are implemented in IMPACT, as well as how these algorithms perform on

large data sets.
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