
On the Use of Agents in a BioInformatics Grid

Luc Moreau
�

, Simon Miles
�

, Carole Goble
�

, Mark Greenwood
�

, Vijay Dialani
�

, Matthew Addis
�

, Nedim Alpdemir
�

,
Rich Cawley

�

, David De Roure
�

, Justin Ferris
�

, Rob Gaizauskas
�

, Kevin Glover
�

, Chris Greenhalgh
�

, Peter Li
�

,
Xiaojian Liu

�

, Phillip Lord
�

, Michael Luck
�

, Darren Marvin
�

, Tom Oinn
�

, Norman Paton
�

, Stephen Pettifer
�

, Milena
V Radenkovic

�

, Angus Roberts
�

, Alan Robinson
�

, Tom Rodden
�

, Martin Senger
�

, Nick Sharman
�

, Robert Stevens
�

,
Brian Warboys

�

, Anil Wipat
�

, Chris Wroe
�

(1) University of Southampton, (2) University of Manchester, (3) University of Nottingham, (4) EMBL Outstation -
European Bioinformatics Institute, (5) University of Newcastle, (6) University of Sheffield

Project site: www.mygrid.org.uk
Contact Author: Luc Moreau (L.Moreau@ecs.soton.ac.uk)

Abstract

MyGrid is an e-Science Grid project that aims to help bi-
ologists and bioinformaticians to perform workflow-based
in silico experiments, and help them to automate the man-
agement of such workflows through personalisation, noti-
fication of change and publication of experiments. In this
paper, we describe the architecture of myGrid and how it
will be used by the scientist. We then show how myGrid can
benefit from agents technologies. We have identified three
key uses of agent technologies in myGrid: user agents, able
to customize and personalise data, agent communication
languages offering a generic and portable communication
medium, and negotiation allowing multiple distributed enti-
ties to reach service level agreements.

1 Introduction

MyGrid is a Grid middleware project in a bioinformatics
setting. In biological sciences, it is not principally the size
of the data that matters but the complexity involved in using
it: the complexity of the data itself, the number of reposito-
ries and tools that need to be involved in the computations
required to answer the kind of questions posed by the scien-
tist, and the heterogeneity of the data and operation of tools.
Rather than a few international facilities (e.g. CERN and
Fermi Lab) producing vast amounts of data that need to be
accessible, the pressing issue with bioinformatics is coping
with a very large number of sites (potentially thousands of
individual laboratories) around the world, each using cheap,
commodity technology to continuously generate substantial
quantities of different kinds of data, and design new tools to

process it.
In many resources, each record is analogous to an in-

dividual publication with not only raw data, but also ad-
ditional annotations supplied by a small number of human
experts (curators) or automated systems. Annotations are
typically semi-structured text that make some use of key-
words and controlled vocabularies, and have to be parsed
computationally or read by people. Therefore, as well as
a large number of data types, much of the valuable knowl-
edge is locked into semi-structured text, under the premise
that the scientist will read and interpret it.

In the past, this complexity has been dealt with largely
by the intelligence of the practising biologist. This has been
possible because biologists working on a specific organism,
or a specific aspect of it, have needed access to only a small
number of these resources.

Interestingly, much of the growth of molecular biology
has been contemporaneous with the development of the
Web, which probably explains why many resources have
been designed with the intention that a scientist will interact
with a Web page, dealing with a single query at a time, and
read the results displayed as reports in a browser, navigating
between links in different databases by mouse-clicking. We
call this approach “query by navigation”. Where databases
are published, they are usually released as flat files, even in
those cases, such as SWISS-PROT and EMBL [15], where
the production systems are relational databases.

Although the volume of data is not yet a computational
problem, the advent of high throughput experiment tech-
niques means that human analysis is now reaching its limits.
With sequence databases reaching hundreds of MBytes and
microarray expression data producing tens of GBytes, the
limits of the non-scalable query by navigation are rapidly



being reached, if not already passed.
The particular focus of myGrid, therefore, is on increas-

ingly data-intensive bioinformatics and the provision of a
distributed environment that supports the in silico experi-
mental process. The vision is of a “lab book” environment
where the e-Scientist can construct in silico experiments,
and find and adapt others, store partial results in local data
repositories and have their own view on public reposito-
ries, and be better informed as to the provenance and the
currency of the tools and data directly relevant to their ex-
perimental space. For a less skilled user, myGrid should
help in finding appropriate resources, offering alternatives
to busy resources and guiding the user through the com-
position of resources into complex workflows. In order to
provide such an environment, myGrid unequivocally needs
to address the “Grid problem”, i.e. the flexible, secure, co-
ordinated resource sharing, among dynamic collection of
individuals and institutions — Virtual Organisations [9]. In
this context, the Grid becomes egocentrically based around
the Scientist: myGrid.

The contributions of this paper are threefold. First, we
present a service-based architecture to support the vision of
the “lab book” environment. Second, we illustrate how this
architecture can be used during the enactment of workflows.
Third, we review how a bioinformatics grid can benefit from
agent technologies.

2 The MyGrid Service-Oriented Architec-
ture

In this section, we describe the different services that are
provided by myGrid, and sketch their interactions. (They
are displayed in Figure 1.) The experimental in silico pro-
cess is expressed as a workflow script by the scientist. Ser-
vices can be viewed as being provided by agents and work-
flow can be seen as an agent interaction script. Some initial
work in this vein has already been done [2, 3].

2.1 Workflow Enactment

At the heart of the myGrid runtime system, we find
the workflow enactment engine which, given a workflow
script, is able to execute (or enact) the script. Scientists and
their institutions may have preferences that must be taken
into account when enacting a workflow script: e.g., some
databases are preferred over others, or specific tools and pa-
rameters are routinely chosen. It is the role of the workflow
resolution service to customise a script’s “free variables”,
possibly making use of a workflow personalisation service
able to obtain preferences from a user (or a user agent act-
ing on their behalf). There exist several strategies to resolve
a workflow: eagerly before enactment, or lazily if and when
required by the enactment engine. (Both can be expressed

at the level of scripts through the use of an appropriate pro-
gram transformation.)

The workflow enactment engine can send requests to ex-
isting running services or can activate tools and interact with
them: services need to be discovered and processes need
to be created. For the former, a service directory is used
as a repository of service instances that are currently ac-
tive, whereas the latter makes use of a job activation and
scheduling system. Generally, scripts may require space to
store temporary results, or may try to ensure that compu-
tational resources are reserved at the same time as storage
space to ensure the prompt execution of the workflow: allo-
cation and reservation are handled by the resource manage-
ment service.

2.2 User Interaction

The user, through an interface, may interact with the
workflow enactment engine, suspending and resuming
workflows, observing their progress, analysing their logs.
Suspended workflows are serialised and stored in a reposi-
tory, potentially shared with other users.

Ontological Definitions

Ontological Reasoning

 Workflow Provenance

Validation

Workflow Definition

Repository

Service Functionality

Metadata

Provenance

Repository

Serialised Workflow

Repository
Workflow

Resolution

Databases

Workflow

Personalisation

User

Agent

User Repository

Workflow

Enactment

Service

Directory

Notification

Job Scheduling

Resource Management

Distributed

Queries

Information

Extraction

Authentication

Authorisation

Groups, Roles Directory

User Directory

Figure 1. myGrid Services

Some workflows may take days, if not weeks, to com-
plete their execution. Users therefore need to be notified
when workflow execution terminates. We prefer not to as-
sume the existence of user agents able to handle incoming
notifications. Indeed, users are not logged on permanently,
and we feel that always running user agents would overload
the system unnecessarily. Instead, we make use of a no-
tification service able to forward messages to user agents,



when present, or to store messages in their absence. The
use of the notification service is of course not restricted to
the user agent, but may be used by any services in myGrid.
In particular, we use the notification service to give notifi-
cations to users about changes in data, workflows, services.

Sharing information between users, discovering infor-
mation, finding out users or institutions that are investigat-
ing given topics are all key functionalities of myGrid. Sev-
eral directories are used for that purpose: the user direc-
tory holds information about users, groups, roles and insti-
tutions; the workflow repository contains information about
scripts and their functionality.

2.3 Ontologies

All information about workflows and users is what we
call metadata and is structured according to a set of on-
tologies — an ontology is generally defined as a shared un-
derstanding of a specific domain [10]. Information about
services are also expressed using such ontologies, and are
stored in the service functionality metadata service; the lat-
ter service contains metadata about classes of services, and
must be distinguished from the service directory which lists
active service instances.

Not only are ontologies a shared understanding of some
domains, but their logical foundations also allow users to
perform reasoning over such domains. Examples of reason-
ing include classification (i.e., the computation of a concept
hierarchy based on the specialisation relation), or consis-
tency checking (i.e., checking that a statement is not incon-
sistent in a logic). An ontology-based reasoning facility is
provided by myGrid to help users compose new workflows.
Additionally, the ontology service allows users to reason
about concepts of the application domain in order to under-
stand their inter-relationships.

2.4 Data and Metadata

Most myGrid repositories are be implemented as
databases. Additionally, biological information is stored in
multiple and heterogeneous databases. Distributed query
systems over such databases are an essential component to
facilitate information integration. In myGrid, databases is
accessed though a service interface [16], whereby struc-
tured data stores support consistent interfaces for database
access, manipulation and metadata description. As a com-
ponent within the personalisation framework of myGrid,
database services are used to provide individual users with
access to (i) locally produced data sets; (ii) the results of
analyses run by the user over local or remote data; and (iii)
distributed querying over local and remote data resources.
The distributed query processor benefits from the consis-
tent service interfaces and metadata descriptions provided

by local and remote databases.
Above, we have discussed the existence of metadata that

is structured according to ontologies. In biological sciences,
it is also customary to create annotations in free text form.
Such metadata contains invaluable information assembled
by database curators. MyGrid also provides support for cor-
relating such an information with medical literature through
an information extraction service.

MyGrid provides support for provenance in two differ-
ent ways. First, provenance information, in particular re-
lated to workflow enactement, can be logged in the prove-
nance annotation service; such a service is also used to store
provenance information for services having no built-in sup-
port for provenance. Additionally, the workflow provenance
validation service is able to re-enact workflows to establish
change over time.

2.5 Security and Fault Tolerance

The myGrid authentication service extends the PKI in-
frastructure to provide X.509 certificates for users and ob-
jects (called identities henceforth) needing verification. It
supports a notion of logical domain which is defined by the
set of identities it manages. The confederation of several
logical domains forms an enterprise infrastructure. Each
logical domain has associated domain administrators who
are authorised to create and revoke identities within their
logical domains.

In myGrid, a sub-component of the user agent acts as
a credentials repository, permitting simultaneous access to
multiple logical domains. This facility allows a user to
have simultaneous access to multiple virtual organisations
[9] and obtain the access rights to multiple resources across
sites.

MyGrid supports role-based access control [17] and dy-
namic mapping between users and roles. Within each logi-
cal domain, there exists a hierarchy of user roles and access
rights; roles are statically associated with access rights. The
model is extensible by allowing the definition of new roles
and access rights. In an enterprise security infrastructure,
one needs to support identities from different logical do-
mains, which may have different access models: this re-
quires the definition of a mapping of roles and access rights
of a domain onto roles and access rights of another domain.

MyGrid computations may be long-lived and involve a
very large number of computing resources. Hence, they
need to be designed with fault tolerance in order to be ro-
bust. To this end, myGrid provides a set of interfaces, which
services are required to implement, and which provide ro-
bustness to applications involving the use of multiple ser-
vices. The complete description is beyond the scope of this
paper, and we refer the reader to a companion paper [4].
The approach may be summarised as follows: implemen-



tors of a service have to implement an interface (for check-
point and rollback); the architecture dynamically extends
the service interface by methods for fault tolerance; applica-
tions making use of different services have to declare their
inter-dependencies, which are used by a fault-manager to
control checkpoints and rollbacks; an extension of the com-
munication layer is able to log and replay messages.

3 MyGrid Workflow Enactment in Practice

We have implemented a prototype of this architecture,
based on a subset of the services described in Figure 1 and
exclusively relying on Web Services technology. In this sec-
tion, we show how the scientist is able to enact workflows
in myGrid.

An in silico experiment typically involves using several
bioinformatics databases and algorithms available on the
World Wide Web. Currently, these resources are integrated
by a “query by navigation” process, i.e. by cutting and past-
ing across browser windows. Alternatively, a script (such
as perl script or bat file) may be written to facilitate the
frequent repetition of in silico experiments. There are a
number of limitations of this current state of practice that
workflows in the myGrid environment address.

First, there is the problem of knowing what in silico ex-
periment to perform. A user typically has an understanding
of what they are trying to achieve in bioinformatics terms
and might know some specific Web resources or script,
based on past experience. How they acquired this experi-
ence, how they keep their knowledge up-to-date, and how
they adapt previous experiences to new tasks are essential
elements of the experimental process, which we intend to
make explicit.

Second, there is the problem of incorporating new re-
sources. In most situations the user is interested in a spe-
cific type of resource, a SWISS-PROT database, rather
than a specific resource instance such as the SWISS-PROT
database hosted at a specific institution. If their first (de-
fault) choice is unavailable, then the user would like to use
an alternative of the same type. In the current state of prac-
tice, scripts tend to include hard-coded references to spe-
cific resources.

Third, there is the limited recording of how in silico ex-
periments have been performed. Without knowing what re-
sources have been used in the derivation of a result, there
is no way of knowing if it might be worthwhile re-running
the in silico experiment in the light of more recent knowl-
edge (or if the result should be disregarded, as more recent
knowledge has rendered some of the experimental assump-
tions invalid.)

Fourth, there is difficulty in propagating good in silico
experimental practice. This essentially incorporates the pre-
vious three issues and extends them beyond the individual

scientist to the sharing of resources between research com-
munities. Within an e-Science community, it is not just the
available data that is valuable, but also knowing the accept-
able/proven ways of combining that data to generate new
insights.

3.1 Prototype Experiment

In our prototype, a myGrid user has access to a per-
sonal repository containing their domain data (and results),
a workflow repository containing the available workflow
scripts and a service directory of the available service in-
stances. Each data item in the personal repository has an
associated concept type (a term in the ontology); such con-
cept types are used to initiate the enactment of in silico ex-
periments, as we now explain.

Potential workflows are identified through a conversa-
tion with the ontology service. A specific user interface is
used to incrementally build up an abstract description of a
workflow, starting with the selected concept type. Once the
abstract workflow description is complete, it can be classi-
fied to give a workflow service type identifier (also a term
in the ontology). This is used to retrieve the identifiers of
workflow scripts that match this required type, and from the
identifier, the workflow script itself. In this way, the user in-
teracts with the ontology service to determine the concepts
that match their task; then, they get a list of all the workflow
scripts of this type and choose the one to run (perhaps using
some metadata to help in the selection).

3.2 Workflow Details

Inspired by WSFL [11], the workflow definition consists
of a set of service providers, activities, data links and con-
trol links between activities (cf. Figure 2). For many my-
Grid workflows, each activity has its own service provider,
which includes a locator element to identify the Web Ser-
vice, to be used by the workflow enactment engine. It is
possible for the locator to be static and directly reference
the WSDL definition of the service, but it is more usual for
the locator to be dynamic. In this case, it gives the ser-
vice type identifier that is used to lookup possible services
(using UDDI) from the service directory. Each activity is
described in terms of its service provider and an operation,
thus expressing the specific provided operation that matches
the abstract activity in the workflow. The data links describe
how the outputs of an activity are mapped to the inputs of
other activities, while the control links are used to decide
when the activities should be fired.

The enactment of a workflow script starts by sending the
script and input data to the workflow enactment service.
This responds by returning a workflow instance identifier
that the user interface portal can use to query the workflow



<serviceProvider name="reformatting_seqret"
type="ebins:seqret_derived">

<locator type="static"
service="url of file.wsdl"/>

</serviceProvider>

<activity name="Run_activity1">
<performedBy

serviceProvider="reformatting_seqret"/>
<implement>
<export>
<target portType="ebins:reformatting__seqret"

operation="run"/>
</export>

</implement>
</activity>

<dataLink source="Create_activity1"
target="Run_activity1">

<map sourceMessage="createEmptyJobResponse"
targetMessage="runRequest">

<partMap source="return" target="in0"/>
</map>

</dataLink>

Figure 2. Example of Workflow

status and identify the workflow result in the personal repos-
itory.

The use of a dynamic locator to identify a service
provider in the workflow script is the main mechanism for
abstracting a workflow over specific service instances. The
dynamic locator gives the service type identifier; any ser-
vice instance that has registered under this identifier in the
service directory is a potential match. The dynamic loca-
tor also gives the policy to be used for selecting between
the potential services. In the prototype, only two policies
are available. In the simplest policy, the enactment engine

chooses the first element in the list returned from the ser-
vice directory. The other is user-choice, where the list of
services is sent to the user agent who makes choice on be-
half of the user, possibly interacting with the user through
the portal, if configured to do so.

The workflow enactment service also creates a prove-
nance log within the personal repository for each workflow
instance. This trace includes: the initial data, the workflow
script, the intermediate results, the actual service instances
selected and the time taken for the service operations. These
logs could be viewed through the portal to understand the
detailed derivation of a particular result.

The definition of an in silico experiment as a workflow
means that it exists as an explicit piece of data that can be
shared, copied and altered by a community of scientists.
Even within the context of the simple examples in the proto-
type, it was clear that what a user might consider a single in
silico experiment might be supported by many workflows.
There are variants of workflows that have the same type and
the choice between them is often the personal choice of the
user. Some users will always want to be involved in the
dynamic selection between alternative services, while oth-
ers will be content to leave that to the enactment engine,
or an agent acting on their behalf. Another way that work-
flows of the same type might vary is in the filtering of sets
of intermediate results. (In the current state of practice, this
corresponds to users who do not mechanically cut and paste
between resources, but apply their knowledge to select, cut
and paste in their in silico experiments.)

While our project is still at an early stage, we have
been able to enact workflows that expressed rather complex
queries in bioinformatics, such as (i) Has anyone else stud-
ied the effect of neurotransmitters on the circadian rhythms
of Drosophila? (ii) How do the functions of the clusters
of proteins from my experiment interrelate? (iii) What are
the proteins with a particular function? (iv) What is known
about a given protein?

The enactment of workflows has shown that there is a
need for user preferences to guide the selection of services
to invoke. There is scope for user agents to (semi-)automate
the customisation of service selection, and also for negoti-
ation when multiple service with complementary character-
istics are available to the user. This is precisely the role of
software agents, which we discuss in the following section.

4 Agents in Bioinformatics Grids

The bioinformatics domain is characterised by rapid and
substantial change over time. The volume of data poses
problems, but the change in the resources available to the
bioscientist is a distinct problem; new resources can appear,



old ones can disappear, and some can simply change. Al-
though there are several well-known and highly regarded
databases, limiting a system to only these could impose un-
desirable constraints. Thus, any system intended for appli-
cation to the bioinformatics domain should be able to cope
with this dynamism and openness, and nothing addresses
these concerns as comprehensively as the agent approach.
Agents are flexible, autonomous components designed to
undertake overarching strategic goals, while at the same
time being able to respond to the uncertainty inherent in
the environment. On the one hand, agents provide an ap-
propriate paradigm or abstraction for the design of scalable
systems aimed at this kind of problem; on the other, the field
of agent-based computing offers a set of technologies that
may be used for particular purposes in certain aspects of the
system, including personalisation, communication, negoti-
ation, which we discuss below.

4.1 User Agent

The user agent of Figure 1 is an agent in the sense that it
represents a user within the myGrid system (so could also
be described as a personal agent [12]). It can autonomously
provide the personal preferences and conditions of a user to
other parts of the system. This is useful, in particular, when
a workflow is being enacted and a choice of services be-
comes available. The choice should not be made arbitrarily,
but on the priorities and circumstances of the particular user.
For example, a user may have greater trust in the ability of
one service to produce accurate results than another, or the
user’s operating system may only support some forms of in-
teraction between services and the user. The user should not
have to be queried each time a service must be chosen, as
these preferences and previous choices can be recorded and
acted upon by the user agent to select from each set of op-
tions presented to it. We call this function personalisation.

Another application of the user agent is as a contact point
between services within myGrid and the user. By having an
intermediary able to receive, for example, requests from ser-
vices for the user to enter data or notifications about changes
to remote databases, these messages can be provided to the
user only when the user is able and willing to receive them.
Conversely, the user can delegate the details of a procedure
to the user agent, such as authenticating itself with a service
before use, or for personalisation of workflows as described
above.

4.2 Agent Communication Language

A key requirement of myGrid is the design of a future
proof environment in which collaborative distributed bioin-
formatics applications may be developed. Bioinformatics is
not a green field, and multiple protocols and standards are

already supported by the community. Our methodology is
to design a generic architecture able to support multiple ex-
isting protocols, languages and standards, and which hope-
fully will be able to accommodate future developments. In
particular, we want to design an abstract communication
architecture that we can map onto concrete communication
technologies.

At the same time, in the eBusiness community, Web
Services have emerged as a set of open standards, defined
by the World Wide Web consortium, and ubiquitously sup-
ported by IT suppliers and users. They rely on the syntactic
framework XML, the transport layer SOAP [21], the XML-
based language WSDL [20] to describe services, and the
service directory UDDI [19]. Web Services therefore look
like a strong contender for Grid Computing, as illustrated
by the recent Open Grid Service Architecture (OGSA) [7]
which extends Web Services with support for the dynamic
lifecycle management of Grid Services.

The idea of an “agent communication language” dates
back from the DARPA Knowledge Sharing Effort, which
led to the design of KQML (Knowledge Query and Ma-
nipulation Language) [5], and was followed later by FIPA
(Foundation for Intelligent Physical Agents) Agent Com-
munication Language [6].

In agent systems, it is common practice to separate in-
tention from content in communicative acts, abstracting and
classifying the former according to Searle’s speech act the-
ory [18]. An agent’s communications are thereby structured
and classified according to a predefined set of “message cat-
egorisations”, usually referred to as performatives.

In previous work, we have successfully adapted a key
concept of the Nexus communication layer [8] to the world
of agents, which resulted in SoFAR, the Southampton
Framework for Agent Research [14]. Communications be-
tween agents take place over a virtual communication link,
identified by a startpoint and an endpoint. An endpoint
identifies an agent’s ability to receive messages using a spe-
cific communication protocol. An endpoint extracts mes-
sages from the communication link and passes them onto
the agent. A startpoint is the other end of the communi-
cation link, from which messages get sent to an endpoint.
Given a startpoint, one can communicate with a remote
agent, by activating a performative on the startpoint, passing
the message content.

In [13, 1], we have described how the idea of agent com-
munication languages, and the startpoint/endpoint commu-
nication model could be mapped onto the communication
stack of Web Services. In [13], we only focused on the com-
munication layer by encoding performatives and message
contents in SOAP. In [1], we made use of the WSDL lan-
guage to describe agents and the performatives they support,
so that such definitions could be published in the UDDI reg-
istry, discovered and re-used like any other Web Service.



This approach turns out to be promising, as it offers
a declarative communication semantics, which promotes
inter-operability, openness, and dynamic discovery and
reuse of agents. It also opens the agent world to the Web
Services community, helping in the design of more com-
plex interactions, as discussed in the following section.

4.3 Negotiation Broker

Another application of research from the agent field is in
the area of negotiation. Service users and service providers
typically have differing criteria over the preferable quality
and content of the service they receive. An area in which
negotiation can be seen as particularly useful in myGrid is
notification support. The providers of various services may
want to send out into the wider system notifications con-
cerning improvements to tools, changes to databases or up-
dates concerning the state of enacted workflows, etc. Other
services or agents want to register to receive some subset of
these notifications. For stability, we support asynchronous
messages, and manage their distribution using a notification
service.

4.3.1 Quality of Service

The subjects (quantitative and qualitative) over which ne-
gotiation takes place could include the following forms of
quality of service:

� the cost of receiving the notification,

� the topic (event category) of the notifications,

� the frequency with which notifications are received
(e.g. every time a change occurs, daily, hourly),

� the generality of the change described by the notifica-
tions,

� the form in which the information in the notification
message is supplied, and

� the accuracy of information contained within a notifi-
cation.

Quality of service refers to these distinctions in both what a
publisher produces and how it produces it.

A publisher of notifications will be able to produce no-
tifications matching (or exceeding, where appropriate) one
or more measures of quality of service. For example, a pub-
lisher may be able to publish notifications on a particular
topic every minute or every hour. A consumer of notifi-
cations may prefer, or demand, one measure of quality of
service over another. Whether, or how well, their demands
can be met by a publisher depends on the quality of service
that the publisher can provide.

If demands cannot be met exactly, the consumer may
choose to negotiate with the publisher to find the next best
quality of service that the publisher can provide. For ex-
ample, if the consumer desires notifications weekly and the
publisher can provide daily or fortnightly notifications, the
subscriber must find this out from the publisher and then
decide between them, or decide not to subscribe at all,
based on the subscribers particular priorities. Alternatively,
the publisher may be able to exceed the quality of service
in several ways which the subscriber may be unaware of,
which could also lead to negotiation.

4.3.2 Model

As the notification service must provide notification support
for a potentially large and varying number of consumers, it
should not change its contract based solely on the results
of negotiation between a single consumer and a publisher.
Therefore, the notification service should have some con-
trol over the quality of service agreed upon. There are other
reasons that the notification service may usefully limit the
interaction between the publisher and consumer, such as
limiting the knowledge of one by the other for reasons of
privacy.

We propose using a quality of service broker that is an
agent conceptually contained within the notification service
(available through the same communication channels). The
quality of service broker negotiates on behalf of each con-
sumer wishing to receive notifications of a specified quality,
then provide a final proposal to the consumer. It can nego-
tiate with any of the publishers known to the notification
service, and also limit the agreed quality of service to that
acceptable to the notification service. We wish to make the
quality of service broker able to negotiate with publishers
produced by various providers, so we use the concept of
pluggable negotiation algorithms, allowing the quality of
service broker to select the appropriate protocol for negoti-
ating with a publisher.

5 Conclusion

In this paper, we have presented the myGrid architec-
ture and overviewed possible use of agents. MyGrid aims
to provide a personalised environment for the bioscientists,
which helps them to automate, repeat and therefore better
achieve their experiments. Agents are particularly useful in
tailoring the myGrid system to the priorities of individual
scientists, personalising each step of a workflow and nego-
tiating on their behalf. It can be seen from our discussion
that, along with dynamic workflow enactment, standardis-
ation of data semantics via ontologies and the many other
facilities of myGrid, agents can make conducting in-silico



experiments flexible and more easily controlled by the indi-
vidual or collablorating scientists.

The examples of use of agents we have presented, while
already offering a capability non existing in current bioin-
formatics environment, still remain rather localised to some
specific services (user agent or negotiation over quality of
service of notification service), or components such as a
communication layer.

For the long term, agent-based computing also counts
in its armoury a range of techniques for enabling individ-
ual components to collaborate with others, as well as for
competing with others in the provision of services as may
be found in bioinformatics. For example, the former as-
pects include issues in the construction of the virtual organ-
isation mentioned earlier, whereby different services come
together in some coherent whole subsystem for a particu-
lar purpose; and issues in the regulation of open societies
of services through the use of norms and electronic institu-
tions. The latter aspects, for example, include the possible
use of sophisticated auction mechanisms, or electronic mar-
ketplaces, for obtaining the best services or resources at the
least cost to the user. Additionally, whenever interactions
take place between different agents, the issues of trust and
reputation become important. Though some work has been
done in this area, the focus on both agent-based comput-
ing and Grid computing has been limited, with the majority
adopting the stance of assuming complete trust, and avoid-
ing the issue; questions of deception and fraud in commu-
nication and interaction, of assurance and reputation, and of
risk and confidence, are particularly significant, especially
where interactions take place with new partners.

6 Acknowledgements

This research is funded by EPSRC myGrid project (ref-
erence GR/R67743/01).

References

[1] A. Avila-Rosas, L. Moreau, V. Dialani, S. Miles, and X. Liu.
Agents for the Grid: A Comparison with Web Services (part
II: Service Discovery). In Workshop on Challenges in Open
Agent Systems, Bologna, Italy, July 2002.

[2] K. Bryson, M. Luck, M. Joy, and D. Jones. Agent interac-
tion for bioinformatics data management. Applied Artificial
Intelligence, 15(10):917–947, 2001.

[3] K. Decker, X. Zheng, and C. Schmidt. A Multi-Agent Sys-
tem for Automated Genetic Annotation. In The fifth ACM
International Conference on Autonomous Agents, Montreal,
Canada, May 2001.

[4] V. Dialani, S. Miles, L. Moreau, D. D. Roure, and M. Luck.
Transparent fault tolerance for web services based architec-
tures. In Eighth International Europar Conference (EURO-

PAR’02), Lecture Notes in Computer Science, Padeborn,
Germany, Aug. 2002. Springer-Verlag.

[5] T. Finin, Y. Labrou, and J. Mayfield. Software Agents, J.
Bradshaw, Ed., chapter KQML as an Agent Communication
Language. MIT Press, 1997.

[6] FIPA: Foundation for Intelligent Physical Agents.
http://drogo.cselt.stet.it/fipa/.

[7] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
Physiology of the Grid — An Open Grid Services Architec-
ture for Distributed Systems Integration. Technical report,
Argonne National Laboratory, 2002.

[8] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Ap-
proach to Integrating Multithreading and Communication.
Journal of Parallel and Distributed Computing, 37:70–82,
1996.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid. Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputer Applications, 2001.

[10] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Technical Report KSL-93-04,
Knowledge Systems Laboratory, Stanford University, Aug.
1993.

[11] F. Leyman. Web Services Flow Language (WSFL). Techni-
cal report, IBM, May 2001.

[12] P. Maes. Agents that Reduce Work and Information Over-
load. Commun. ACM, 37(7):31–40, July 1994.

[13] L. Moreau. Agents for the Grid: A Comparison for Web Ser-
vices (Part 1: the transport layer). In H. E. Bal, K.-P. Lohr,
and A. Reinefeld, editors, Second IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID
2002), pages 220–228, Berlin, Germany, May 2002. IEEE
Computer Society.

[14] L. Moreau, N. Gibbins, D. DeRoure, S. El-Beltagy, W. Hall,
G. Hughes, D. Joyce, S. Kim, D. Michaelides, D. Millard,
S. Reich, R. Tansley, and M. Weal. SoFAR with DIM
Agents: An Agent Framework for Distributed Information
Management. In The Fifth International Conference and Ex-
hibition on The Practical Application of Intelligent Agents
and Multi-Agents, pages 369–388, Manchester, UK, Apr.
2000.

[15] C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger,
A. Bairoch, and R. Apweiler. High-quality protein knowl-
edge resource: Swiss-prot and trembl. Briefings in Bioinfor-
matics, 3(3):275–284, 2002.

[16] N. Paton, M. Atkinson, V. Dialani, D. Pearson, T. Storey,
and P. Watson. Database access and integration services on
the grid. In Fourth Global Grid Forum (GGF 4) Databases
and the Grid BOF, 2002.

[17] R. S. Sandhu and Q. Munawer. How to do discretionary
access control using roles. In ACM Workshop on Role-Based
Access Control, pages 47–54, 1998.

[18] J. Searle. Speech Acts: An Essay in the Philosophy of Lan-
guage. Cambridge University Press, 1969.

[19] Universal Description, Discovery and Integration of Busi-
ness of the Web. www.uddi.org, 2001.

[20] Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl, 2001.

[21] XML Protocol Activity.
http://www.w3.org/2000/xp, 2000.


