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ABSTRACT
We discuss the application of Model Based Diagnosis in
agent-based planning. We model a plan as a system to be
diagnosed and assume that agents can monitor the execu-
tion of the plan by making partial observations during plan
execution. These observations are used by the agents to
explain plan deviations (errors) by qualifying some action
instances as behaving abnormally. We prefer those qualifi-
cations that are maximum informative, i.e. explain as much
as possible. Since in a plan several instances of the same ac-
tion might occur, an error occurring in one instance might
be used to predict the occurrence of the same error in an
action instance to be executed later on. To account for such
correlations, we introduce causal rules to generate diagnoses
from action instances qualified as abnormally and we intro-
duce Pareto minimal causal diagnoses as the right extension
of classical minimal diagnoses.

Next, we consider the multi-agent perspective where each
agent is responsible for a part of the total plan, we show how
plan-diagnoses of these partial plans are related to diagnoses
of the total plan and how global diagnoses can be obtained
in a distributed way.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, and generation; I.2.11 [Distribu-
ted Artificial Intelligence]: Intelligent agents, Multiagent
Systems

General Terms
Reliability, Theory
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1. INTRODUCTION
Model-Based Diagnosis (MBD) [4, 5, 13] is a well-known

technique to infer abnormalities of internal components of
a given system S from its input-output behavior. To this
end a model of S is given, where the set of components C,
the possible behaviors of each of the components c ∈ C and
their relations have been specified. Usually, for each com-
ponent c several health modes are distinguished: a normal
mode and several fault modes. For each health mode of c
a particular behavior of c is given. Once the health mode
of each component c ∈ C is specified the behavior of the
total system is defined and the output of the system S can
be inferred from its input unambiguously. The diagnostic
engine is triggered whenever, under the assumption that all
components are functioning normally, there is a discrepancy
between the output as predicted from the input observa-
tions, and the actually observed output. The result of MBD
then is a suitable assignment of health modes to the com-
ponents, called a diagnosis, such that the actually observed
output is consistent with this health mode qualification or
can be explained by this qualification. Usually, in a diag-
nosis one requires the number of components qualified as
abnormally to be minimized.

Our contribution in this paper is an adaptation and exten-
sion of MBD to both single agent and multi-agent planning
systems. First of all, to enable plan diagnosis, we will in-
troduce an object-oriented description of actions in contrast
to the traditional state based approach [7]. In this approach
action instances in a plan (also called steps cf. [12]) can be
viewed as components whose outputs influence the states of
objects we are interested in. This object-oriented view of
actions is closely related to the resource-oriented view pre-
sented in [17], which offers important advantages in multi-
agent planning.

The object oriented view of plans enables us to apply
the MBD-approach to plan execution of single and multi-
agent plans. By viewing action instances as the components
and inputs and outputs of a component as objects of which
the status is influenced by an action, the plan itself can be
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viewed as the structural description of a system. This de-
scription offers us a very natural model for describing and
analyzing plan execution. The relations between plan steps
(action instances) are specified by viewing them as instances
of the more abstract notion of an action scheme (also called
a plan operator cf. [12]). At the level of an action scheme
we define the generic behavior of the action.

Secondly, we will introduce the notion of plan diagnosis in
a single agent system, by showing how the object oriented
description of plans enables us to apply the standard MBD
approach to plans using (partial) observations of plan states.
Observations plus assumptions about the (mal)functioning
of action instances can be used to make predictions about fu-
ture plan states. Distinguishing between normal and abnor-
mal execution of actions in a plan, we introduce inclusion-
minimal sets of actions qualified as abnormal to explain de-
viations between expected plan states and observed plan
states. Such minimal qualifications directly correspond to
minimal diagnoses. Within such minimal plan diagnoses we
distinguish maximum informative qualifications that can be
used to enhance the explanatory power of diagnoses.

Remark Within the MBD-approach one usually distinguishes
the classical system description approach and the Discrete
Event Systems (DES) [1] approach. Instead of a system
consisting of a set of interrelated components, DES uses a
more abstract description based on a finite state machine
representation of the components and is especially suited
for modeling dynamic systems. Since plan execution is a
dynamic process, plan diagnosis by modeling the plan as
a DES may seem to be an obvious choice. The problem,
however, is that the components distinguished in a DES are
meant to be reactive finite automata, where state transi-
tions take place as the consequence of external inputs or
messages received from neighboring links. Modeling the ac-
tion instances as our primary components would imply that
either the automata representing the actions would become
trivial or we would be forced to model the combined states of
all objects as a single state of the finite state machine, and
the actions themselves as events causing state transitions.
For future extensions of our approach we see possibilities to
adapt the DES approach, especially if the fault modes of the
components are further differentiated.

Thirdly, we introduce the concept of a causal diagnosis.
The idea of establishing a minimal diagnosis in MBD is gov-
erned by the principle of minimal change: explain the ab-
normalities in the behavior observed by changing the qual-
ification from normal to abnormal for as few system com-
ponents as necessary. Using this principle is intuitively ac-
ceptable if the components qualified as abnormal are failing
independently. However, if there exist dependencies between
such components, the choice for minimal diagnoses cannot
be justified. As we will argue, the existence of dependencies
between failing actions in a plan is often the rule instead of
an exception. Therefore, we will refine the concept of a plan
diagnosis by introducing the concept of a causal diagnosis.
We relate the anomalous execution of actions to anomalous
execution of other actions in the form of causal rules. These
rules enable us to replace a set of dependent failing actions
(e.g. a plan diagnosis) by a set of unrelated causes of the
original diagnosis. This independent and usually smaller set
of causes constitutes a causal diagnosis, consisting of a set of
failing actions. Such a causal diagnosis always generates a

cover of a minimal diagnosis. More importantly, such causal
diagnoses can also be used to predict failings of actions that
have to be executed in the plan and thereby also can be
used to assess the consequences of such failures for goal re-
alizability.

Finally, we concentrate on multi-agent plan diagnosis. Here,
the agents together are assumed to execute a common plan
that is partitioned over the agents. Each agent is responsi-
ble for the execution of its sub-plan and has to respect the
dependencies with sub-plans of other agents. We show that
global diagnoses can be obtained in a distributive way by
establishing partial diagnoses of the sub-plans.

The remainder of this paper is organized as follows: In the
next section, we discuss some approaches related to plan-
based diagnosis. Section 3 introduces the preliminaries of
plan-based diagnosis, while Section 4 formalizes plan-based
diagnosis. Section 5 extends the formalization to multi-
agent plans. Section 6 concludes the paper.

2. RELATED RESEARCH
In this section we briefly discuss some related approaches

to plan diagnosis. Like we use MBD as a starting point to
plan diagnosis, Birnbaum et al. [2] apply MBD to planning
agents relating health states of agents to outcomes of their
planning activities. They do not take into account faults
that can be attributed to actions occurring in a plan as a
separate source of errors. Instead of focusing upon the re-
lationship between agent properties and outcomes of plan
executions, we take a more detailed approach, distinguish-
ing two separate sources of errors (actions and properties
of the executing agents) and focusing upon the detection
of anomalies during the plan execution. This enables us to
predict the outcomes of a plan beforehand instead of using
them only as observations.

De Jonge et al. [6] propose another approach that directly
applies model-based diagnosis to plan execution. Their pa-
per focuses on agents each having an individual plan, and
where conflicts between these plans may arise (e.g. if they
require the same resource). Diagnosis is applied to deter-
mine those factors that are accountable for future conflicts.
The authors, however, do not take into account dependen-
cies between health modes of actions and do not consider
agents that collaborate to execute a common plan.

Kalech and Kaminka [10, 11] apply social diagnosis in or-
der to find the cause of an anomalous plan execution. They
consider hierarchical plans consisting of so-called behaviors.
Such plans do not prescribe a (partial) execution order on a
set of actions. Instead, based on its observations and beliefs,
each agent chooses the appropriate behavior to be executed.
Each behavior in turn may consist of primitive actions to be
executed, or of a set of other behaviors to choose from. So-
cial diagnosis then addresses the issue of determining what
went wrong in the joint execution of such a plan by identify-
ing the disagreeing agents and the causes for their selection
of incompatible behaviors (e.g., belief disagreement, com-
munication errors). This approach might complement our
approach when conflicts not only arise as the consequence
of faulty actions, but also as the consequence of different
selections of sub-plans in a joint plan.

Lesser et al. [3, 9] also apply diagnosis to (multi-agent)
plans. Their research concentrates on the use of a causal
model that can help an agent to refine its initial diagnosis
of a failing component (called a task) of a plan. As a con-
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sequence of using such a causal model, the agent would be
able to generate a new, situation-specific plan that is bet-
ter suited to pursue its goal. While their approach in its
ultimate intentions (establishing anomalies in order to find
a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact
causes of the failing of one single component (task) of a plan.
Diagnosis is based on observations of a component without
taking into account the consequences of failures of such a
component w.r.t. the remaining plan. In our approach, in-
stead, we are interested in applying MBD-inspired methods
to detect plan failures. Such failures are based on obser-
vations during plan execution and may concern individual
components of the plan, but also agent properties. Fur-
thermore, we do not only concentrate on failing components
themselves, but also on the consequences of these failures
for the future execution of plan elements.

3. PRELIMINARIES
We start with considering plan-based diagnosis as a simple

extension of the model-based diagnosis approach where the
model is not a description of an underlying system but a
plan of an agent.

States We take an object- or resource-based view on the
world, assuming that for the planning problem at hand, the
world can be simply described by a set Obj = {o1, o2, . . . , on}
of objects, their respective value domains Si and and their
(current) values si ∈ Si.

1 A state of the world σ then is an
element of S1×S2× . . .×Sn. It will not always be possible
to give a complete state description. Therefore, we intro-
duce a partial state as an element π ∈ Si1 × Si2 × . . .× Sik ,
where 1 ≤ i1 < . . . < ik ≤ n. We use O(π) to denote the
set of objects {oi1 , oi2 , . . . , oik} ⊆ Obj specified in such a
(partial) state π. The value sj of object oj ∈ O(π) in π
will be denoted by π(j). The value of an object oj ∈ Obj
not occurring in a partial state π is said to be unknown (or
unpredictable) in π, denoted by ⊥. Partial states can be
ordered with respect to their information content: π is said
to be contained in π′, denoted by π v π′, iff O(π) ⊆ O(π′)
and π′(j) = π(j) for every oj ∈ O(π). We say that two
partial states π, π′ are equivalent modulo a set of objects
O, denoted by π =O π′, if for every oj ∈ O, π(j) = π′(j).
Finally, we define the partial state π restricted to a given
set O, denoted by π � O, as the state π′ v π such that
O(π′) = O ∩O(π).

Goals An (elementary) goal g of an agent specifies a
set of states an agent wants to bring about using a plan.
Here, we specify each such a goal g as a constraint, that is a
relation over some product Si1 × . . . × Sik of domains. We
say that a goal g is satisfied by a partial state π, denoted by
π |= g, if the relation g contains some tuple (partial state)
(vi1 , vi2 , . . . vik ) such that (vi1 , vi2 , . . . vik ) v π. We assume
each agent to have a set G of such elementary goals g ∈ G.
We use π |= G to denote that all goals in G hold in π, i.e.
for all g ∈ G, π |= g.

Action schemes An action scheme or plan operator
α is represented as a function that replaces the values of
a subset Oα ⊆ Obj by other values, dependent upon the
values of another set O′

α ⊇ Oα of objects. Hence, every

1In contrast to the conventional approach to state-based
planning, cf. [7].

action scheme α can be modeled as a (partial) function
fα : Si1 × . . . × Sik → Sj1 × . . . × Sjl , where 1 ≤ i1 <
. . . < ik ≤ n and {j1, . . . , jl} ⊆ {i1, . . . , ik}. The objects
whose value domains occur in dom(fα) will be denoted by
domO(α) = {oi1 , . . . , oik} = O′

α and, likewise ranO(α) =
{oj1 , . . . , ojl} = Oα. Note that ranO(α) ⊆ domO(α). This
functional specification fα constitutes the normal behavior
of the action, denoted by fnor

α . The correct execution of an
action may fail either because of an inherent malfunctioning
or because of a malfunctioning of an agent responsible for
executing the action, or because of unknown external cir-
cumstances. In all these cases we would like to model the
effects of executing such failed actions. Therefore, we intro-
duce a set of health modes Mα for each action scheme α.
Mα contains at least the normal mode nor, the mode ab in-
dicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnor-
mal behavior of action scheme α is specified by the function
fab

α , where fab
α (si1 , si2 , . . . , sik ) = (⊥,⊥, . . . ,⊥).2 To keep

the discussion simple, in the sequel we distinguish only the
health modes nor and ab. Specific action instances of the
action scheme α will be denoted by small roman letters ai.
If type(ai) = α, such an instance ai is said to be of type α.
If the context permits we will use “actions” and “instances
of actions” interchangeably.

Plans A plan is a partial order P = 〈A, <〉 where A is
a set of instances of actions. The partial order specifies a
precedence relation between these instances: a < a′ implies
that the (instance) a must finish before a′ may start. We
will denote the transitive reduction of < by �, i.e., � is the
smallest subrelation of < whose transitive closure equals <.

We assume that if in a plan P two action instances a and
a′ are <-independent, in principle they may be executed
concurrently. This means that the dependency relation <
at least should capture all resource dependencies that would
prohibit concurrent execution of actions. Therefore, we as-
sume < to satisfy the following concurrency requirement :

If ranO(a) ∩ domO(a′) 6= ∅ then a < a′ or a′ < a.3

That is, for concurrent instances, domains and ranges do not
overlap. If the range of a overlaps with the domain of a′, the
action a may influence the effect of the action a′ depending
on the order in which a and a′ are executed.

Figure 1 gives an illustration of a plan. Arrows denote the
objects an action uses as inputs. In this plan, the depen-
dency relation is specified as a1 � a3, a2 � a4, a4 � a5,
a4 � a6 and a1 � a5. Note that the last dependency has
to be included because a5 changes the value of o2 needed by
a1. The action a1 shows that not every object occurring in
the domain of an action needs to be affected by the action.
The actions a5 and a6 illustrate that concurrent actions may
have overlapping domains.

Qualifications In order to predict the result of an anoma-
lous plan execution, we introduce the notion of a qualified
plan. A qualified version PQ of a plan P = (A, <) is a tu-
ple PQ = (A, <, Q), where Q ⊆ A is the subset of actions

2This definition implies that the behavior of abnormal ac-
tions is essentially unpredictable.
3Note that since ranO(a) ⊆ domO(a), this requirement ex-
cludes overlapping ranges of concurrent actions, but do-
mains of concurrent actions are allowed to overlap as long
as the values of the object in the overlapping domains are
not affected by the actions.
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Figure 1: Plans & states

qualified as abnormal and therefore, A − Q the subset of
actions qualified as normal. Since a qualification Q corre-
sponds with assigning the health mode ab to every action in
Q and since fab

a (si1 , si2 , . . . , sik ) = (⊥,⊥, . . . ,⊥) for every
action instance a ∈ Q, the results of anomalously executed
actions are unpredictable.4

Note that a normal plan execution of plan P corresponds
with the qualified version P∅.

Plan execution For simplicity, we will assume that ev-
ery action takes a unit of time to execute. We are allowed
to observe the execution of a plan P at discrete times t =
0, 1, 2, . . . , k where k is the depth of the plan, i.e., the longest
<-chain of actions in P . Let depthP (a) be the depth of ac-
tion a in plan P = (A, <) that is, depthP (a) = 0 if {a′ |a′ �
a} = ∅ and depthP (a) = 1 + max{depthP (a′) | a′ � a},
else. If the context is clear, we often will omit the subscript
P . We assume that the plan starts to be executed at time
t = 0 and that concurrency is fully exploited, i.e., all actions
a with depth(a) = 0 are completed at time t = 1 and every
action a with depth(a) = k will be started at time k and will
be completed at time k + 1. Note that thanks to the above
specified concurrency requirement concurrent execution of
actions having the same depth leads to a well-defined result.

Let Pt denote the set of actions a with depth(a) = t, let

P>t =
S

t′>t Pt′ , P<t =
S

t′<t Pt′ and P[t,t′] =
St′

k=t Pk. We
say that an action a is enabled in a state σ if domO(a) ⊆
O(σ).

Execution of P on a given initial state σ0 will induce a
sequence of states σ0, σ1, . . . , σk, where σt+1 is generated
from σt by applying the subset of actions Pt enabled in σt.

This idea can be easily generalized to inducing a sequence
of partial states using the action instances occurring in P
given a (partial) state π at time t ≥ 0, denoted by (π, t).

We say that (π′, t+1) is (directly) generated by execution
of PQ from (π, t), abbreviated by (π, t) →Q;P (π′, t + 1), iff
the following conditions hold:

1. π′ �ranO(a) = fnor
a (π �domO(a)) for each a ∈ Pt −Q

with domO(a) ⊆ O(π), that is, the consequences of all
actions a enabled in π can be predicted and occur in
π′.

4Note that in our context ”undefined” is considered to be
equivalent to ”unpredictable”.

2. O(π′) ∩ ranO(a) = ∅ for each a ∈ Q ∩ Pt, since the
result of executing an abnormal action cannot be pre-
dicted (even if such an action is enabled in π);

3. O(π′)∩ ranO(a) = ∅ for each a ∈ Pt with domO(a) 6⊆
O(π), that is, even if an action a is enabled in (the
complete state) σt, if a is not enabled in π v σt, the
result is not predictable and therefore does not occur in
π′, since it is not possible to predict the consequences
of actions that depend on values not defined in π.

4. π′(i) = π(i) for each oi 6∈ ranO(Pt), that is, the value
of any object not occurring in the range of an action in
Pt should remain unchanged. Here, ranO(Pt) denotes
the union of the sets ranO(a) with a ∈ Pt.

For arbitrary values of t ≤ t′ we say that (π′, t′) is (di-
rectly or indirectly) generated by execution of PQ from (π, t),
denoted by (π, t) →∗

Q;P (π′, t′), iff the following conditions
hold: (i) if t = t′ then π′ = π; (ii) if t′ = t + 1 then
(π, t) →Q;P (π′, t′); (iii) if t′ > t + 1 then there must exists
some state (π′′, t′− 1) such that (π, t) →∗

Q;P (π′′, t′− 1) and
(π′′, t′ − 1) →Q;P (π′, t′).

Note that (π, t) →∗
∅;P (π′, t′) denotes the a normal exe-

cution of a normal plan P∅. Such a normal plan execution
will also be denoted by (π, t) →∗

P (π′, t′).

π3t=3

π0

π1

π2

a1 a2

a3 a4

a6

t=0

t=1

t=2

o1 o2 o3

a7 a8
⊥

a5

o4 o5

Figure 2: Execution of abnormal actions

Figure 2 gives an illustration of an execution of a plan
with abnormal actions. Suppose action a3 is qualified as
abnormal and generates a result that is unpredictable (⊥).
Given the qualification Q = {a3} and the partially observed
state π0 at time point t = 0, we predict the partial states
of the time points t > 0; i.e. (π0, t0) →∗

Q;P (πi, ti) with
i ∈ {1, 2, 3}. Since the value of o1 and of o5 cannot be
predicted at time t = 2, the result of action a6 and of action
a8 cannot be predicted and π3 contains only the value of o3.

4. PLAN DIAGNOSIS
Suppose that we have a (partial) observation obs(t) =

(π, t) of the state of the world at time t and an observation
obs(t′) = (π′, t′) at time t′ > t ≥ 0 during the execution of
the plan P . We would like to use these observations to infer
the health states of the actions occurring in P . Assuming a
normal execution of P , we can (partially) predict the state
of the world at a time point t′ given the observation obs(t):
if all actions behave normally, we predict a partial state π′∅
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at time t′ such that obs(t)→∗
P (π′∅, t′). If the normality as-

sumption holds, the values of the objects that occur in both
the predicted state and the observed state at time t′ should
match, i.e, we should have π′ =O(π′)∩O(π′

∅) π′∅.5 If not, the

execution of some actions must have gone wrong. To de-
termine which action(s) may have failed, we may apply the
following straight-forward extension of the diagnosis concept
in MBD to plan diagnosis [5]:

Definition 1. Let 〈P, obs(t), obs(t′)〉 with P = (A, <) be
a plan with observations obs(t) = (π, t) and obs(t′) = (π′, t′),
where t < t′ ≤ depth(P ). Let obs(t)→∗

Q;P (π′Q, t′) be a
derivation assuming a qualification Q. Then Q is said to be a
plan diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ =O(π′)∩O(π′

Q
) π′Q.

So in a plan diagnosis Q the observed partial state (π′) at
time t′ and the predicted state assuming the qualification Q
(π′Q) at time t′ agree upon the values of all objects defined
in both states.

Note that for all objects in O(π′) ∩ O(π′Q), the qualifica-
tion Q provides an explanation for the observation π′ made
at time point t′. Hence, for these objects the qualification
provides an abductive diagnosis [4]. For all observed objects
in O(π′)−O(π′Q), no value can be predicted given the qual-
ification Q. Hence, by declaring them to be unpredictable,
possible conflicts with respect to these objects if a normal
execution of all actions is assumed, are resolved. This cor-
responds with the idea of a consistency-based diagnosis [13].

Minimum diagnosis and maximum informative di-
agnosis If Q is a plan diagnosis of 〈P, obs(t), obs(t′)〉,
then every superset Q′ ⊇ Q is also a plan diagnosis: since
π′Q′ v π′Q, we have O(π′) ∩ O(π′Q′) ⊆ O(π′) ∩ O(π′Q) and

therefore π′ =O(π′)∩O(π′
Q

) π′Q implies π′ =O(π′)∩O(π′
Q′ )

π′Q′ .

Clearly, then, the smaller a diagnosis, the more informa-
tive it will be, i.e., the more values it will predict that are
also actually observed. Therefore, like in MBD, we will con-
centrate on minimum diagnoses. But there is a caveat: a
minimum diagnosis i.e., a cardinality minimal diagnosis, is
not necessarily a most informative diagnosis. Therefore, we
also define the notion of a maximum informative diagnosis:

Definition 2. Given plan observations 〈P, (π, t), (π′, t)〉,
a qualification Q is said to be a

• minimum plan diagnosis if for every plan diagnosis Q′

it holds that |Q| ≤ |Q′| and

• maximum informative plan-diagnosis iff for all plan
diagnoses Q∗, it holds that |O(π′)∩O(π′Q)| ≥ |O(π′)∩
O(π′Q∗)|.

Note that for every maximum informative diagnosis Q we
have O(π′)∩O(π′Q) ⊆ O(π′)∩O(π′∅), where obs(t)→∗

∅;P (π′∅, t′)
is the partial state derivation assuming a normal plan exe-
cution.

Example To illustrate the difference between minimum plan
diagnosis en maximum informative diagnosis, consider again
the plan execution depicted in Figure 2. Given obs(0) and
obs(3) and a deviation in the value of o2 at time t = 3,

5Since we do not assume to have full control over the plan
observations we cannot assume O(π′) = O(π′∅), that is, ob-
servations of objects might only partially overlap.

there are three possible minimum diagnoses: D1 = {a1},
D2 = {a3} and D3 = {a6}. D2 and D3 are also maximum-
informative diagnoses.

Note that in general a maximum informative diagnosis need
not be a minimum diagnosis.

Minimal Causal Diagnosis Maximum informative diag-
noses have to be preferred among the minimum diagnoses.
Even maximum informed diagnoses, however, are not always
the best ones we can obtain. The reason is that in a plan,
instances of the same action may occur at several places
thereby inducing causal dependencies between abnormali-
ties. For example, suppose that we have a plan for carrying
luggage from a depot to a number of waiting planes. Such
a plan might contain several instances of a drive action per-
taining to the same carrier. Suppose that an instance ai of
some drive action (type) a behaves abnormally because of
malfunctioning of the carrier. Then it is reasonable to as-
sume that other instances aj of the same drive action that
occur in the plan after ai can be predicted to behave abnor-
mally, too. This implies that instead of taking a qualification
Q consisting of all instances of these actions, it would suffice
to consider only the earliest occurrence of such an instance
in Q as a cause of the malfunctioning of the remaining in-
stances in Q.

In general, to capture such causal relations between in-
stances of actions, we specify a set of causal rules Φ. Each
such a rule is of the form α1, α2, . . . , αk → αk+1, where
α1, α2, . . . , αk, αk+1 are action schemes, expressing that when-
ever a qualification Q contains action instances ai occur-
ring in P≤t such that type(ai) = αi for i = 1, . . . , k, then
the action instances ak+1 ∈ P>t such that type(ak+1) =
αk+1, will be qualified as abnormal, too. The set Φ is
said to specify a causal theory for the set of instances A.
The set instP (Φ) is used to denote all instantiations of ac-
tion schemes (ai1 , ai2 , . . . , aik ) → aik+1 ∈ Φ with respect
to a plan P such that for some t ≥ 0 there holds that
{ai1 , ai2 , . . . , aik} ⊆ P≤t and aik+1 ∈ P>t.

To define the set of causal consequences of qualifications,
we consider the set of instances InstP (Φ) as a simple propo-
sitional Horn theory over the set A of instances of actions
acting as atomic propositions. The set of causal conse-
quences CΦ(Q) of a qualification Q using Φ then equals the
set of atomic propositional consequences of InstP (Φ) ∪Q:

CΦ(Q) = CnA(InstP (Φ) ∪Q).

Example Let A be the set of actions schemes of action in-
stances in A where abnormal behavior is preserved, that is, if
some instance of α ∈ A is detected as behaving abnormally
in a plan, then every future instance a of type α will also
behave abnormally. The driving action we mentioned above
is such a type of action. Now we can define a simple causal
theory Φ as Φ = {α → α | α ∈ A}. As a result, whenever
one instance of an action in A is qualified as abnormal, all
subsequent instances of such an action will be qualified as
abnormal, too.

It is easy to see that the operator CΦ satisfies inclusion,
monotony and idempotency. Using this operator, we can
easily define a set of causes of a minimum plan diagnosis Q
as a minimal set Q′ that generates (a superset) of Q with
the help of the causal rules in Φ:
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Definition 3. Let Q be a plan diagnosis of some plan
P with causal theory Φ and let obs(t) and obs(t′) be two
observations with t < t′. Then a causal diagnosis (associated
with Q) is a (subset) minimal set Qmin ⊆ P[t,t′] such that
Q ⊆ [CΦ(Qmin)]≤t′ , where [CΦ(Qmin)]≤t′ = CΦ(Qmin) ∩
P≤t′ .

Such a minimal set of causes Qmin will always exist: take
an arbitrary plan diagnosis Q. Since CΦ satisfies inclusion,
we have Q ⊆ CΦ(Q) and since Q ⊆ P≤t′ , it follows that
Q ⊆ [CΦ(Q)]≤t′ . If Q is a minimal solution satisfying this
last inclusion relation, it is a causal diagnosis, else, there
exists a subset Qmin of Q satisfying the inclusion.

In general, a set of causes of Q will be smaller than Q itself.
On the other hand, since Q ⊆ [CΦ(Qmin)]≤t′ , this latter set,
generated by the causes Qmin, is also a plan-diagnosis, but
might be less informative than Q. So in trying to minimize
the set of causes, we could loose explanatory power. We will
keep a balance between minimality and explanatory power
by defining Pareto minimal causal diagnoses as follows:

Definition 4. Let P = (A, <) be a plan, Φ a causal
theory and let obs(t) = (π, t) and obs(t′) = (π′, t′) with
t < t′ be two observations. Let obs(t)→∗

∅;P (π′∅, t′) and let
obs(t)→∗

Q;P (π′Q, t′) be the plan execution assuming a set Q
of abnormal actions. Then Q is said to be a Pareto mini-
mum causal diagnosis of 〈P = (A, <), Φ, obs(t), obs(t′)〉 iff
there is no causal diagnosis Q′ that dominates Q. Here, a
diagnosis Q′ is said to dominate Q iff (i) |Q′| < |Q| and
[CΦ(Q′)]≤t′ is at least as informative as [CΦ(Q)]≤t′ or (ii)
|Q′| = |Q| and [CΦ(Q′)]≤t′ is a more informative diagnosis
than [CΦ(Q)]≤t′ .

Prediction of plan results Except for playing a role
in establishing causal explanations of observations, (causal)
diagnoses also can play a significant role in the prediction of
future results (states) of the plan or even the attainability
of the goals of the plan. First of all, we should realize that a
diagnosis can be used to enhance observed state information
as follows: Suppose that Q is a causal diagnosis of a plan P
based on the observations obs(t) and obs(t′) for some t < t′,
let obs(t) →∗

CΦ(Q);P (π′Q, t′) and let obs(t′) = (π′, t′). Since

CΦ(Q) is a diagnosis, π′ and π′Q agree upon the values of all
objects occurring in both states. Therefore we can combine
the information contained in both partial states by merging
them into a new partial state π′Q t π′. Here, the merge

π1 t π2 of two partial states π1 and π2 is simply defined as
the partial state π where π(j) = πi(j) iff πi(j) is defined for
i = 1, 2 and undefined otherwise. The partial state π′Q t π′

can be seen as the partial state that can be obtained by
direct observation at time t and indirectly by making use of
previous observations and plan information.

In the same way, we can use this information and the
causal consequences CΦ(Q) to derive a prediction of the par-
tial states derivable at times t′′ > t′:

Definition 5. Let Q is a causal diagnosis of a plan P
based on the observations (π, t) and (π′, t′) where t < t′.
Moreover, let obs(t)→∗

CΦ(Q);P (π′Q, t′) and let obs(t′) = (π′, t′).

Then, for some time t′′ > t′, (π′′, t′′) is the partial state
predicted using Q and the observations if

(π′Q t π′, t′)→∗
CΦ(Q);P (π′′, t′′).

In particular, if t′′ = depth(P ), i.e., the plan has been exe-
cuted completely, we can predict the values of some objects

that will result from executing P and we can check which
goals g ∈ G will still be achieved by the execution of the
plan, based on our current knowledge. That is, we can check
for which goals g ∈ G it holds that τ |= g. So causal diagno-
sis might also help in evaluating which goals will be affected
by failing actions.

5. MULTI-AGENT DIAGNOSIS OF
MULTI-AGENT PLANS

In the previous sections we discussed diagnosis of a single
agent plan. In a multi-agent setting a group of agents is
responsible for executing a common plan P = (A, <) and
each agent is responsible for a sub-plan Pi of P . Such a sub-
plan Pi first of all contains a set Ai of actions only agent i
is responsible for. We consider these sets Ai to constitute
a partitioning of the set A. Furthermore, for each agent
i we distinguish two sets of actions Ii and Ri belonging
to other agents with which agent i has to synchronize the
execution of actions.6 The first set Ii is the set of actions
that provide the input for the actions in Ai: Ii = {a ∈ A |
a � a′, a 6∈ Ai, a

′ ∈ Ai}. The set Ri is the set of actions
that receive their input from actions performed by agent i:
Ri = {a ∈ A | a′ � a, a 6∈ Ai, a

′ ∈ Ai}.
If an action a ∈ Ai of an agent is followed by an ac-

tion a′ ∈ Aj of another agent (a � a′), we assume that
the control over the objects ranO(a) ∩ domO(a′) is trans-
ferred from agent i to agent j. Note that this may result
in transferring control over an object o to more than one
agent if a � a′, a � a′′, o ∈ domO(a′) − ranO(a′) and
o ∈ domO(a′′) − ranO(a′′). However, the concurrency re-
quirement guarantees that the agent executing an action
that modifies the state of an object, will be the only agent
having control over the object.

Each sub-plan Pi is generated by the set of actions Ai

assigned to agent i together with the sets Ii and Ri and is
simply defined as the plan Pi = (Ai, Ii, Ri, <i), where <i is
the relation < restricted to ((Ai∪Ii)×Ai))∪(Ai×(Ai∪Ri)).
Synchronization between two agents i and j is restricted to
the outputs of actions a ∈ Ri needed by actions a′ ∈ Ij with
a � a′.

Figure 3 gives an illustration of a plan that is distributed
over three agents. Initially, agent 1, 2 and 3 have control
over respectively the objects o1, o2 and o3. At t = 2 agent 2
transfers control over o2 to both agent 1 and 3 and at t = 3
agent 1 transfers the control over o2 completely to agent 3.

To discuss multi-agent diagnosis, we first have to concen-
trate on the derivation relation for partial plans. To derive
the partial state (π′, t+1) of a sub-plan Pi = (Ai, Ii, Ri, <i)
given a partial state (π, t) at time t, we must take into ac-
count the objects Ot

i under the control of the agent i at time
t. The objects under the control of agent i are defined as:
Ot

i = {o ∈ domO(a) | a ∈ Ai ∩ P≥t,∀a′ ∈ P≥t : a′ < a ⇒
o 6∈ ranO(a′)}∪{o ∈ ranO(a) | a ∈ Ai∩P<t,∀a′ : a � a′ ⇒
o 6∈ domO(a′)}.

Let πa
i be the partial state of the objects O(πa

i ) ⊆ ranO(a)∩
Ot

i under the control of agent i at time t that are deter-
mined by the action a ∈ Ii such that a � a′ for some
a′ ∈ Pi,t = Ai∩Pt. We say that (π′, t′) is directly generated

6Here, we do not take into consideration how agents syn-
chronize their actions; i.e., whether they synchronize their
actions through communication or by observing a common
environment.
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Figure 3: Multi-agent plan diagnosis

from (π, t) by the execution of sub-plan Pi using qualifica-
tion Qi, denoted by (π, t); {πa

i | a ∈ Ii} →Qi;Pi (π′, t + 1), if
there exists an information-minimal (w.r.t. v) partial state
π∗ such that

• (π � Ot
i) v π∗;

• for each a ∈ Ii with a � a′ and a′ ∈ Pi,t: πa
i v π∗;

• (π∗, t) →Qi;Pi (π′, t + 1).

The diagnosis of a sub-plan An agent i executing its
sub-plan Pi may make partial observations at times t and
t′ with t < t′. This agent can predict the expected state
of the world at time t′ using the knowledge of its plan and
information received from other agents about the expected
effects of actions in Ii. If agent i notices a difference between
the expected and the observed state of the world at time t′,
diagnosis is required.

Definition 6. Let Pi = (Ai, Ii, Ri, <i) be the sub-plan
of agent i, let obs(t) and obs(t′) with t < t′ be two obser-
vations and let (π, t); {πa | a ∈ Ii} →∗

Qi;Pi
(π′Qi

, t′) using
qualification Qi ⊆ Ai.

Then Qi is a sub-plan-diagnosis of 〈Pi, obs(t), {πa | a ∈
Ii}, obs(t′)〉 iff π′ =O(π′)∩O(π′

Qi
) π′Qi

.

Multi-agent plan-diagnosis Suppose that a qualification
Q is a plan-diagnosis of the global plan 〈P, obs(t), obs(t′)〉.
We would like to know whether a group of agents executing
this plan in a distributed way is able to establish the same
diagnosis in a distributed way. In other words, if Q is a
global diagnosis, is the qualification Qi = Q∩Ai a sub-plan
diagnosis of Pi?

The inputs of the sub-plan Pi are, of course, the observa-
tion (π, t) and for each action a ∈ Ii, the partial state πa

i

with (π, t) →∗
Q;P (π∗, depthP (a) + 1). If a ∈ Aj , then, of

course, (π, t); {πa
j | a ∈ Ij} →∗

Qj ;Pj
(πa

i , depthPj (a) + 1).

Proposition 1. Let Q be a plan diagnosis of 〈P, obs(t),
obs(t′)〉. Moreover, for each action a ∈ Ii, let πa

i be the
partial state describing the input provided by a.

Then, Qi = Q∩Ai is a plan-diagnosis of 〈Pi, obs(t), {πa
i |

a ∈ Ii}, obs(t′)〉 and for each a′ ∈ Ij ∩ Ai, (π, t); {πa
i | a ∈

Ii} →∗
Qi;Pi

(π′, depthP (a′) + 1) and πa′
j = π′ � domO(a′).

The following proposition shows that a diagnosis of the
whole plan can be obtained by combining plan-diagnoses of
sub-plans.

Proposition 2. Let the qualification Qi be a plan-diagnos-
is of 〈Pi, obs(t), {πa | a ∈ Ii}, obs(t′)〉.

Then the qualification Q =
S

i Qi is a plan-diagnosis of
〈P, obs(t), obs(t′)〉 iff for each agent i and for each a′ ∈ Ij ∩
Ai, (π, t); {πa

i | a ∈ Ii} →∗
Qi;Pi

(π′, depthP (a′) + 1) and

πa′
j = π � domO(a′).

Note that if an agent i qualifies an action a ∈ Ai as being
abnormal, i.e. a ∈ Qi, then the information communicated
to agent j for an action a′ ∈ Ij ∩ Ai may contain unknown
values for some of the objects in domO(a′). Also note that
neither the combination of local minimum diagnoses needs
to result in a global minimum diagnosis nor the combina-
tion of maximum-informative diagnoses needs to result in a
global maximum-informative diagnosis.

Determining plan-diagnoses In a multi-agent system,
the challenge is to determine a global diagnosis in a dis-
tributed way with agents using local knowledge only. As was
already noted above, multi-agent plan-diagnosis can be seen
as multi-agent diagnosis of a system with a spatial knowl-
edge distribution over the agents [8]. This form of diagnosis
raises a number of issues if agents try to establish their local
diagnoses by exchanging information about predicted values
of objects at specific time points [15, 16]. Roos et al. [16]
therefore propose an indirect approach based on first deter-
mining dependency sets [13]. They use a focusing approach
[14] that enables each agents to determine a set containing
the likely broken components.

In plan diagnosis, we can use a similar approach. In plan
diagnosis the use of dependency sets is even easier since
circular dependencies between actions cannot occur.

Definition 7. Let P = (A, <) be a plan and let obs(t) =
(π, t) and obs(t′) = (π′, t′) with t < t′ be two (partial) ob-
servations. The dependency set of an object at time t∗ is
defined as the set

Dep(o, t∗) = {a′ ∈ P[t,t∗] | a ∈ P[t,t∗], o ∈ ranO(a), a′ ≺∗ a}

where ≺∗ is the reflexive and transitive closure of

≺= {(a, a′) | a � a′, ranO(a) ∩ domO(a′) 6= ∅}.

These dependency sets can be determined in a distributed
way; see [16]. We will use Depi(o, t

∗) to denote the local
part of the dependency set under the control of agent i.

If the observed value of an object o′ ∈ O(π′) with obs(t′) =
(π′, t′) does not correspond to the predicted value of o′ as-
suming a normal plan execution, we say the dependency set
Dep(o′, t′) is a conflict set. Otherwise, Dep(o′, t′) is a confir-
mation set. Clearly, there must have occurred an anomaly
in at least one of the actions in a conflict set.

By using the conflict and confirmation sets, agents can
either apply the focusing approach described in [16] or de-
termine the local minimum diagnoses by determining the
hitting sets the conflict sets [13]. Note that in some plans
the combination of minimum diagnoses need not describe
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all minimum diagnoses of the whole system. In a system
of physical components this is usually not a problem since
additional measurements needed to eliminate diagnoses, will
reveal the other minimum diagnoses. In plan-diagnosis we
cannot make additional observations at past time points.
Hence, agents have to exchange additional information to
be able determine all minimum diagnoses.

The confirmation sets enable the agents to determine all
maximum informative diagnoses. The following proposition
shows that by removing from each conflict set those actions
that occur in at least one confirmation set, the maximum
informative diagnoses can be determined.

Proposition 3. Let 〈P, obs(t), obs(t′)〉 be a plan P =
(A, <) with observations obs(t) = (π, t) and obs(t′) = (π′, t′),
where t < t′ ≤ depth(P ). Let T1, ..., Tk be the conflict sets
and let N1, ..., Nl be the confirmation sets determined using
the observations. A qualification Q is a maximum informa-
tive plan diagnosis of 〈P, obs(t), obs(t′)〉 iff Q is a minimum

hitting set of T1 −N∗, ..., Tk −N∗ with N∗ =
Sl

i=1 Ni.

Example To illustrate the protocol, consider the plan in
Figure 3. Observations are made at t = 0 and t′ = 4.
At t′ = 4 agents 1 and 3 observe expected values for o1

and o3 respectively while agent 3 observes an anomalous
value for o2. This implies that there is one global conflict
set: T = {a1, a2, a3, a4, a7, a9} for o2, and two global con-
firmation sets: N1 = {a1, a2, a3, a5, a8} for o1 and N2 =
{a1, a2, a3, a4, a7} for o3. By passing on identifications for
the observed objects together with the status of the obser-
vations, the agents can determine their local conflict and
confirmation sets in a distributed way [16]. So, agent 1 has
one local conflict set: T 1 = {a1} and two local confirmation
sets: N1

1 = {a1, a5, a8} and N1
2 = {a1}, agent 2 has one

local conflict set: T 2 = {a2, a3} and two local confirmation
sets: N2

1 = {a2, a3} and N2
2 = {a2, a3}, and agent 3 has one

local conflict set: T 3 = {a4, a7, a9} and one local confirma-
tion set: N3

2 = {a4, a7}. Given this information, the agents
can determine their local minimum diagnoses, and their lo-
cal maximum informative diagnoses. In this example agent
1 has the minimum local diagnosis Q1 = {a1}, agent 2 has
the minimum local diagnoses Q2

1 = {a2} and Q2
2 = {a2},

and agent 3 has the minimum local diagnoses Q3
1 = {a4},

Q3
2 = {a7} and Q3

3 = {a9}. Agent 3 has the only maximum
informative diagnosis, namely Q3

3.

Determining the causal diagnoses is a straight forward
problem once the diagnoses have been determined. How-
ever, if the actions in the antecedent of an instantiated rule
belong to multiple agents, coordination between the agents
is required. This a topic for further research.

6. CONCLUSION
We have presented a new object-oriented model for de-

scribing multi-agent plans. This model enables agents to ap-
ply techniques developed for multi-agent diagnosis to iden-
tify (i) minimum sets of anomalously executed actions and
(ii) maximum informative (w.r.t. to predicting the obser-
vations) sets of anomalously executed actions. Due to the
occurrence of several instances of the same action in a plan,
anomalously executed actions might be correlated. There-
fore, (iii) causal diagnoses have been introduced and we have

extended the diagnostic theory enabling the prediction of fu-
ture failure of actions. Finally, we have extended the plan-
diagnosis to the multi-agent case. Issues for further research
are handling dynamic changes that influence the applicabil-
ity of causal rules, extending the diagnosis to the execut-
ing agents, and developing efficient protocols for distributed
minimum, maximum informative and causal diagnosis.
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