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1 Summary of Program Concept

The COORDINATORS program emphasizes distributed intelligent, cooperative problem solv-
ing to a degree not previously demanded of the research community. Automated agents must
recognize important change, assess its ramifications on its local view of activity, request or
propagate information to other agents as necessary to reduce uncertainty and accommodate
change, and re-schedule activity or select contingencies to stave off plan failure. Additionally,
the agents must manage their own limited resources (computational and informational), make
decisions within the allowed rule bounds and learn models of appropriate interaction with their
human users. All of these tasks must be accomplished within an intrinsically distributed envi-
ronment with interaction and knowledge circumscribed by formal organization such as chain of
command and need-to-know.

The BAA set out five primary technical areas: distributed activity coordination, context-
dependent coordination autonomy, machine learning, organizational reasoning and meta-cognition.
The BAA also identified four key hard research problems: distributed coordination over large
dynamic structures, coordination of multiple role units, learning appropriate decision making
autonomy with sparse data, adapting activity in real time in response to change and incorpo-
rating military decision policies in coordinated decision making.

In this document, we will review research in planning and scheduling that bears directly on
the hard research problems in COORDINATORS. The focus will be on identifying what most
taxes the current state of the art, what has been done previously to address those issues and
how the contractors’ research fits in the field as a whole.

1.1 Issues that Tax the State of the Art

The COORDINATORS vision goes well beyond the reach of current state of the art. Most of
the core capabilities required (e.g., reasoning about temporal changes in tasks, identifying al-
ternative resources, representing distributed task interdependencies, etc.) have been previously
developed to a limited extent. This is reflected in the proposals from the contractors, who are
working from an existing method base and integrating components and extending capabilities.
However, the capabilities have been studied either in a centralized framework, independent of
other capabilities, or in a small scale application with simplified characteristics (e.g., limited or
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no dynamics, certain and complete information, etc.) Lack of centralized representation and
embedding the capabilities are not simple addenda.

Although the BAA does not use the term, a key capability is scheduling: allocation of
resources to tasks during specific time frames. Change Evaluation requires identifying how
change affects the ongoing schedule. Task Analysis requires determining whether task timing
can be adjusted without violating schedule constraints (task dependencies), resources can be
substituted or alternative contingencies selected for tasks. Meta-cognition performs scheduling
of the agent’s computational resources.

State of the art scheduling approaches can handle large numbers (1000s) of tasks with well
defined inter-dependencies (as in task A must proceed task B or a resource cannot be used
for more than eight hours continuously). Multi-capacity resources are manageable, but the ca-
pacities are assumed to be fixed. Indirect interaction through resource contention or cascaded
contention effects are commonly handled, but otherwise it is assumed that all other interac-
tions that must be maintained are known. Task durations and time windows are assumed to be
known and may be incorporated in evaluations of the proposed schedule. A variety of sched-
ule evaluation metrics have been explored; techniques tend to be accommodating of changing
priorities or metrics, again as long as they are explicit and measurable. Representation and
display technologies have also been formulated to allow humans access to and some control
over schedules. Typically, schedule generation and execution are completely de-coupled. Incre-
mental scheduling techniques handle unexpected events so as to minimize perturbations and
computation.

However, many issues intrinsic to COORDINATORS have received little attention in the
literature and so pose significant challenges to the contractors, in particular:

• no centralized detailed schedule,

• extremely dynamic operating environment,

• accounting for and responding to a wide range of execution failures,

• incomplete information due to uncertain state of unfolding schedule and institutional
restrictions on available information,

• near real time response, and

• consideration of human factors (appropriate autonomy, complex objectives and informa-
tion overload on the human).

The most challenging issue is probably the distributed nature, which requires actively seeking
information and confirming proposed changes with other agents.

Task analysis considers contingency selection as an alternative to modifying time slots or
resource allocation as in pure scheduling. Action selection can either be viewed as a limited
horizon form of planning or as a control problem (as in the reinforcement learning approaches).
Each view incurs different assumptions and limitations; neither tends to work well on large
state and/or action spaces. Both require considerable knowledge either explicit about the
domain (for planning) or many examples (for reinforcement learning). The challenges posed by
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COORDINATORS to the state of the art in action selection include those listed for scheduling
plus:

• incompletely specified effects of actions and

• much larger scale (number of actions and state space).

More has been done on distributed planning/action selection within the agents community
(than with scheduling), probably because of the common encoding of causal structures within
plans that assist in determining what can be changed. However, the techniques for building
and managing the plan structures mean that they tend to be more vulnerable to exponential
scale-up of computational costs with increasing problem size.

2 State of the Art Approaches to Scheduling

Most research examines traditional manufacturing/commercial scheduling applications, e.g.,
job shop, vehicle routing and personnel scheduling. Solution approaches divide into ones that
guarantee optimality and those that don’t1. Guarantees of optimality typically are provided
by methods developed by the Operations Research community, such as branch and bound
and constraint propagation. Satisficing methods (those that produce solutions that are not
necessarily optimal) are heuristic and search based.

Optimality comes at the cost of high computation and practical limits on problem size
and/or complexity, as well as a stiff required level of accuracy and precision in the information
available about the schedule. However, the distributed nature of the scheduling in COORDI-
NATORS means that individual agent’s schedules may be small enough to be solved by optimal
methods (see section 4 for such an example).

By their nature, heuristic schedulers tend to be more forgiving of inaccurate data and more
accommodating of dynamism. For example, the planners/schedulers developed at NASA (i.e.,
ASPEN [13] and CASPER [12]) consider execution as well as off-line scheduling and have been
effectively deployed on missions to deep space and Mars, clearly uncertain environments.

This section reviews a range of approaches (especially somewhat less well known ones)
that may be applicable to the issues in the COORDINATORS problems. Where possible, the
strengths and weaknesses of the methods are assessed.

2.1 Scheduling Under Uncertainty

Scheduling under uncertainty is intrinsically related to dynamic scheduling. Uncertainty arises
either because everything is not known in advance (and so may prove problematic later) or
because what is known may change. Depending on the domain, the changes may be delays on
activities, variations on activity durations or resource breakdowns as in a workflow model [11].
More generally, they may be addition or deletion of constraints, addition or deletion of tasks,
the restriction or relaxation of time windows or the addition, deletion or reduction of resources.
Presumably, any of the events may occur within the context of COORDINATORS.

1See http://scom.hud.ac.uk/planet/repository/schedulers.html for a listing of many research schedulers
and their approaches.
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Uncertainty means that the schedule must be monitored during execution. Lack of progress
on tasks may result in an unacceptable decrease in surety (probability that a task will finish
during its required window). In constraint programming contexts, downstream effects are
immediately detected through propagation when constraints are updated. In grid computing,
surety is monitored by requesting progress updates on each task in a job, as well as the critical
path through the schedule; should surety drop or the critical path composition change, the
scheduler can update time/cost estimates on different resources and then use CPM and PERT
to re-compute the downstream allocation [49]. Such methods are feasible because the number
of tasks are relatively small in this application; the primary overhead is in soliciting information
(bids) from the resources for each task in a job when change of resource is required. In JSP
where the activity durations are thought to be the primary source of uncertainty (machine
breakdowns are the second source), one can use a simulation to play out effects possible during
execution and then set a threshold for forcing re-scheduling based on violations of actual activity
durations against anticipated distributions [8].

Uncertainty may also lead to opportunities for schedule improvement. As with detrimental
change, opportunities (e.g., taking less than anticipated time to complete, resources that become
available) may also trigger changes to on-going schedules. Opportunities can be anticipated
and kept in a “opportunity library” with the plan; the library can be searched during plan
monitoring to identify plan modifications [29]. The success of such an approach depends on
the degree to which opportunities can be anticipated and the speed at which the new plan
fragments can be spliced in.

In addition to standard metrics of quality of the schedule, schedules in uncertain/dynamic
environments must also be stable and robust. Stability (also called “continuity” [11]) measures
the difference between the original schedule and a schedule that is adjusted to accommodate
changes; stable schedules minimize the difference [39] and are often desirable when schedules
involve people [11]. As Davenport and Beck [14] observe, “A schedule therefore is not simply
an internal recipe for a set of activities but also a basis for communication and coordination
with external entities. The external dependencies make the management of uncertainty even
more critical as unexpected events that are not reacted to and contained may have an impact
that far out-weighs their original importance.”

Robustness trades-off quality and vulnerability to change. Robust schedules tend to be less
vulnerable to change but possibly at the expense of predicted quality measures 2.

The predictive or proactive approach to handling dynamism is to build a robust schedule
originally [14]. The reactive approach is to repair a schedule with violated constraints. Because
COORDINATORS assumes the original schedule is obtained elsewhere, this document will
focus on reactive approaches.

Robustness and stability can be incorporated at schedule generation and repair time by
operationalizing the definition as an evaluation measure [11]. At repair time, stability can
be varied by imposing hard constraints on existing commitments to prevent them from being
modified during schedule repair [11].

For dynamic JSP, Wu et al. [55] developed an approach that identifies critical decisions
2Interestingly, many researchers conjecture that robust schedules are lower quality, but I could find no study

that showed the relationship between predicted and actual quality in dynamic domains.
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(those that dictate global performance) and uses graph theory to decompose the global problem
into ordered sequences of these critical decisions (solving the ordered assignment problem). The
disjunctive graph formed by the task constraints becomes a series of subgraphs. Each subgraph
is solved with a branch and bound algorithm. Decisions not fixed in the partial orders are made
on-line in response to actual conditions. They tested their method in Monte Carlo simulations
using dynamic dispatching rules to resolve the open decisions and found their approach to be
quite effective on 5x10 JSPs from the standard benchmark.

Jensen [28] exploited co-evolution to generate flexible schedules which can cope with machine
breakdowns in JSP. One population is used to construct the schedule with the best worst case
performance. A second population constructs the worst breakdown scenarios to be used in
assessing schedule performance. The best schedules then are the ones that best address the
possible breakdowns. A hillclimber is used to reschedule given the robust schedule found by the
GA. The approach was tried on 10 problems from the OR library varying in size and found to
be quite effective, although potentially expensive to produce the schedules (taking minutes to
produce schedules as opposed to seconds for the state of the art for the static version of these
problems).

A common approach to schedule repair is domain tailored heuristics; such approaches pro-
duce solutions quickly. The heuristics make local repairs to the schedule to promote stability;
several heuristic modifications may be proposed with the repair selected based on a trade-off of
quality and stability [39]. Heuristics used in iterative repair include max-flexibility [32], conflict
directed activity changes [45] and min-conflicts [37]. The heuristics are fast to compute and
have been quite effective in a variety of domains, e.g., manufacturing scheduling, space appli-
cations and logistics. They have been less successful in applications with many way interaction
effects as the heuristics tend to be myopic.

If one has access to historical information about likely perturbations, then approaches can
learn or anticipate repairs in advance. An artificial immune system evolves a set of partial
schedules off-line to respond to likely events that have occurred at run-time [22]. Preliminary
results of this approach on machine scheduling problems have been promising, making for quick
response to the most likely events. While not guaranteeing optimality or complete coverage
of events, such an approach may also support a distributed environment if these contingencies
could be calculated by and distributed to the impacted agents either at the same time as the
original schedule or as an update during slow periods. Although not explored in the papers
on the topic, the immune system approach could be interfaced to a simulator (as in [8]) rather
than to historical data to produce the partial schedules that accommodate contingencies.

The literature is silent on uncertainty due to inaccuracies, mistakes or missing items in the
data. Yet, it is likely to be an issue in this application. For example, during a recent visit to
Air Mobility Command, Air Force personnel who handle logistics planning/scheduling stated
that their data about what-is-where are often missing or is incorrect. The schedulers remarked
that a pallet may suddenly show up thousands of miles away from where it had last been
recorded without having been shown as being on a plane’s manifest. It seems likely that such
an issue will have to be dealt with should COORDINATORS technology be deployed. Current
heuristic repairs are unlikely to have been designed for such situations, and solutions produced
by optimization methods are likely to be extremely brittle.
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2.2 Other Search Based Approaches to Scheduling

A variety of evolutionary and local search algorithms have been developed for scheduling ap-
plications. In general, the results have been, at best, mixed (which makes them more or less
on par with any other solution). Other than those mentioned in earlier sections, some notable
algorithms are Local Search (including Tabu Search) and Genetic Algorithms.

Local Search (LS) refers to a large family of gradient descent algorithms that use local
information to make iterative repairs to complete solutions. Tabu Search (TS) adds limited
memory to LS to avoid cycling and to force search into potentially more productive regions; the
state of the art for JSP, based on performance on established benchmarks, is a carefully tuned
TS algorithm that uses a neighborhood operator restricted to a subset of feasible solutions, two
forms of memory and clever initialization [38].

Another favorable attribute of LS is that it can be easily adapted to incremental repair.
Because it works with complete solutions and can accept tailored neighborhood operators, it
can initialize with the current solution and fix the neighborhood to not change tasks in progress.
The iterative nature of the search favors stable solutions.

A type of LS (called Attenuated Leap Local Search), Squeaky Wheel Optimization (SWO)
and the Genitor GA have done well on the Air Force Satellite Control Network (AFSCN)
communication problem [3]. This application includes a discrete optimization function and
plenty of bottlenecks that cause cascade effects; the combination produces many large plateaus
in the search space. The most successful algorithms are those that make multiple simultaneous
changes with the number of changes reducing as the best solution is approached. SWO uses
a greedy strategy to initialize the solution, then iteratively improves it by identifying trouble
makers in the solution and increasing their priority, which has the effect of moving all of them
simultaneously to better positions in the schedule potentially bumping other tasks [30].

GAs3 have done well on a variety of scheduling applications, e.g., warehouse order manage-
ment [47], Multiple Resource Constrained Project Scheduling problem [46], nurse scheduling
[1] and the previously mentioned AFSCN. Generally, the algorithms have done well when the
representation and operators were suited to fast modifications and evaluation of solutions. They
require relatively little knowledge of what constitutes good solutions to be used.

The advantages of these knowledge poor search strategies is that they are easy to implement
in the base case, it is easy to change goal criteria (unlike heuristics in which the goals may be
implicitly coded), and they may be adapted to re-scheduling because all of them perform better
when their initial solutions are close to the optimum. They can, however, take a long time to find
the optimum or may miss it altogether and they do not take advantage of domain knowledge,
generally.

2.3 Optimal Scheduling and CSP

Commercial scheduling systems use constraint programming as one of their core techniques.
For example, ILOG produces arguably the best known commercial scheduling system. Its
system description lists four categories of algorithms in its scheduler: edge finding for resource

3Rumor has it that GAs have been incorporated into several well known commercial schedulers including
ILOG’s.
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constraints, timetabling for capacity constraints, sequencing and special purpose algorithms for
applications such as personnel scheduling [27].

Edge finding and timetabling define constraint equations that reduce the values of bounding
variables for tasks (such as resource capacity usage and end time and duration upper bounds)
[33]. These equations are used to propagate restrictions on variable values for activities across
the n activities and r resources. Each of these methods impose restrictions on the kinds of
applications that can be handled (e.g., unary and discrete resources, cannot be oversubscribed,
must reason about absolute points in time) and may not model the kinds of constraints in a
given application.

A few constraint propagation algorithms have recently been proposed to deal with more
complex resources, dynamism and relative time reasoning. The Energy Precedence algorithm
allows new activities and resource constraints to be added and time windows kept loose by
constructing a new time propagation constraint rule [33]. The Balance algorithm works on
reservoir resources (ones that can increase and decrease capacity over time) without incurring
exponential increases in computation as do some previous approaches [33]. Both the energy
precedence and balance algorithm propagate constraints over precedence graphs to support
reasoning about relative times. These algorithms have been demonstrated on some scheduling
problems and proposed to be used in HTN or POP planners. Focacci et al. (2000) define
new constraints (alternative resource and path optimization) to the propagation algorithm on
precedence graphs to handle problems with setup times and alternative resources; the enhanced
algorithm has found good solutions to JSP and open shop problems with up to 300 activities
(computation times could be up to 240 seconds).

In dynamic scheduling, unimodular probing is a strategy for minimizing schedule pertur-
bation (sum of absolute value of differences in start times) overall [48]. Unimodular probing
interleaves phases of linear and constraint programming to identify minimal modifications to
a schedule to accommodate activity, resource and temporal changes on-line. In the first phase
(resource feasibility), linear programming orders temporal variables to resolve resource con-
tention. In the second phase (temporal optimization), constraint programming finds optimal
values for the temporal variables, given the orderings found in the first phase. The authors ex-
periment with different constraint programming techniques including Constraint Backtracking,
Probe Backtracking and a variant on Probe Backtracking that uses LP to prune states due to
violation of bounds and to guide value selection. The technique has been applied to a large
commercial aircraft scheduling problem.

3 State of the Art Approaches to Action Selection

The traditional delineation of planning and scheduling is that planners decide what to do
and schedulers decide when/where to do it. Action selection is essentially the first step from
scheduling towards planning – given a set of options for a given time slot (usually impending),
pick an action to execute. This problem is embedded in on-line plan execution and usually
requires a plan with explicit or implicit contingencies.

This section reviews some of the more promising techniques for solving the execution time
action selection problem as in COORDINATORS. Although many researchers approach the
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problem in terms of building plans that are robust to incompleteness of information (i.e., “con-
formant planning” [51]), we are ignoring that because of assuming the plan generation is not
under our control.

3.1 Decisions with Imperfect Knowledge

The research in planning under uncertainty falls mostly into two categories: POMDPs and
contingent planning. Partially Observable Markov Decision Processes (POMDPs) exploit a
Markov process model, but extend it to handle domains in which the exact state of the world
may be unknown (or even unknowable). POMDPs were first developed in the control theory
community in the early 1960’s as a means of controlling environments in which the true state
of a stochastic, dynamic system may be unknowable. Within AI, they have been used mostly
for robust robotic navigation (going back to [10, 43]), although the reinforcement learning
community has been exploring the connections to Q-learning for somewhat longer. POMDPs
define a policy (contingency plan) that maps the belief state (usually a vector of probability
distributions over the possible states of the world) to values for possible actions.

POMDPs have the advantage that they smoothly encompass a variety of sources of un-
certainty (e.g., effects of actions, noise in sensors, poor mapping from sensor data to state,
missing information, etc.) and that the resulting courses of action are provably optimal, given
the information that is available.

Unfortunately, the primary drawback for POMDPs has been keeping the computation man-
ageable. Computation is an issue in both the off-line search (constructing the POMDP and so
the optimal strategy) as well as the on-line search (collecting and mapping the sensor infor-
mation to monitor the belief state) [42]. The computation (both time and space) can increase
exponentially with the size of the state space, which is why relatively small grid worlds were
fairly popular. Typically, responses to this problem have traded off accuracy against computa-
tion tractability via sampling, projection and special data structures like density trees [42].

Recent research has investigated techniques for increasing the state space that can be ac-
commodated. For example, point-based algorithms approximate the value iteration, while
bounding the error; recent enhancements can solve problems with 105 states to very close to
optimal within 104 seconds [52].

An alternative to approximation is compression. Value-Directed compression [41] retains
the same structure, which allows it to be solved similarly, but has scaled up to 33 million states
on a synthetic network management problem (three actions are possible to maintain a network
of up to 25 computers). Another approach exploits Exponential family Principal Components
Analysis (PCA) to produce even more dramatic compressions (solving a real robotic navigation
application – traversing an entire retirement facility); the difference with other compression
work is that it requires different algorithms to execute.

Another approach to limiting the search space for POMDPs, but achieving on-line action
selection, is to restrict the space to only branch points [6]. Benazera proposes that at execution
time plans can be abstracted into models where states are the choice points for contingencies,
intermediate actions/states are not incorporated. Because computing all possible contingencies
is intractable, most plans include only a few, if any contingencies, that represent the most likely
events; consequently, this strategy reduces the POMDP to a manageable size and then supports
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robust probabilistic reasoning about outcomes. He also uses Monte Carlo techniques with a
simulator to approximate the probability and utility values needed by the POMDP to produce
anytime computation of the models.

Contingent planners adopt a variety of approaches. Binary Decision Diagrams (BDDs)
coupled with symbolic model checking is a promising approach to handling sensing and partial
observability within a somewhat traditional planning framework [7], but results for contingent
planning so far have been shown on fairly small navigation problems. Similarly, knowledge
based search approaches have significantly extended the capabilities of traditional planners,
but are solving the entire planning problem (i.e., generating the plan from scratch) and are
solving relatively small problems (e.g., [40]).

NASA’s planner/schedulers typically operate in environments that are poorly anticipated by
the designers. NASA researchers typically deviate from approaches advocated in the literature;
in a recent analysis, they reviewed approaches from literature on planning with uncertainty and
summarized why they don’t work for NASA problems in [9]. In short, most techniques assume
discrete action sequences and fairly small search spaces. One of the most successful of NASA’s
systems is CASPER (Continuous Activity Scheduling Planning Execution and Replanning)
[44, 12]. CASPER manages a rolling plan that is kept flexible as long as possible with details
filled out as needed. Plans are modified to improve quality or to repair problems in an iterative
optimization framework where “experts” get to propose changes, which are ranked based on
expected cost and benefit. Five classes of experts are supported to make different modifications:
local activity variable, activity/goal counts, resource/state variables, resource/state change
counts and state durations. The experts identify possible changes and gauge their cost/benefits.

3.2 Resource Bounded, Time/Quality Trade-Offs

Reasoning about resources and action selection quality is an area that has until recently received
relatively little attention. Although scheduling considers alternative measures of schedule qual-
ity, planning is difficult enough that researchers have by and large ignored application specific
quality measures concentrating simply on minimizing the number of actions.

Zilberstein has cast the problem in terms of anytime algorithms [56] and contract algo-
rithms [57]. Such algorithms balance computation time with result quality when temporal
deadlines are restrictive and make informed estimates of resource allocation. Anytime algo-
rithms require decision making that can always return some solution; contract algorithms re-
quire a good model of how much time is required to return some solution and how additional
time influences quality.

Schwarzfischer [50] identifies quality as a local property and schedule deadlines/utility as a
contextual property. He also relates deadlines to anytime problems in real-time scheduling. In
OR, similar work has been done on the time/cost trade-off problem in which durations can be
shortened at the expense of activity cost [31]. Some work has been done attempting to combine
the time/cost trade-off problem with resource constraints [53, 26], and Fulkerson [17] shows
that such a problem can be solved in polynomial time when there is only a single resource.
Wang [54] presents a proof of NP-completeness for the case of multiple resources.

Portfolios provide a more general framework. The basic idea is that a suite of algorithms
can be combined so as to provide performance superior to any individual one. A meta-reasoner
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selects which search algorithms to apply to attempt to solve a problem and then allocates
computational resources (almost always time, but in the heterogeneous grid literature, specific
platforms) to the selected algorithms. In its original formulation [25], the portfolio allocated
the fraction of total CPU time to n different Las Vegas algorithms (these algorithms could be
distinctly different or could be multiple runs of the same stochastic algorithm); the portfolio
terminated as soon as one of the algorithms solved the problem instance. Huberman et al.
[25] used an economics framework and models of run time distributions of algorithms on prob-
lem instances to compute the best portfolio, given a trade-off between expected cost and risk
(standard deviation of cost).

Gomes and Selman [19, 18] advanced a similar idea with a focus on the role of restarts
(starting the same stochastic algorithm repeatedly either in sequence or in parallel). They
explicitly compute the value of multiple versions (restarts) of the same algorithm as part of the
portfolio and show that in some cases multiple copies of the same algorithm may be preferable
to a mix of algorithms.

These approaches assume the run-time distributions for algorithms on problem instances
have been collected off-line. Alternatively, the model construction can happen on-line through a
probing phase [5]. During probing, all algorithms are run for the same amount of time (a small
fraction of the available CPU time for solving the problem); the quality of solutions returned
directs the selection, using simple rules, of which algorithm to continue to run for the time
remaining. They found they could achieve performance comparable to (i.e., not statistically
different than) the best pure technique for 100 JSP problems, which include randomly generated
as well as both job and machine correlated problem instances.

The Bus meta-planner [24] used a round robin scheme to allocate time to different planning
systems based on a trade-off between a model of expected success and expected cost; for each
planning system, its model was a simple linear regression of easily extractable problem features
based on considerable off-line experience in planning. Bus outperformed any single pure system
on a set of benchmark planning problems.

Each of these approaches requires only shallow knowledge of the algorithms and problems.
However, they ignore the considerable knowledge that is being compiled about algorithm per-
formance and encapsulated in algorithm and application models.

A variety of approaches have been applied to learning models of performance to inform
problem solver design and algorithm selection (e.g., [20, 36, 15, 2, 35, 21, 34] ). These approaches
differ in the machine learning technique used (e.g., reinforcement learning, Bayesian networks,
decision trees, statistical regression) and on the algorithms and applications modeled (e.g.,
satellite communication scheduling, combinatorial auctions, sorting, SAT), but all use relatively
easily extracted features of the problems and solution progress and all rely on models generated
off-line from problem instances to adapt on-line.

Most approaches also leverage statistical run-time distribution information. For example,
Horvitz et al. [23] constructed Bayesian models to predict the total run-time of an algorithm
solving a class of problems. Models were constructed for each algorithm in each application
domain based on many problem instances. Features, both application and algorithm specific
as well as more general, were collected at search choice points during a probing phase (which
they call the observation horizon). The models were extremely accurate and can be used as the
basis for a dynamic restart policy. Guerri and Milano [21] focus on identifying features that
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uncover structure of the problem instance. They extract features from the common problem
space representation for combinatorial auctions (a specialized graph). These features can be
used to very accurately predict algorithm performance on specific instances.

4 Relationship to the COORDINATORS Program

The literature provides a wealth of techniques that are applicable to COORDINATORS. None of
them on their own can be inserted in a plug-and-play fashion. However, given the distributed
nature of the COORDINATORS problem and the fact that full scale planning is not being
considered, even some of the optimal approaches described in this document can be applied to
selected sub-problems. In this section, I offer my opinion about which are most promising and
which are unlikely to be successful.

Scheduling Following the military hierarchy of command, the scheduling problem is probably
two different problems: command level and executor level. Each requires different approaches.
The command level must monitor and coordinate a large number of activities, seen at a distance
(with the delay and uncertainty about state entailed by the disconnect). The approaches to
dynamic scheduling that exploit search are well suited to this, as a starting point. However, I
know of no off-the-shelf techniques that will fully do the job. A good first approach is heuristics
embedded within search frameworks.

The executor level will have a much narrower, but better informed view of activity. Because
the amount of activity is constrained, optimal or near optimal techniques may be tractable. My
understanding is that commercial CSP has been used by the Cornell group to solve scheduling
sub-problems at this level. It doesn’t surprise me that these techniques might work as they have
been successfully applied in large, well-defined manufacturing scheduling for some time. The
key is casting the problem into the framework. For integration, they will have to address two
issues: translating representations from TAEMS and other sources into the CSP constraints
and deciding how to accommodate uncertainty.

Much as I favor meta-heuristic approaches (e.g., local search, evolutionary algorithms) in my
own research, they are better suited to applications in which the representation is simple/well
defined and full solutions can be manipulated.

Action Selection is a bigger challenge in COORDINATORS. Control theory based ap-
proaches, such as POMDPS, require considerable computation and considerable knowledge
about the problem currently at hand. The major stumbling block is defining the state space so
that it can be tractable, which is more art than science. The result of computation is brittle
and does not generalize well to other similar problems, and the output (recommendation) is
sometimes difficult for a person to appreciate.

Although they are more knowledge intensive, heuristic contingent planning approaches are
more likely to possess the characteristics most needed for COORDINATORS. The most general
of these still have not been demonstrated on anything but toy problems. However, NASA’s
heuristic approaches based on critics have been shown to be effective in real applications. They
are more ad hoc, but may fit well within the COORCINATORS framework.
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