
Multi-Agent Based Peer-to-Peer Information Retrieval
Systems With Concurrent Search Sessions

Haizheng Zhang, and Victor Lesser
Dept. of Computer Science, University of Massachusetts Amherst, MA 01003

hzhang@cs.umass.edu, lesser@cs.umass.edu

ABSTRACT
In cooperative peer-to-peer information retrieval systems,

each node can be considered an intelligent agent and these

agents work collectively to provide an information retrieval

service. In order to effectively support multiple and concur-

rent search sessions in the network, we propose two traffic

engineering techniques that minimize processing and com-

munication bottlenecks. One is a novel agent control mecha-

nism whose elements include resource selection, local search

scheduling, and feedback-based load control. The other is

a new two-phase query routing algorithm based on orga-

nizational knowledge. Experimental results show that this

framework can reduce congestion situations, increase system

throughput, and improve considerably the overall system

utility.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
peer-to-peer information retrieval, agents, control

1. INTRODUCTION
In recent years, peer-to-peer based information retrieval(IR)

systems have begun to receive considerable attention. A

peer-to-peer based information retrieval system consists of

a set of nodes connected in a peer-to-peer fashion. Each

node hosts a document collection to share with other nodes

and these nodes work together to provide information re-

trieval service to users. In this paper, we consider an infor-

mation retrieval task as a search session during which nodes

forward queries to neighbors, perform IR operations and/or

return search results. The lack of complete, up-to-date in-

formation about the states of other nodes in the network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

requires sophisticated coordination strategies. In addition,

the presence of concurrent search sessions adds another level

of complication due to bandwidth and processing capacity

limitations: nodes may not be able to complete forwarding

and local searches in a timely fashion for all queries they

have received. Therefore, nodes have to decide what ac-

tions to take for each search session and in what order to

execute those actions in order to maximize overall system

utility. These local decisions, taking place at each agent,

collectively determine the way concurrent queries are dis-

tributed and processed in the network.

In this paper, we extend a multi-agent based infrastruc-

ture [11, 12] developed for a single search session such that

it can handle multiple, concurrent search sessions. These

extensions required the development of a new agent control

mechanism and a novel coodinated query routing algorithm

based on a queueing theory analysis. Both mechanisms con-

trol the flow of information from different perspectives in

the network to exploit available resources while reducing

the occurrence of congestion situations. The purpose of the

local control mechanism, based only on the agents’ local

observations of their neighboring agents, is to improve the

average effective propagation speed of search sessions, a con-

cept that will be introduced in later sections. The elements

of such a control mechanism include resource selection, lo-

cal search scheduling and feedback-based load control. The

coordinated search algorithm is a modified version of a pre-

viously developed two-phase query routing algorithm [12]

that exploits static agent organizational knowledge to locate

relevant documents quickly while at the same time mini-

mizing hot-spots caused by concurrent search sessions. Ex-

perimental results show that this framework can reduce the

frequency of congestion situations, increase system through-

put, and improve overall system quality.

The contributions of this work include: (1) a novel agent

control mechanism based on a queueing theoretical analysis;

(2) a simple feedback-based probabilistic load control com-

ponent to avoid congestion situations while dynamically ex-

ploiting available communication and processing bandwidth;

(3) a distributed, two-phase query routing algorithm based

on a hierarchical structure of agents that balances search

traffic in the network.

We make the following assumptions in this paper. First,

each agent maintains an independent index and an IR search

engine for its local document collection. However, we do not

introduce any further restrictions on the local search engines

and thus the network can be populated by agents having

very different local search engines. Second, the experimental

 305

results presented are based on local search engines that are

“perfect” in that they return all relevant documents in the

collection for a given query. Third, we assume there is a

third-party protocol in place to merge the returned results.

Thus, our protocol does not have to deal with the merging

of the returned lists. Fourth, we assume that the document

collections hosted on agents are disjoint, and therefore the

total number of relevant documents for a certain query is the

sum of the relevant documents returned from each agent.

Lastly, we assume that agents are cooperative in that they

all agree to use the same protocols for propagating resource

descriptions among each other, accepting queries from peers

and finally returning search results to the originators of the

queries

The remainder of this paper is organized as follows: Sec-

tion 2 discusses related research; Sections 3 and 4 introduce

the system architecture of a P2P information retrieval sys-

tem and the individual agent structure respectively. Section

5 presents the local scheduling algorithm in each agent. Sec-

tion 6 introduces a two-phase search algorithm based on a

hierarchical agent organization; Section 7 provides the ex-

perimental settings and explains the results; Section 8 dis-

cusses future work, and Section 9 summarizes the major

contributions of this paper.

2. RELATED WORK
This paper is related to two lines of research: (1) query

routing algorithms in peer-to-peer information retrieval sys-

tems, and (2) traffic engineering techniques in IP-Level and

application-level network research.

The first line of relevant research includes recent studies

on pure peer-to-peer information retrieval systems and hi-

erarchical peer-to-peer systems [10, 7, 11, 12]. Lu proposed

a framework including resource selection, resource represen-

tation and result merging in a hierarchical P2P environ-

ment[7]. In particular, a language model based search al-

gorithm is employed in a top-down fashion. Indeed, as a

query routing process can be considered as a distributed

search process, it is natural to study this system in a multi-

agent framework [5, 11, 12]. However, most of these research

efforts do not consider situations with multiple, concurrent

search sessions which is the focus of this paper.

The second line of relevant research is on network traf-

fic engineering. Traffic engineering, which has mostly con-

cerned IP-level routing problems, involves adapting the rout-

ing of traffic to network conditions, with the joint goals

of good user performance and efficient use of network re-

sources. The most well studied work along this line is on

congestion control which attempts to minimize delays in In-

ternet routing[3]. While query routing in P2P based in-

formation retrieval differs considerably from IP level rout-

ing problems, there are similarities that can be exploited in

query routing algorithms.

3. PROBLEM DESCRIPTION
All agents in a peer-to-peer information retrieval system

constitute a graph G(A,E). Set A is the set of all agents

in the system while set E includes all connections among

agents. A search session si starts when an agent Aj receives

a query qryk from a user at time tl. During the search pro-

cess, upon receipt of the query qryk, agents conduct local

searches, forward the query to their neighbors and return

search results to agent Aj . Agent Aj keeps a set of re-

sult tuples Tm(si, Am, t, Qsi,Am), with each element in the

set specifying the fact that an agent contributes a certain

amount of quality, Qsi,Am in this case, to search session

si at time t. The search conducted by agent Am can be

evaluated off-line by considering the ratio of the number of

relevant documents returned from agent Am to the total

number of relevant documents in the network. Notice that

the size of the result tuple set may keep growing with more

search results returned from agents. The cumulative quality

for a search session at time t is therefore the sum of the qual-

ity fields in the result set Tk obtained at time t. Formally,

it is defined as:

Qsi
(t) =

Ak

Qsi,Ak
where Tk.t < t

In the search process, agents discard those queries they

have previously processed thereby preventing queries from

looping in the system forever. The search session ends when

all the agents that receive the query drop it. We define

the period from a query entering the system to its leaving

the system as the duration of the search session, t∗. There-

fore, the maximal quantity for a search session is defined

as Qsi
(t∗). The duration of a search session depends on

factors including the connectivity of the agent organization,

the query routing algorithm and local scheduling algorithms

in the agents. In general, a long search session duration in-

dicates the occurrence of hot spots in the network. These

hot spots are usually characterized by communication con-

gestion or long query queue length in agents.

In this paper, we focus on open information retrieval sys-

tems, meaning that queries can enter the network at any

agent from outside users, thereby forming multiple concur-

rent search sessions in the system. In our model, we define

the arrival rate of jobs from outside to the ith node of the

network to be λ0i. The distribution of the incoming queries

to a single agent conforms to a Poisson distribution, and the

overall arrival rate λ from outside to an open network is:

λ =

N

i=1

λ0,i

In the presence of multiple concurrent search sessions, we

define the overall system utility, GQ, as the sum of the cu-

mulative utility for all the search sessions including both the

outstanding search sessions and finished search sessions un-

der the assumption that all search sessions are considered

equally important:

GQ(t) =

si

Qsi
(t)

4. AGENT INTERNAL STRUCTURE
In this section, we describe the internal structure and lo-

cal scheduling algorithms of each individual agent. Figure

1 illustrates the four components of our agent architecture:

a document collection with its associated collection descrip-

tor, a search engine, an agent view structure and a control

unit. This section describes the first three components while

Section 5 describes the control unit.

The document collection hosted on an agent includes a set

of documents to share with other peers. The local search en-

gine allows each agent to conduct local searches and return

 306

q1q2

Agent View

Ai1

pi,i1

pi,i2

pi,i3

Ai2

Ai3Search Engine

Collection

An Agent Internal Structure

Agent Control Unit

Figure 1: Internal Agent Structure

relevant documents upon receiving user requests. The col-

lection can be described by a collection descriptor, which can

be considered as the “signature” of the collection. By dis-

tributing collection descriptors, agents can gain knowledge

about how content is distributed in the agent network. A

collection descriptor characterizes the distribution of the vo-

cabulary in the collection. It is based on the language model

concept[9] that has proved effective in various previous stud-

ies in the distributed IR field [1, 7, 11]. A language model

has many interesting properties which are easily exploitable

in the peer-to-peer network system. Most importantly, it is a

lightweight, concise and accurate descriptor of the document

collection. Additionally, the size of the collection model is

almost independent of the size of the document collection.

The agent view structure is an agent’s restricted view of

the network and determines the underlying topology of the

agent “virtual” organization. Each agent’s view structure

contains the collection descriptors of a set of other agents’

collections as well as the addresses of these agents and other

related information such as the connection type. The de-

sign of the agent view structure depends on the underlying

topological agent organization. In a power law based flat

agent organization, only one connection type is needed as

all agents play the same role. On the other hand, there

can be multiple connection types in a hierarchical peer-to-

peer agent organization, including links connecting upper

level agents to lower level agents, lower level agents to up-

per level agents and agents at the same level. The specifics

of the connection type information can be used in deciding

how to route queries. More information about the agent

view structure and the role it plays in search process is de-

tailed in [11, 12].

5. AGENT LOCAL CONTROL
MECHANISMS

The information retrieval performance, when there are

concurrent search sessions, depends on how resources are

allocated among these search sessions. The lack of central-

ized control of these concurrent searches can lead to an un-

even distribution of query load among agents; this uneven

load can then cause the situation where some agents are

flooded with incoming queries while other agents are largely

idle. Mitigating this problem requires agents to be able to

control the message flow from a local perspective to prevent

congestion and speed up the propagation speed of search ses-

sions in the network. In addition to congestion prevention,

in order to maximize overall system utility, agents should

disseminate queries only to relevant agents so as to exploit

bandwidth efficiently and reduce communication and pro-

cessing load.

In this section, we present an analytical model based on

queueing theory for agent control. In particular, the control

unit of an agent makes decisions regarding which queries to

process locally, in what order to process them (local search),

and whether and to whom should the queries be forwarded

(resource selection).

5.1 Resource Selection Algorithms
The resource selection algorithm chooses a subset of neigh-

boring agents (that may contain relevant documents or have

information about the location of relevant documents) to

forward a query for further processing. Resource selection

algorithms are characterized by their IR calculation over-

head, the communication load they induce and how “fo-

cused” the search is. Existing resource selection algorithms

include broadcast based routing algorithms, probabilistic

based random routing algorithms and language model based

algorithms[11, 12, 7]. Each resource selection algorithm in-

curs a certain amount of cost depending on its specific oper-

ations. For instance, a broadcast algorithm needs the least

calculation, incurs minimal selection overhead but can eas-

ily saturate the network with messages, whereas a proba-

bilistic random approach saves communication load but in-

creases local computation load. A language model based

approach has a different trade-off. It requires relatively ex-

pensive comparison operations but can significantly reduce

the number of messages propagating in the system. Expen-

sive computation operations can reduce agents’ throughput

which will be described in the next sections. Therefore,

in the presence of concurrent search sessions, it is not al-

ways preferable to use a resource selection algorithm that

generates minimal communication load but requires expen-

sive comparison operations. The trade-off between message

number and the amount of computation will be analyzed in

the following sections.

5.2 A local scheduling mechanism
Each individual agent control unit maintains several queues

including message queues, which contain messages to be for-

warded to specific agents, and a local query queue, which

contain queries waiting for further local processing. The set

of agent control units in the network constitutes a queueing

network system. In this section, two approaches for orga-

nizing the queueing network are introduced and compared

based on their utilization rate and throughput.

Several assumptions are made in order to simplify the

analysis.

(1) The service times at each queue including resource se-

lection, local search scheduling and message forward-

ing are exponentially distributed.

(2) The inter-arrival times of queries are random and have

Poisson distribution.

(3) The channel capacity between two arbitrary agents, Ai
and Aj , is fixed, denoted as Cij .

(4) The length of queries in the system, L, is considered

a constant. This assumption simplifies the calculation

of the throughput of communication channels.

 307

Figure 2 shows an agent’s control unit and indicates how

resource selection, local searches and forwarding for paral-

lel queries are related. This model consists of Qrs, a queue

that contains queries to be forwarded to other neighboring

agents, Qls, a queue that contains queries waiting for fur-

ther local search operations, and message forwarding queues

Q1j for each agent Aj in the agent view structure. These

queues are considered as M/M/1 queues based on the above

assumptions.

The arrival rate λi for queue Qrs and Qls in agent Ai
is calculated based on the departure rate, λji, from its up-

stream agent Aj , and the arrival rate, λ0i, from the outside

users to agent Ai,

λi = λ0i +

N

j=1

λji (1)

for i = 1, .., N

However, in a practical system, agents discard those queries

that have been processed previously to ensure loopless com-

munication. We assume the arrival rate of non-redundant

queries is λ
′

i.

The resource selection time spent on a query is denoted

as trs and the service time for local search is tls. Recall that

both service times satisfy exponential distribution.

Queue Qrs and Qls have the same arrival rate as specified

in Equation 1. The throughput for Qrs is
1

trs
and for Qls

is
1

tls
. Note that by separating the queue into two queues,

the local search operation is no longer the bottleneck. Even

when the incoming rate is higher than the service rate of Qls,
an agent can buffer the incoming queries for later processing.

The arrival rate for each message queue Qij , λij is the

number of messages departing from Qs in a time unit, i.e

λij < λ
′

i. The utilization rate for message queue Qij is

ρQij
=

λij

μQij
And the throughput for Qij is

μQij
= Cij/L (2)

.

Because each agent contributes to the overall system util-

ity for each finished local search, the performance of the

scheduling algorithm for the local search queue determines

how fast the overall utility is accumulated. Moreover, be-

cause the selection of one query is always at the expense

of executing other search sessions at a later time, this algo-

rithm also affects the fairness of the network search process.

It is worth mentioning that local fairness does not necessar-

ily lead to global fairness.

A simple scheduling algorithm for the local query queue

is first come first serve(FCFS) where agents always process

queries that enter the system earliest. Although the FCFS

algorithm is fair from an agent’s local perspective, it can

cause significant delay for queries that enter the system at a

later time. An alternative scheduling approach is based on

a greedy algorithm that aims to maximize the overall utility

from an agent’s local perspective.

GQ(t) =

si

Qsi
(t) =

Ai

QAi
(t)

QAi
(t) =

si
Qsi,Ai

is defined as the local accrued utility

of agent Ai. Therefore, in order to maximize the overall

utility, each agent selects the most relevant subset of queries

to process. In order to maximize the local utility, we use a

heuristic based sorting algorithm to order the queries queue

according to the Kullback-Leibler (KL) distance between the

query model and the local collection model. KL distance is

a metric to evaluate the distance of two distributions. The

calculation detail is introduced in [12].

λ1

λi1

λj1

A1

Load Balancing Unit

λ1

Local Search

Q12

A2

Q13

Q14

A4

A3

λ
′

12

λ
′

13

λ
′

14

λ14

λ13

λ12

Resource Selection

Qs

Figure 2: The agent internal structure with a par-

allel control mechanism

5.3 A Feedback-based, Probabilistic Load
Control Unit

The above section analyzed the behavior when the queue-

ing network is stable. However, when the query arrival rate

is more than the service rate, the queue length will be ever

expanding. In this section, we first analyze the cause of

“hot spots” in the above model and then present a feedback

based probabilistic load control mechanism in order to avoid

or mitigate congestion situations.

5.3.1 The creation of “Hot Spots”
In the above model, there are two cases that would cre-

ate a congestion situation: (1)The arrival rate for message

queues (Q12, Q13, etc) is above the service rate, i.e

λ
′

ij >
Cij
L

(2)The arrival rate for queue Qrs is more than the service

rate, i.e:

λi >
1

trs

From equation 1, it is equivalent to:

λi = λ0,i +

N

j=1

λji >
1

trs

In the following section, we propose a load control mech-

anism to avoid both situations, thereby improving overall

system performance.

5.3.2 A Probabilistic Load Control Algorithm
In order to control the communication load based on lim-

ited observations of the network, agents can employ a feedback-

based, probabilistic algorithm. Specifically, when an agent

forwards queries to its neighboring agents, it not only con-

siders the capacity of its own communication channels, but

also takes into account its neighboring agents’ service rates,

which are acquired dynamically by analyzing the feedback

information sent out by its neighboring agents periodically.

Let QSij be the query set that the resource selection al-

gorithm of agent Ai selects to forward to agent Aj and QSi

 308

be the query set that agent Ai receives and has not pro-

cessed previously in a certain time period t. Assume that

in a certain period, queue Qs receives non-redundant query

set QSi and the load control mechanism randomly selects

pij ∗ |QSij | from the query set QSij and qij ∗ |QSi − QSij |

from the set QSi − QSij . Notice that |QSij | = λ
′

i ∗ t and

|QSij | = λij ∗ t
Agent Ai determines probability pij and qij in the follow-

ing way:

(1) qij >= 0 only if pij = 1.

(2) pij = min(p1, p2, 1) where

p1 =

Cij

L

|QSij |

and

p2 =
fij
|QSij |

(3) qij is determined by:

qij =
min(fij ,

Cij

L
) ∗ t− |QSij |

|QSi −QSij |

(4) fij is determined by agent Aj and forwarded to agent

Ai as feedback to control the number of messages to

be forwarded to agent Aj from agent Ai. In our work,

fij is determined by

fij = tij ∗ λij ∗ t

and

tij =

1

trs
− λ0j

λj − λ0j

Recall that λ0i is the arrival rate of queries from out-

side users instead of other agents. tij characterizes the

overload situation at agent Aj

(1) specifies that agents selected by the resource selection

algorithm have higher priority over other agents. Agent Ai
would only forward a query to more agents when the uti-

lization rate of communication channel is lower than 1.

(2) prevents the situation where too many queries are

scheduled for the communication channel between Ai and

Aj . In particular, p1 is the maximal capacity of the commu-

nication channel and p2 is the maximal number of queries

that agent Aj can process in a timely fashion for agent Ai.
(3) decides that when the query arrival rate is low, the

load control unit should increase the utilization of the com-

munication channel and attempt to increase the speed that

search sessions propagate in the system by forwarding more

queries to agent Aj than the set that was selected by the

resource selection algorithm.

(4) describes how the feedback information is generated.

Agent Aj requests the upstream agents to reduce communi-

cation load by tij in order to prevent congestion situations.

6. A BALANCED TWO-PHASE QUERY
ROUTING ALGORITHM

The control mechanism described above engineers traffic

flow in a distributed information retrieval system from a

local perspective. The effect of this mechanism, however,

Q1

A8

A10
A9

A7

Figure 3: A Two-Phase Query Routing Algorithm

In Hierarchical P2P IR System

could be limited by the fact that agents only possess a nar-

rowly defined non-local view of content network traffic. In

this section, we introduce a query routing algorithm which

exploits a more encompassing but static view of the network

topology to route queries. It is the interaction among these

two mechanisms that is key to our approach.

In our previous work[12], we proposed a hierarchical agent

topology and a two-phase search algorithm for use in routing

queries. In this section, we extend this work to make it

suitable for concurrent query processing in the network. In

our hierarchical agent society, agents have two roles: group-

mediator and query-processor[12]. All non-leaf agents in the

organization take on both roles while leaf agents only take on

the role of query-processor. Each mediator manages a group

of agents and takes on a central role in group management

including decisions on whether a new agent should be added

to the group, when to reorganize the group, the selection of

group members to handle a query and the propagation of

queries to non-group members.

To take advantage of hierarchical agent organization, a

two-phase hierarchical search algorithm was developed in

[12]. In this protocol, as illustrated in Figure 3, agents in

the first phase forward queries to top-level mediators so as

to find appropriate starting points for the search. In the

second phase, a concurrent search is initiated from these

starting points. The intention of this algorithm was to con-

duct searches in a focused fashion to reduce communication

messages. Notice that the load may become unbalanced in

such a network. The arrival rate for a top-level mediator Ai
is:

λi = λ0,i +

j∈{A
′

i
}

λ0,j +

N

j=1

λjpji

for i = 1, .., N. Here we denote {A
′

i} as the set of all direct or

indirect members of agent Ai. In the above equation, λ0,i is

the query arrival rate from users, while
j∈{A

′

i
}
λ0,j is the

query arrival rate coming from the member set of agent Ai;
N

j=1
λjpji is the query arrival rate coming from the neigh-

bors set. This makes the resource selection algorithms very

expensive since the selection algorithm at top-level media-

tors must perform comparisons of query model and collec-

tion model of each agent. This algorithm is not a balanced

approach since it tends to increase dramatically the bur-

den of top-level mediators, thereby creating hot spots in the

network. To resolve this problem, we propose an improved

 309

two-phase search algorithm as demonstrated in Figure 4.

Q1

A8

A10
A9

A7

Figure 4: A Balanced Two-Phase Query Routing

Algorithm

The first phase of this query routing algorithm is primarily

conducted in the horizonal direction. It starts when the ini-

tiator of the query, A8, forwards the query similarity probe

messages with a certain TTL (Time To Live) value along the

lateral links to the agents at the same level to locate rele-

vant clusters. Upon receipt of these probe messages, agents

return back the similarity values of their collections with

the queries in question. After the TTL value expires, an

agent does not forward the query any further, thus stopping

further search along this path. After comparing the simi-

larity returned by the agents, the initiator, A8, selects the

K most similar agents to proceed to the second phase of

the search. The second search phase is primarily conducted

inside each group and information flows in the vertical di-

rection. In particular, agents only forward the query along

upward links or downward links during the second phase.

For evaluation purposes, there is no explicit recognition by

individual agents that the query is no longer being processed

by any agent in the network. This process continues in the

network until all the agents receiving the query drop the

message or there are no other agents to forward to. In re-

ality, this phase can also be controlled by a TTL value to

limit search efforts. This way, the traffic load is likely to

be more evenly distributed among the various levels of the

hierarchy given that the entry points of the queries are ran-

domly distributed in the network. Hence, the new search

strategy mitigates the hot spot problem encountered in the

previous algorithm.

7. EXPERIMENTAL SETTINGS
AND RESULTS ANALYSIS

7.1 TRANO Testbed
TRANO(Task Routing on Agent Network Organization)

is a multi-agent based information retrieval testbed. TRANO

is built on top of the Farm simulator[6] that provides a data

dissemination framework for large scale distributed multi-

agent organizations. TRANO supports importation and ex-

portation of agent organization profiles including topological

connections and other features. Each TRANO agent is com-

posed of an agent view structure and a control unit. In sim-

ulation, each agent is pulsed regularly and the agent checks

the incoming message queues, performs local operations and

then forwards messages to other agents .

7.2 Experimental Settings and Results
Analysis

In our experiment, we use TREC-VLC-921 dataset which

contains 921 sub-collections to simulate the collections hosted

on agents. TREC-VLC-921 was originally split from TREC

VLC1 collection by data sources in order to create testbed

for distributed information retrieval research[2]. TREC VLC1

is part of the TREC collections which are distributed by

the National Institute of Standards and Technology (NIST)

for testing and comparing current text retrieval techniques.

TREC VLC1 (very large collection) includes documents from

18 different data sources, such as news, patents, and the

Web[4]. The formation of hierarchical agent organization

can be achieved by a hierarchical clustering algorithm men-

tioned in [7]. However, this is under the assumption that

global information about the content distribution is avail-

able during the topology formation. In the absence of global

information, [12] proposed a distributed hierarchical clus-

tering algorithm to form a hierarchical organization which

is exploited in this paper. During the topology generation

process, degree information of each agent is estimated by

the algorithm introduced in [8] with parameters α = 0.5 and

β = 0.6. In our experiments, we estimate the upward limit

and downward degree limit using linear discount factors 0.5,

0.8 and 1.0. Once the topology is built, queries randomly

selected from the query set 301 − 350 on TREC-VLC-921

are injected to the system based on a Poisson distribution

P (N(t) = n) =
(λt)n

n!
e−λ

In addition, we assume that all agents have an equal chance

of getting queries from the environment, i.e, λ is the same

for every agent. In our experiments, λ is set as 0.00543 so

that the mean of the incoming queries from the environment

to the agent network is 5 per time unit. The service time

for communication queue Qs and Qrs, i.e tQij
and trs, is set

as 0.2 time unit. The service time for a local search queue,

tls is 3 time units.

We use KL divergence to measure the distance among

collection models or between collection models and query

models. The formula is:

D(p||q) =

i

p(i) log
p(i)

q(i)

An approximation approach is used to speed up the calcula-

tion of KL distance and convert it to a similarity measure.

The calculation details can be found in [11].

7.3 Performance Measures
The following measures were used to compare the different

search strategies:

Propagation Speed of a search session si, pssi
(t) is de-

fined as the ratio of the number of agents visited at

time t, N(t), over the size of the agent society N , i.e

pssi
(t) =

N(t)

N
. Average propagation speed is defined

as average of the propagation speed of all the search

sessions in the network. Notice that t is the amount of

time after a search session starts. The maximal pro-

portion of agents that a message visits is pssi
(t∗).

Effective Propagation Speed of a search session si,
epssi

(t) is defined as the ratio of the number of rel-

evant documents hosted on visited agents at time t,

 310

Table 1: Experimental Results For Various Search Strategies

Name Topology RS LC λ t∗ pssi
(t∗) ∗ t∗ epssi

(t∗) ∗ t∗ GU MsgNumber GQ(t∗)
PBN PowerLaw Broadcast No 0.00543 32 97% 97% 92% 2603022 77.29

PBY PowerLaw Broadcast Yes 0.00543 31 97% 96% 94% 2563046 78.99

HTN Hierarchical TwoPhase No 0.00543 17 29% 33.5% 44% 353446 38.01

HTY Hierarchical TwoPhase Yes 0.00543 16 32% 35% 50% 407242 45.20

HBN Hierarchical Balanced No 0.00543 26 89% 92% 80% 1512011 83.94

HBY Hierarchical Balanced Yes 0.00543 24 89% 98% 85% 1552011 88.94

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50000 100000 150000 200000

search strategies

PowerLaw-NoLC-5-15
Powerlaw-LC-5-15

Hi-NoLC-5-15
Hi-LC-5-15

Figure 5: GQ(t) versus the message number

R(t), over the total number of relevant documents in

the network R, i.e epssi
(t) =

R(t)

R
. Note that this ratio

is not equal to recall ratio as the local searches may

not be scheduled or finished by time t. Average effec-

tive propagation speed is defined as the average of the

effective propagation speed of all the search sessions in

the network. The maximal proportion of agents that

a message visits in session si is epssi
(t∗).

Global Utilization Ratio (GU) is defined as the average

of the utilization rates of agents in the network. The

utilization ratio of an agent is defined as the probabil-

ity that the agent is busy and its queue is nonempty. A

low global utilization ratio can be attributed to either

a low query arrival rate or a poorly designed resource

selection process and an agent search topology that

creates unbalanced data flow in the network, leaving

some agents with no queue entries while flooding oth-

ers.

7.4 Results analysis and evaluation
Table 1 lists the experimental results of 6 different search

strategies for 60 time units. These strategies explore the

importance of using different topological agent organiza-

tions (powerlaw topology and hierarchical topology), search

strategies (broadcast, two-phase hierarchical, and a balanced

hierarchical search strategy). Fig. 5 depicts the global qual-

ity of the system as a function of the number of messages

transmitted. Hi-LC-5-15 is the curve for hierarchical, bal-

anced two-phase search appraoch with local balancing tech-

niques and Powerlaw-LC-5-15 shows the performance for

the broadcast search algorithm running on the powerlaw

topology. In the following paragraphs, we analyze these ex-

perimental results and results shown in Fig. 6 that indicate

 0

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40

various arrival rates vs. utility

Hi-LC-3-1-1-10
Hi-LC-3-1-1-20
Hi-LC-3-1-1-30
Hi-LC-3-1-1-40

Figure 6: utility increase overtime for various arrival

rates

how one specific search strategy is affected by the different

arrival rates of the external queries.

Whether the load balance mechanism was used or not, the

overall results were that the balanced hierarchical(details

in Table 1) achieved highest overall utility while limiting

the amount of communication relative to the broadcast ap-

proach. Additionally, the following findings were also re-

vealed by the experimental results:

First, while the two-phase search algorithm was designed

to take advantage of the hierarchical agent organizations,

the way queries are forwarded in the system makes it easy to

form hot spots that slow down the propagation of queries in

the network. Therefore, from Table 1, the two-phase search

algorithm produces low search quality. On the other hand,

a balanced, hierarchical algorithm taking advantage of lat-

eral links achieves the best search quality among the tested

approaches in terms of both the number of communication

messages and the overall utility. This is due to the fact that

the queries are largely forwarded inside the relevant groups

rather than being immediately forwarded to top level me-

diators in the two-phase search. This avoids the top-level

mediators hot spots.

Secondly, a load balancing mechanism tends to improve

system performance by reducing the number of messages

when query arrival rate increases and congestion situations

occur while increasing the number of messages in the net-

work when the service load and utilization of the communi-

cation channel is low. From the experimental results, this

load balancing mechanism improves the two-phase search

algorithm the most. This can be attributed to the fact

that the routing in two-phase search algorithm is very un-

balanced with the query arrival rate used in these experi-

ments. The preliminary experimental results also demon-

 311

strate that the contribution of load balancing depends on

the local computational capacity. Particularly, the traffic

engineering techniques contribute to the performance more

when local searching is not a bottleneck. When the local

search queue size increases to a certain level, optimizing the

traffic does not significantly improve search performance. It

remains as future work to further discover the correlation

between traffic flow and global search performance.

Thirdly, Fig. 6 shows that the overall system performance

increases steadily with the increase of query arrival rates.

This demonstrates that the system is a stable one.

Finally, the broadcast approach, to our surprise, performs

quite well. It generates a lot of extraneous messages which

are then filtered out locally by the language model based

greedy local search scheduling algorithm. Therefore, this

large number of messages did not distract the agents’ local

searches.

8. DISCUSSION AND FUTURE WORK
One of the directions that we would like to pursue is to

provide differentiated service for search sessions by using se-

lectively different search engines and parameters that trade

off the likelihood of finding relevant documents to the time

required for the search. We also want to be able to specify

that some search sessions are more important than others,

and expand the model so that the utility function of each

search session may not necessarily be linear to the quality

accrued over time. Rather, we assume that the utility func-

tions increase faster at the beginning and the increase slows

down when a certain amount of quality has been accrued.

Qsi
(t) is an objective measure which reflects the recall ra-

tio at time t for search session si. Another measure, user

utility, is also defined to capture the preferences that users

have on the number of relevant documents returned at dif-

ferent periods during the search process.

Usi
(t) = μ(Qsi

(t), t)

The overall system utility, GU(t) is defined as the sum of

the utility for each search session in a certain time period:

GU(t) =

si

μ(Qsi
(t), t)

By selecting an appropriate μ function, users can spec-

ify their preferences for search session si, i.e whether they

prefer quick response but with a relative low recall ratio or

vice versa. In this paper, we take μ(x) = x and therefore

we consider that user satisfaction linearly increases as more

relevant documents are returned.

9. CONCLUSIONS
In cooperative peer-to-peer information retrieval systems,

each node can be considered as an intelligent agent and these

agents work collectively to provide an information retrieval

service. In order to effectively support multiple and concur-

rent search sessions in the network, we propose two traffic

engineering techniques that minimize processing and com-

munication bottlenecks. One is a novel agent control mecha-

nism whose elements include resource selection, local search

scheduling, and feedback-based load control and the other

is a new two-phase query routing algorithm based on orga-

nizational knowledge. Experimental results show that this

framework can reduce congestion situations, increase system

throughput, and improve considerably the overall system

utility.

10. REFERENCES
[1] J. Callan. Distributed information retrieval. Kluwer

Academic Publishers, Reading, Massachusetts, 2000.

[2] J. C. French, A. L. Powell, J. P. Callan, C. L. Viles,

T. Emmitt, K. J. Prey, and Y. Mou. Comparing the

performance of database selection algorithms. In

Research and Development in Information Retrieval,

pages 238–245, 1999.

[3] R. Gallager. A minimum delay routing algorithm

using distributed computation. In IEEE transactions

on communications, pages 73–85, Jan 1977.

[4] D. Hawking, N. Craswell, and P. Thistlewaite.

Overview of trec-6 very large collection track. In In

Proceedings of the Tenth Text Retrieval Conference

TREC, pages 93–105, 1997.

[5] B. Horling. Modeling and Designing Multi-Agent

Systems Through Explicit Organizational Design. PhD

thesis, University of Massachusetts at Amherst,

Amherst, Massachusetts, 2005.

[6] R. Horling, Bryan; Mailler and V. Lesser. Farm: A

scalable environment for multi-agent development and

evaluation.

[7] J. Lu and J. Callan. Federated search of text-based

digital libraries in hierarchical peer-to-peer networks.

In In Proceedings of the Twenty-Seventh European

Conference on Information Retrieval Research

(ECIR’05).

[8] C. R. Palmer and J. G. Steffan. Generating network

topologies that obey power laws. In Proceedings of

GLOBECOM ’2000, November 2000.

[9] J. M. Ponte and W. B. Croft. A language modeling

approach to information retrieval. In Proceedings of

the 21st annual international ACM SIGIR conference

on Research and development in information retrieval,

pages 275–281. ACM Press, 1998.

[10] M. E. Renda and J. Callan. The robustness of

content-based search in hierarchical peer to peer

networks. In CIKM ’04: Proceedings of the thirteenth

ACM conference on Information and knowledge

management, pages 562–570, New York, NY, USA,

2004. ACM Press.

[11] H. Zhang, W. B. Croft, B. Levine, and V. Lesser. A

multi-agent approach for peer-to-peer information

retrieval. In Proceedings of Third International Joint

Conference on Autonomous Agents and Multi-Agent

Systems, July 2004.

[12] H. Zhang and V. R. Lesser. A dynamically formed

hierarchical agent organization for a distributed

content sharing system. In 2004 IEEE/WIC/ACM

International Conference on Intelligent Agent

Technology (IAT 2004), 20-24 September 2004,

Beijing, China, pages 169–175. IEEE Computer

Society, 2004.

 312

