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ABSTRACT
In this paper we incorporate autonomous agents’ capability to per-
form parallel interactions into the cooperative search model, result-
ing in a new method which outperforms the currently used ones.
As a framework for our analysis we use the electronic marketplace,
where buyer agents have the incentive to search cooperatively. The
new search technique is quite intuitive, however its analysis and
the process of extracting the optimal search strategy are associated
with several significant complexities. These difficulties are derived
mainly from the unbounded search space and simultaneous dual
affects of decisions taken in different world states. We provide a
comprehensive analysis of the model, highlighting, demonstrating
and proving important characteristics of the optimal search strategy.
Consequently, we manage to come up with an efficient modular al-
gorithm for extracting the optimal cooperative search strategy for
any given environment. A computational based comparative illus-
tration of the system performance using the new search technique
versus the traditional methods is given, emphasizing the main dif-
ferences in the optimal strategy’s structure and the advantage of
using the proposed model.

Categories and Subject Descriptors
K.4.4 [Computing Milieux]: Computers And Society —Electronic
Commerce; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence —Multiagent systems

General Terms
Algorithms, Design, Economics, Performance, Theory

Keywords
parallel, cooperative search, search cost

1. INTRODUCTION
Coalition formation is well recognized as a key process in a multi-

agent systems, mostly desirable in environments where a group of
agents can perform a task more efficiently than any single agent can
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[10]. In recent years many coalition formation models have been
suggested, for various domains [18, 5], particularly for electronic
commerce [19, 20, 16]. In the latter context, the most common
coalition concerned is a coalition of buyers, derived mainly from
the potential of obtaining volume discounts [19, 15] and the ability
to search cooperatively for market opportunities in a more efficient
manner [16].

The cooperative search incentive derives principally from the ex-
istence of search costs found in MAS, reflecting the resources (not
necessarily monetary), that need to be invested/consumed while
searching for opportunities in the environment (e.g. searching for
an opportunity to buy a product in the context of the electronic mar-
ketplace) [16]. The scenario of having search costs is common in
MAS where the agent needs (for its decision making process) im-
mediate information concerning market opportunities. Given the
richness of opportunities and the dynamic and open nature of these
environments, central mechanisms are usually incapable of supply-
ing such information with the level of completeness and accuracy
required by the agent, certainly not without a cost. Thus the agent
needs to spend some of its resources on search related activities.
Despite the reduction in the magnitude of these search costs in the
electronic commerce era, the continuous growth in the number of
retailers and virtual stores over the Internet, followed by a phenom-
enal increase in the number of opportunities available, makes the
overall search cost an important parameter affecting buyers’ search
strategy [4, 9, 16, 1].

By forming a coalition and delegating the search task to a repre-
sentative agent (acting on behalf of the coalition1), the cooperative
search offers the advantage of sharing, reusing and re-allocating op-
portunities among the coalition members (e.g. exploiting opportu-
nities which would have been discarded otherwise if each of the
agents would have performed an alternative separate search) [16].
Nevertheless, the process of forming and maintaining the coalition
induces some overhead, derived mainly from the communication
and coordination activities [15], thus the representative agent should
set its search strategy in a cost/effective manner.

A classic example of the above in traditional markets is the pro-
curement management officer of a corporation. Instead of having
each individual in the cooperation spend time and resources on lo-
cating its specific requested supplies, the task is delegated to the
procurement management officer. Here, in addition to the price
discounts obtained for aggregated demands of identical items, the
procurement management officer becomes highly updated with the

1As discussed in detail in [16], the use of a representative agent is
a common and efficient means for executing the coalition’s goal.
Furthermore, given the option of side-payments the overall utility
maximization strategy taken by the representative agent is always
the preferred one by all coalition members (i.e. no conflict of inter-
ests), regardless of the pre-set coalition’s payoff division protocol.
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different offerings and specific supplies available by the different
merchants in the markets. As a result the cost of locating the right
deal for each request becomes significantly smaller (in comparison
to the equivalent search conducted by each of the individuals).

The basic concepts by which a representative agent should man-
age the cooperative search, including an analysis and computational
means for extracting its optimal search strategies are given in [16].
Nevertheless, the assumption used in that model for constructing
the representative agent’s strategy is that the representative agent
interacts with one seller agent at a time as part of its search process.
Such an assumption ignores an inherent strength of autonomous
agents, which is their capability to efficiently interact with several
other agents in parallel (enhanced by their improved communica-
tion capabilities and their ability to process an enormous amount of
information in a short time, compared to people). The parallel in-
teraction is preferable when an agent’s search cost combines fixed
components (e.g. operational costs) and/or non-linear dependency
on the number of interactions maintained (e.g. advantage of size).
In such cases the adoption of the parallel technique by the repre-
sentative agent suggests a reduction in the average cost per interac-
tion with seller agents. While the integration of parallel interactions
technique into a single search process is quite intuitive, its integra-
tion into a coalition’s search is not trivial at all. The major difficulty
derives from the fact that different coalition members may have het-
erogeneous multi-attribute utility functions. In this paper we supply
a comprehensive analysis of the parallel cooperative search model
and present an algorithm which can facilitate the calculation pro-
cess of the coalition strategy. The new searching technique results
in at least as good (and in many environments significantly better)
expected utility for the coalition.

Similar to the model introduced in [16], we apply the multi-
attribute utility theory (MAUT) [8], to analyze preferences with
multiple attributes in our agent based search mechanism. This en-
ables a set of preferences to be represented by a numerical utility
function. We consider the agents to be heterogeneous, each hav-
ing its own utility function. The model is general, though several
specific implementation aspects relating to the B2C (Business-to-
Consumer) market, where sellers can supply almost any demanded
volume, and the C2C (Consumer-to-Consumer) market, where sell-
ers offer single items for sale, are emphasized. Based on the pro-
posed analysis, the representative agent can calculate its optimal
strategy given the utility functions of the coalition members and the
specific environment in which it operates.

Notice that among the three basic stages that are common to all
coalition formation models [14, 19]: coalition structure generation
(where the agents form/join the coalition), executing the coalition
task, and dividing the generated value among the coalition mem-
bers, our focus is on finding the optimal search strategy for the
coalition, given its structure and the opportunity distribution. As
suggested in [16], the representative agent operates in its environ-
ment alongside many other agents that represent coalitions differing
in their size, their members’ utility functions and the products they
are seeking. These other coalitions, as well as the different indi-
vidual utility functions play an important role when studying the
stability of a coalition and issues of revealing the true utility func-
tion (truth telling). The analysis of these important issues is based
on the ability to properly derive the coalition’s utility given any spe-
cific self structure (i.e. number of agents it represents and their re-
ported, not necessarily true, utility functions) and the environment
it is operating in. This paper aims to supply this functionality, lay-
ing the foundations and enabling research of many of the important
aspects of coalition formation given above in the context of cooper-
ative search (truth telling, stability, payoff division, etc.).

The main contributions of this paper are threefold: First, we for-

mally model and analyze the parallel cooperative search problem
of agents operating in a costly environment. This model is a gen-
eral search model and can be applied in various domains in addition
to the electronic marketplace that is being used as a framework for
our work. Second, we show that in many environments the paral-
lel cooperative search outperforms the traditional search strategies
(either when each agent searches by itself or when using a coopera-
tive sequential search). Furthermore, we draw attention to scenarios
where traditional cooperative search is proven to be non-beneficial,
however parallel cooperative search is a favorable technique. Fi-
nally, we supply an algorithm that facilitates the calculation of the
coalition’s optimal strategy, and significantly reduces the complex-
ities associated with the attempt to extract this strategy from an ap-
propriate set of equations.

In the following section we address relevant multi-agent and par-
allel search literature. The parallel cooperative search model as-
sumptions and a formal description are given in sections 3 and 4,
respectively. In section 5, we explore the unique characteristics of
the representative agent’s optimal strategy when using cooperative
parallel search, leading to the introduction of an efficient algorithm
for extracting it. In section 6 we demonstrate the unique proper-
ties of the parallel search method using as a reference two of the
classical search models that our suggested model generalizes. We
conclude and suggest directions for future research in section 7.

2. RELATED WORK
In many scenarios autonomous agents in multi-agent environ-

ments may cooperate in order to perform tasks. The need for coop-
eration may arise either when an agent is incapable of completing a
task by itself or when operating as a group can improve their over-
all performance [3, 10, 19]. Group based cooperative behavior can
be found in various domains, such as solving complex optimization
problems [18], military and rescue domains [5], e-business appli-
cations [19, 20] and many more. In the electronic market domain,
most authors focus on coalitions formed to obtain volume discount
[19, 20]. Additional coalition formation models for the electronic
marketplace consider extensions of the transaction-oriented coali-
tions into long-term ones [3], and for large-scale electronic markets
[10]. Traditionally, the majority of this research effort has focused
on issues concerning optimal division of agents into disjoint ex-
haustive coalitions [14, 20], division of coalition payoffs [20] and
enforcement methods for interaction protocols. Only a few authors
have considered the coalition’s problem of determining its strategy
in the electronic commerce domain, once the coalition is formed
[7]. Nevertheless, other than in [16], none of the proposed models
have considered a coalition’s search in a costly environment, and
in particular none of them (including [16]) have made use of the
agent’s capabilities to maintain parallel interactions.

The problem of a searcher operating in a costly environment,
seeking to maximize his long term utility is addressed in classi-
cal search theory ([11, 12], and references therein). The three main
search models that can be found in the literature are the fixed sam-
ple size model, the sequential model and the variable sample size
model. In the fixed sample size model, introduced in [17], the
searcher draws a single sample where all observations are taken
simultaneously. In the sequential search model [11] the searcher
draws one observation at a time, allowing multiple search stages.
The third search model [2, 6, 13] suggests a combined approach in
which several observations may be made at any period. This lat-
ter method, which outperforms the other two, is in fact the single
agent’s equivalent to our cooperative search model considered in
this paper. In addition to the establishment of some general proper-
ties of a search rule, most of the papers mentioned above considered
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mainly issues of uncertainty associated with the availability of the
inspected offers [6], recall and fallback utilities [13], and the effect
of a final decision horizon on the search strategy [2]. Neverthe-
less, the focus of the above works from the search theory domain is
on a single agent’s search, and the analysis of a cooperative search
is lacking. As shown in [16], the transition from a single agent
search to a cooperative search concept as the one we base our model
on, is not trivial and encapsulates many complexities resulting in a
different strategy structure. In the cooperative search model, the
representative agent needs to take into consideration the affect of
new opportunities found on any subset of utility functions associ-
ated with the different coalition members. Though the process of
extracting the optimal strategy is very different from the one used
by a single agent that tries to maximize a simple or an aggregated
utility function with a single opportunity.

3. THE MODEL
We base our model description and formulation on the definitions

given in [16] and extend them to reflect agents’ parallel search ca-
pabilities. We consider an electronic marketplace where numerous
buyer and seller agents can be found. Each agent is interested in
buying or offering to sell a well defined product. A product can
be offered by many different seller agents under various terms and
policies (including price). We assume that while buyer agents are
ignorant of individual seller agents’ offers, they are acquainted with
the overall distribution of opportunities (defining an opportunity as
the option to buy the product under specific terms and policies) in
the marketplace.

Assuming there are no central mechanisms or mediators which
can supply the agents with full immediate information concerning
current market opportunities, they need to search for appropriate
opportunities to buy their requested product. Throughout the search
the buyer agents locate seller agents and learn about their offers by
interacting with them. Each buyer agent evaluates opportunities
using its own multi-attribute utility function. Buyer agents may
have heterogeneous preferences and thus the utility from a given
opportunity differs according to the evaluating buyer agent.

In its most basic form, each buyer agent searches in such a way
that it interacts with several sellers in parallel at each stage of its
search thus learns about a new set of opportunities. Based on the
agent’s evaluation of the utility that can be gained from each oppor-
tunity in the set, the agent makes a decision whether to exploit any
of the opportunities it encountered throughout its search (i.e. buy
from any of the sellers) or resume its search in a similar method. A
decision of resuming search is always accompanied with the num-
ber of parallel interactions to be executed next.

The search activity is assumed to be costly [4, 9, 16, 1]. For each
search stage in which the buyer agent locates, interacts and evalu-
ates seller agents, the process induces a search cost. This cost is a
function of the number of parallel interactions initiated and main-
tained by the agent. The search cost structure is principally a pa-
rameter of the market’s liquidity and volatility, and thus shared by
all buyer agents operating in the specific marketplace. Recogniz-
ing the benefits of a cooperative search, buyer agents, interested in
similar products or interchangeable products, may form coalitions
[16]. Any coalition formed will always be represented by a repre-
sentative agent, which conducts its search on behalf of the coalition
in a similar method (encountering sellers and accumulating new op-
portunities). The representative agent’s search cost increases both
as a function of the number of parallel interactions it forms and the
number of buyer agents it represents2. We assume a buyer agent’s

2The reasoning for correlating the coalition’s search cost with the
number of members being represented is mainly associated with

utility from a given opportunity may be interpreted into monetary
terms. Thus the utilities are additive and the total search utility can
be obtained by subtracting the search cost that the process induces
from this value.

As part of its search process, the representative agent needs to
set a strategy for determining, given any set of known opportuni-
ties, whether to terminate or resume its search. In the latter case,
the agent also needs to determine the number of parallel interac-
tions to be used in the next search round. The optimal strategy is
the one maximizing its expected total search utility (opportunities
utility minus search costs). Given the representative agent’s goal
of maximizing the overall coalition utility, its decision is not in-
fluenced by the payoff division protocol, nor by coalition stability
considerations, but rather influences these two factors [16]. Any of
the agents’ pre-determined portion of the coalition’s utility will in-
crease in its absolute value along with the increase of the net coali-
tion utility, thus the overall utility maximization strategy is the pre-
ferred strategy by all agents at every stage of the search.

4. PROBLEM FORMULATION
Let B = (B1, B2, ..., Bk) be the set of the attributes defin-

ing any of the potentially available opportunities in the market,
where each attribute Bi can be assigned a value from the finite set
(bi

min, ..., bi
max). An opportunity’s type is defined by the vector

−→oi = (b1, b2, ...bk), assigning a value bi to each specific attribute
Bi. We denote by O the space of potential opportunity types the
coalition may encounter. The opportunity types’ distribution in the
marketplace, is denoted by the probability function p(−→o ).

We consider a coalition A = {A1, A2, ..., Am} of a general size,
where Aj is the j − th buyer agent in the coalition. Each buyer
agent, Aj , evaluates different opportunities using a utility function
Uj : O → R, where Uj(

−→o ) is the agent’s utility from opportunity
type −→o . The search cost associated with having a coalition of m
agents maintaining w simultaneous interactions with seller agents
over a search round is denoted by the function c(w, m), satisfying
limw→∞ c(w, m) = ∞ and dc(w,m)

dw
> 0, dc(w,m)

dm
> 0.

The set of opportunities known to the representative agent at a
given stage of its search is denoted by θknown. It is possible to
have several opportunities of the same type in θknown, as simi-
lar opportunities can be offered by several seller agents or a single
seller agent may offer opportunities of a specific type with a quan-
tity greater than one unit.

5. ANALYSIS

5.1 The search strategy
Let Θ be the collection of all possible sets of opportunities. Con-

sider a function alloc : Θ → Om that maps a given set of op-
portunities θ to the coalition members in A (i.e. an allocation)3

in a way that the aggregated agents’ utility with such allocation is
maximized4. Let alloc(θ) = (−→y1, ...−→ym), −→yi ∈ (θ ∪ {Ø}) be the
allocation, resulting from operating the function alloc over the set
θ, where −→yi denotes the opportunity associated with agent Ai and
yi = Ø denotes that no opportunity was allocated to agent Ai. The
immediate utility for the coalition if it terminates the search at the

some coordination overhead. See [16] for details.
3In B2C markets the same opportunity may be allocated to more
than one agent, while in C2C markets each opportunity is restricted
to only one agent.
4If there is more than one allocation that maximizes the overall
coalition utility then the function alloc will always choose one of
them according to a pre-defined ordering.
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current point given a set of known opportunities θknown, is denoted
as Us(θknown) and can be calculated as:

Us(θknown) =

mX
j=1

Uj(
−→yj ) (1)

where Uj(Ø) = 0, ∀j.
Notice that up until this point, the world states space on which

the agent needed to define its strategy (reflected by the set Θ) was
potentially infinite. Nevertheless, since there are only m agents
represented by the coalition, any additional occurrence of an op-
portunity of type oi in θknown beyond the first m occurrences can
neither improve the overall coalition utility nor the representative
agent’s strategy. As a result, the representative agent can reduce
the set of known opportunities according to which it determines its
strategy to a subset, s, of θknown where each opportunity of a given
type appears at most m times. We refer to s as a state, and define
S as the set of all potential states. Given the state definition, we
define a strategy as a function x : S → N , where x(s) = 0 if the
agent decides to terminate its search; otherwise x(s) is the number
of parallel searches the representative agent should maintain next,
when in state s. We denote the optimal strategy by x∗.

We define V (s, w) as the expected utility when using w paral-
lel searches when in state s (assuming any search decision taken
at a future state s′ 6= s will make use of the optimal number of
parallel searches). The term V (s, 0) denotes the immediate utility
obtained, if the agent decides to terminate the search at state s, thus:
V (s, 0) = Us(s). The value w (w ∈ N , w ≥ 0) that maximizes
the coalition expected utility V (s, w), is denoted as x∗(s):

x∗(s) = arg max
w

V (s, w) (2)

In order to formulate the appropriate equation for V (s, w) (from
which x∗(s) can be derived) we make use of several additional no-
tations and definitions. Consider a search round in which the repre-
sentative agent interacts simultaneously with w seller agents, yield-
ing a set θw = {−→o1 , ...,−→ow} , ~oi ∈ O of opportunities. Let Θw

be the collection of all w-sized sets of opportunities that can be
produced in the environment the representative agent is operating.
We denote by pw(θw) the probability of encountering a specific set
of opportunities θw, when maintaining w random interactions with
seller agents.

We define next s(s, θw) as a function that returns the new state
s′ of a representative agent, upon encountering the set θw given its
initial state s.5 For a given number of simultaneous interactions,
w, and a given state s, let Θs

w be the collection of all w-sized sets
of opportunities, θw, that change the agent’s current state (formally
stated as: Θs

w = {θw|θw ∈ Θw and next s(s, θw) 6= s}). We de-
note the complementary set of Θs

w by Θ̄s
w (the set that includes all

w-sized sets of opportunities θw that does not change the agent’s
current state). The expected utility when using w parallel searches
while in state s, V (s, w), can now be expressed as (∀w > 0):

V (s, w) =−c(w, m)+
X

θw∈Θs
w

pw(θw)V (s′, x∗(s′))+
X

θw∈Θ̄s
w

pw(θw)V (s, w) (3)

where s′ = next s(s, θw). This is derived from the stationary
nature of the problem - if no better state was reached, the search
resumes using the same strategy, yielding the same expected utility.
After some simple math manipulations of the above term we obtain:

V (s, w) =
−c(w, m) +

P
θw∈Θs

w
pw(θw)V (s′, x∗(s′))P

θw∈Θs
w

pw(θw)
(4)

5The set returned by next s is the union of opportunities in s and
θw, where each opportunity type appears at most m times.

Notice that in the case where no new better state can be reached,
the denominator becomes zero, and V (s, w) = −∞. This is quite
straightforward as the representative agent infinitely maintains a
costly search. Here, the coalition’s optimal strategy is inevitably
to terminate the search. This important characteristic will be used
later for designing the proposed solution algorithms.

At this point, one may attempt to compute the coalition’s strategy
x∗ by solving a set of equations of types 1, 2 and 4. Nevertheless,
this solution approach is accompanied by many inherent complex-
ities, derived from the structure of the equations. First, notice that
equation 4 is a recursive equation and one needs to know the op-
timal strategy taken in future states s′ when extracting the optimal
strategy of a given state s. Second, the computation of V (s, w)
in equation (4) is exponential in the number of parallel searches,
w, used (affecting the number of sets in Θs

w, both in the denom-
inator and numerator). Last, according to the above formulation,
the potential number of parallel searches that may be used is not
bounded, thus reaching a local maximum does not guarantee that a
higher utility cannot be obtained.

In the next subsection we present a comprehensive analysis of the
problem, emphasizing some unique characteristics of the represen-
tative agent’s optimal strategy. These findings lead to an algorithm
with a polynomial complexity (in the number of potential interac-
tions, w) for computing V (s, w) (which is the key component for
computing x(s)).

5.2 Analysis
We begin our analysis by facilitating the state definition in a way

that allows us to consider simple divisions of the search space into
improving and non-improving areas with regard to the coalition’s
utility. For this purpose we introduce the concept of equivalence
between different sets of opportunities within the context of coop-
erative search. We say that two sets of opportunities θ′, θ′′ ∈ Θ
are equivalent sets θ′ ≡ θ′′, if the following hold: (a) Us(θ′′) =
Us(θ′); and (b) Us(θ′ ∪ θ) = Us(θ′′ ∪ θ) for any set of oppor-
tunities θ ∈ Θ that the agent may encounter in the future. For
any two equivalent sets θ′, θ′′, the representative agent is indiffer-
ent to knowing the opportunities in θ′ and the opportunities in θ′′.
This is because any set of opportunities the representative agent will
encounter in the future results in a similar utility thus the overall
coalition’s utility will be the same in both cases. Moreover, since
the agent’s decisions are merely determined by the overall coalition
utility and in both cases similar utilities are reached with similar
probabilities, the agent will use the same number of parallel inter-
actions for both sets.

Notice that according to the definition above equivalent is a
transitive relation (θ′ ≡ θ′′, θ′′ ≡ θ′′′ → θ′ ≡ θ′′′). Moreover,
θ′ ≡ θ′′ implies that (θ′∪θ) ≡ (θ′′∪θ), ∀θ ∈ Θ. Given an alloca-
tion ` = (−→y1, ...,−→ym) of a set θ, we denote the set of opportunities
that appear in ` by {`}.

THEOREM 1. Any set of opportunities θ is equivalent to the set
of opportunities returned by the function alloc(θ). Formally stated:
θ ≡ {alloc(θ)}.

The above theorem is certainly non-trivial, particularly when con-
sidering the C2C market, where the optimal allocation is permuta-
tion based.

An immediate result obtained from theorem 1 above is that the
representative agent’s strategy is affected only by the subset of θknown

defined by {alloc(θknown)}. Therefore we can now redefine state
to be the set of opportunities that are members in alloc(θknown).
This latter definition significantly simplifies our analysis and en-
ables us to suggest an efficient algorithm for extracting x∗. It is
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notable that the computation method used by the function alloc
is market-dependent. While in B2C markets the function assigns
each agent with the opportunity that maximizes its utility, ~yj

∗ =
arg max~y∈θ Uj(~y), j = 1, ..., m, in C2C markets alloc can be
computed by solving a maximum weighted matching in a bipartite
graph6.

Given the analysis above, the set of all possible states, S, is given
by S = {s|∃θ ∈ Θ where s = {alloc(θ)}}. Also, we can now
denote by Ss = (s1, ...s|S|) the states constituting S ordered by
their utilities, where s1 is the state with the highest utility in S.
Notice that now the function next s(s, θw) simply returns the set
of opportunities in alloc(s ∪ θw).

The above changes in the definition of a state does not affect
the definition of Θs

w and Θ̄s
w. We denote by pstay(s, w) the proba-

bility the agent stays at the same state s after conducting w parallel
searches. This can be calculated as the probability of having none of
the encountered w opportunities change the representative agent’s
state:

pstay(s, w) = (pstay(s, 1))
w

= (
X

{~o}∈Θ̄s
1

p(o))
w

(5)

The term 1−pstay(s, w) can now be used as a better structured rep-
resentation of the element

P
θw∈Θs

w
pw(θw) that appears in equa-

tion (4). Similarly, we may consider the use of V new(s, k), defined
as the coalition’s expected utility obtained by potentially reaching
new states (e.g. different than s) after maintaining k parallel interac-
tions, while using the optimal strategy x∗(s′) for each new state s′.
The term V new(s, k) does not take into account the cost associated
with the current k interactions, however it does consider the search
costs associated with any further search stages, originated in new
(better) states. Notice that if the agent stays in state s during all k
searches vnew(s, k) is equal to zero. The term V new(s, w) is actu-
ally a representation of the element

P
θw∈Θs

w
pw(θw)V (s′, x∗(s′))

in equation (4). Therefore, equation (4) can now be formulated as:

V (s, w) =
−c(w, m) + V new(s, w)

1− pstay(s, w)
(6)

The use of V new(s, w) in the above equation is a primary con-
cept used in the algorithm suggested in the next section. Neverthe-
less, in order to extract x∗(s) it is essential to supply the represen-
tative agent with an upper bound, ws

max, for the optimal number of
parallel searches to be used when in state s. The following propo-
sition suggests an efficient bound for x∗(s).

PROPOSITION 5.1. For each state, si, an upper bound, wsi
max,

to x∗(si) can be calculated using wsi
max = dwe, where w is the

solution of the following equation:

c(w, m) = (Us(s1)− Us(si))(1− pstay(si, w)) (7)

The suggested bound is valid simply because for every value of w
greater than wsi

max the search cost associated with the following im-
mediate search round is greater than any possible future improve-
ment in the coalition’s utility. Later on, we show that the above
upper bound value is a by product of the main loop in our proposed
algorithm, thus it does not even need to be directly calculated.
6For a set of opportunities θ ∈ Θ found in the C2C market we
construct a graph Gθ = (V1, V2, E), where each vertex of V1 cor-
responds to an agent in A and each vertex in V 2 corresponds to
an opportunity ~o ∈ θ. An edge is connected between each agent
Aj in V1 and each opportunity ~o in V2. The weight of such an
edge is the utility for agent Aj from opportunity ~o, Uj(~o). Here
alloc(θ) = (~y1, .., ~ym), where {(A1, ~y1), .., (Am, ~ym)} is a maxi-
mum weighted matching in Gθ .

5.3 Algorithmic Approach
Recall that when attempting to solve the problem as a set of equa-

tions (see section 5.1) the potential number of parallel searches that
may be used is unbounded. Furthermore even if we do manage to
come up with a bound for x∗(s) then the calculation of V (s, w)
(from which x∗(s) can be derived) is exponential in the number of
parallel interactions used, w. Our analysis, which is based on the
restructuring of the different elements composing V (s, w), allows
us to bypass these two main complexities through the introduction
of a finite algorithm with a polynomial computational complexity
in w that will necessarily identify the optimal strategy for the rep-
resentative agent.

In order to efficiently compute V new(s, w) in equation (4) we
consider the w simultaneous interactions as w sequential interac-
tions, associated with no search cost. This fully complies with the
definition of V new(s, w) as given above (as the cost of the w inter-
actions is already considered). The justification for the above repre-
sentation method is given in the following lemma 1 which follows
directly from theorem 1.

LEMMA 1. A new state reached by obtaining a new set of op-
portunities is equivalent to a state reached by sequentially obtaining
pairwise disjoint subsets of this set. Formally stated, given a set θw

and any number of subsets θ1
w1 , ..., θr

wr
, θi

wi
⊆ θw, θi

wi
∩ θj

wj
=

∅, i 6= j, θ1
w1 ∪ ... ∪ θr

wr
= θw and an initial state s, then the

following holds:

ns(s, θw) ≡ ns(ns(...ns(ns(s, θ1
w1

), θ2
w2

)..., θr−1
wr−1

), θr
wr

) (8)

where ns(s, θi
wi

) = next state(s, θi
wi

). The proof is given in the
full paper.

A specific case of the above lemma 1 is where each subset con-
sists of a single opportunity. Thus the calculation of V new(s, k)
can recursively rely on the values of V new(s′, k− 1) where s′ rep-
resents any of the new states reached after obtaining one additional
opportunity from O. Therefore in order to compute V new(s, k),
we merely consider the expected utility after conducting one inter-
action from the planned k interactions. Here, with a probability
of pstay(s, 1) the agent remains in the same state s, where the ex-
pected utility (having k−1 more interactions to go) is V new(s, k−
1) (Recall that V new(s, 0) = 0 according to the definition of this
function that was given in the previous section). Otherwise, if a
new state s′ is reached after the single interaction, then there is the
possibility of reaching further new states in the remaining k− 1 in-
teractions (taking these states’ utility into consideration by the term
V new(s′, k−1)) or with a probability of pstay(s′, k−1) the agent
will remain in the new state s′ even after the additional k − 1 in-
teractions (in which case the utility is the one obtained by resuming
the search from this state using the optimal strategy, V (s′, x∗(s′))).
The above description is encapsulated in the following recursive
equation:

V new(s, k) = pstay(s, 1)V new(s, k − 1)+ (9)

+
X

{~o}∈Θs
1

p(~o)(V new(s′, k − 1) + pstay(s′, k − 1)V (s′, x∗(s′)))

where s′ = next state(s,−→o ). Notice that when repeating the cal-
culation using the above equation with increasing k value, starting
from k = 1, each iteration includes only a single unknown param-
eter, (V new(s, k)).

The above analysis leads to the following algorithm for comput-
ing the agent’s optimal strategy.

ALGORITHM 5.1. An algorithm for computing the optimal search
strategy x∗. Input: O - set of potential opportunity types in the
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market; p(−→o ) - opportunity types’ probability function; m - coali-
tion’s size; Uj(), j = 1, ..., m - coalition members’ utility func-
tions; c(w, m) - search cost function;
Output: x∗(s) ∀s ∈ S - the representative agent’s optimal strategy.

1. Build the set of ordered states Ss;
2. For i=1 to |S| {
3. Set V (si, 0) = Us(si) using equation 1
4. Set w = 1;
5. While c(w, m) ≤ (Us(s1)− Us(s|S|)) {
6. Compute V new(si, w) using equation (9).
7. Compute V (si, w) using equation (6); w++; }
8. Set x∗(si) = arg maxw′∈(0,..w) V (si, w

′) }
9. Return(x∗(si), i = 1, ..., s|S|)

Notice that at each stage of its execution, algorithm 5.1 reuses
components computed in earlier stages. For example, V new(s, w)
appears both in the computation of V (s, w) (equation (6)), in the
computation of V (s′, w + 1) (equation (9)), where ∃~o′ ∈ O such
that next s(s′, ~o′) = s and in the computation V (s′′, w +1) equa-
tion (9), where ∃~o′′ ∈ O such that next s(s′′, ~o′′) = s. Storing in
memory the result for each such computational element for the pur-
pose of reusing it at later stages significantly improves the efficiency
of the algorithm. This is accomplished by using two matrixes V and
V new of size |S| × (w

s|S|
max + 1), where the corresponding V (s, w)

and V new(s, w) values are stored for each pair (s, w), representing
a state and the correlated result for each number of simultaneous
interactions used for calculation. Additionally, we store x∗ values
for reusing x∗(s′) in the computation of vnew(s, w).

THEOREM 2. Algorithm 5.1 returns the optimal strategy of the
representative agent in a polynomial time of w

s|S|
max.

PROOF. In order to prove that the algorithm is polynomial in
w

s|S|
max, it is sufficient to prove that for each state s the computation

of steps 3-8 are polynomial in w
s|S|
max. Notice that the first elements

being calculated are for state s1 (i.e. the one with the maximum
utility) according to the loop in step 2. Here, as explained in sec-
tion 5.1, the expected utility from any strategy in which the search
is resumed (i.e. using w ≥ 1) is V (s, w) = −∞ (formally, since
Θs1

w = ∅ ∀w then pstay(s1, w) = 1 and V new(s1, w) = ... =

V new(s1, 1) = 0, thus V (s1, w) = −∞ ∀w ∈ (1, .., w
s|S|
max)).

Thus the optimal strategy in state s1 is to terminate the search, i.e.
x∗(s1) = 0 and V (s1, 0) = Us(s1). For any other state, s, when
reaching step 6 of the algorithm, the agent has already computed
both V (s′, x∗(s′)) and V new(s′, w) ∀w ∈ (0, ..w

s|S|
max) for all po-

tential future new state s′ of the state s. This is due to the fact that
all future states of a state s appear before s in the set of ordered
states Ss (either because having a higher utility, or equal utility yet
sorted before s according to the function alloc). In addition, for
any number of parallel interactions w ≥ 1 the agent has already
computed V (s, w − 1). Therefore the computation time in step
6 does not depend on w. Then, when reaching step 7 of the al-
gorithm, the numerator computation takes a constant time and the
computation time of the denominator is polynomial in w. In step
8 the agent chooses the maximum value between w

s|S|
max values that

have already been computed, therefore it is polynomial in w
s|S|
max.

The algorithm uses w
s|S|
max as an upper bound for the optimal num-

ber of interactions x∗(si),∀i = 1, ..., |S| (Notice that for s|S| the
term (1−pstay(s, w)) in equation 7 is 1). This bound is valid since
according to equation 7 the value of wsi

max decreases as a function
of i.

Further significant improvement of the above algorithm’s perfor-
mance can be achieved by calculating and using the specific upper
bound, wsi

max, correlated with each state, si in step 5, according to
equation 7. This might require at some points re-computation of
V (si, w) for w values that were not used in former algorithm ex-
ecution stages; however the total number of calculations for each
state si will significantly decrease7.

Before we demonstrate some important properties of our search
model, we wish to emphasize that the cooperative parallel search
is a generalization of both the single agent parallel search and the
cooperative sequential search models8. it is clear that the algorithm
suggested in section 5.3 results in the same strategy as in the coop-
erative sequential search and in the single agent’s parallel search,
for the specific cases in which ∀si wsi

max = 1 parallel interactions
or m = 1 agents, respectively.

Finally we wish to note the case where the agents are fully ho-
mogeneous (in terms of their utility functions) and operate in B2C
markets. Here, we can prove that the optimal strategy of the rep-
resentative agent is stationary (i.e. does not change according to
the current state). Furthermore, we show that the stationary strat-
egy characteristic holds not only for fully homogeneous agents but
also when the agents have correlated preferences. We say that two
agents Ai and Aj have correlated preferences if agent Ai prefers ~o′

over ~o′′ if and only if agent Aj prefers opportunity ~o′ over ~o′′, (i.e
∀~o′, ~o′′ ∈ O Uj(~o

′) ≤ Uj(~o
′′) ↔ Ui(~o

′) ≤ Ui(~o
′′)).

THEOREM 3. In B2C market if all agents have correlated pref-
erences, the search strategy is based on a reservation value9 Urv . In
such scenario the number of parallel interactions the representative
agent uses according to the optimal strategy (in case it resumes the
search) is fixed during the search (∀s ∈ S such that Us(s) < Urv

exists x∗(s) = wfixed).

PROOF. In the above scenario, the search can be represented as
the search of a single agent with a utility function which equals the
sum of the different agents’ utilities, U = U1 + U2 + ... + Um. In
such case after terminating the search, each of the coalition mem-
bers will always be assigned with the same opportunity. Therefore,
the search strategy is reservation value based, and the search will
be terminated upon reaching an opportunity with a utility exceed-
ing some reservation value Urv . Since the probability of reaching
such opportunity does not depend on the agent’s state, the number
of parallel interactions used throughout the search is fixed.

6. ILLUSTRATIVE EXAMPLES
Having an efficient means for calculating the representative agent’s

optimal strategy when using parallel search, we can now demon-
strate some specific properties of this search method. As a refer-
ence we use the single agent’s parallel search and the cooperative
sequential search models introduced in [2, 6, 13] and [16], respec-
tively.

When taking the cooperative sequential search as a baseline, in
many cases the use of the cooperative parallel search results in a
significantly improved joint expected utility for the agents consti-
tuting the coalition (in the worst case scenario, the optimal coop-
erative search strategy will yield equal utility). When considering
7The extent of the achieved improvement is highly correlated with
the specific environment in which the representative agent is oper-
ating.
8Notice that in this context the single agent sequential search is a
specific case of the single agent parallel search, where the agent
interacts with a single seller agent at a time.
9See [16] for definition and discussion concerning reservation value
based strategies in cooperative search.
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single agents’ parallel search, the cooperative parallel search has the
potential to produce a significantly better expected utility (in com-
parison to the aggregated utility of the single searches) however, the
decision of which of the two methods to use depends on the amount
of coalition overhead costs induced by the cooperative search.

Figure 1 illustrates the above, depicting the expected utility per
agent in any of the search methods10 in the C2C market (left hand-
side) and the B2C market (right hand-side) as a parameter of the
similarity level (α) between the utility functions of the agents con-
stituting the coalition. The results are based on the following envi-
ronment, which was used originally for evaluating the performance
of the cooperative sequential search [16]:

ENVIRONMENT 1. A coalition of two agents, A1 and A2, search-
ing for opportunities defined by two attributes, B1 and B2, where
each attribute can have a value from the discrete range (1, ..., 5)
with an equal probability for each of the values. The agents are
heterogeneous in respect to the way they evaluate each potential op-
portunity: agent A1 is associated with the utility function U1(

−→o ) =
B1 + B2 while agent A2 with the utility function U2(~x) = 2(1 −
α)B1 + 2αB2. Thus the parameter α indicates the level of agents’
similarity/heterogeneity. The search cost of any single agent was
taken to be c(w, 1) = 0.15+0.05w and for a coalition c(w, m) =
c(w, 1)ln(m + 1), ∀(m > 1).
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Figure 1: Average utility per buyer agent for different models in dif-
ferent markets

Curve 1 in each graph depicts the average expected utility when
the two agents form a coalition, making use of the suggested paral-
lel cooperative search. As expected our model outperforms the co-
operative sequential search model (represented by curve 3) in terms
of the expected utility for the agents. The other two curves describe
the average expected utility of the agents when each is searching
separately using the parallel (represented by curve 2) and the se-
quential (represented by curve 4) methods. In this specific environ-
ment the use of the cooperative parallel search also outperforms the
single agent parallel search model though it is not always the case.
Notice that the results obtained for the cooperative parallel search
are consistent with a general characteristic of cooperative search
[16] in a way that the usage of the method in the B2C market re-
sults with a better expected utility than in the C2C market. In the
case of the separated single searches the market type does not affect
the strategy structure nor the expected utility.

Figure 1 also reflects an interesting insight which contradicts
an important strategy domination relationship found between sin-
gle and cooperative sequential search techniques of fully homo-
geneous agents (i.e. with the same utility function, as in the case
where α = 0.5 in our environment). While for the sequential
search the use of single agents’ searches always outperforms co-
operative search in C2C markets (when considering fully homoge-

10For the cooperative models the average expected utility per coali-
tion member measure is used.

neous agents) [16], here we have a true evidence that when paral-
lel search is concerned, the cooperative search technique may out-
perform the aggregated result of the single homogeneous agents’
search.

Next we introduce and make use of a simpler sample environ-
ment for demonstrating some additional properties of the coopera-
tive parallel search.

ENVIRONMENT 2. Similar to environment 1 above, except for
the following changes: (1) each attribute has only two possible val-
ues (1, 2) with an equal probability of 1

2
; (2) The utility functions

used are U1(
−→o ) = 1.9B1 +0.1B2 and U2(

−→o ) = 0.1B1 +1.9B2.
The search cost of any single agent was assumed to be c(w, 1) =
0.5 + 0.05w and for a coalition c(w, m) = c(w, 1) ∗ ln(m + 1),
∀(m > 1).
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Figure 2: Coalition’s overall utility as a function of w

Figure 2 depicts the expected coalition’s overall utility with re-
spect to the number of searches conducted at the beginning of the
search (i.e. the first search stage, before the agent knows of any
of the opportunities), assuming that in all the other states the agent
uses the optimal number of parallel interactions, x∗(s). Here, we
can see the affect of two conflicting forces: as the number of parallel
interactions the agent uses in this stage increases, the probability of
associating a better opportunity with any of the two coalition mem-
bers increases, however the overall search cost associated with the
search stage increases. From the figure, we learn that the optimal
number of parallel interactions to be used in this stage is x∗(∅) = 5.

An additional important characteristic of the cooperative paral-
lel search we wish to emphasize concerns the number of parallel
interactions used as part of the optimal search strategy along the
search. While in a single agent’s parallel search the search strategy
is stationary (i.e. the number of parallel interactions used does not
change along the search process) in our model the number of simul-
taneous interactions along the search that needs to be maintained
depends on the agent’s state (i.e. the set of known opportunities
known to the representative agent). This is demonstrated in the di-
rected acyclic graph (DAG) given in figure 3, which represents the
feasible transitions from one state to other states in a B2C market
described by environment 2. The state is determined according to
the relevant set of known opportunities, correlated with the defini-
tion given in section 5.2. The relatively large number of parallel
interactions used in the optimal strategy, allows the representative
agent to reach all better states that are defined in this example. No-
tice that when reaching states {(1, 2), (2, 1)} and {(2, 2), (2, 2)}
the optimal strategy of the agent is to terminate the search. For
comparison purposes, notice that in any of the single agents’ sep-
arate search (i.e. single agent parallel search model) the optimal
strategy is to constantly use 4 parallel interactions (as long as re-
suming search).
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s={(1,2),(2,1)}
Us=7.8,x*(s)=0

s={(1,2),(1,2)}
Us=6,x*(s)=4

s={(2,1),(2,1)}
Us=6,x*(s)=4

s={(1,1),(1,1)}
Us=4,x*(s)=5

s={(2,2),(2,2)}
Us=8,x*(s)=0

s={Ø,Ø}
Us=0,x*(s)=5

Figure 3: Potential transitions between states in a simple B2C market

7. DISCUSSION AND CONCLUSIONS
The capability of using parallel interactions as part of a search

process is inherent in the infrastructure of autonomous informa-
tion agents. When using the cooperative parallel search, the rep-
resentative agent should use a new strategy, different in its structure
in comparison to the optimal strategy used in the cooperative se-
quential search and in a single agent’s parallel search. As expected,
the use of the new model has the potential of significantly improv-
ing the coalition’s expected utility as demonstrated in the previous
section. Furthermore, we emphasize that the coalition’s expected
utility will never decrease when using our proposed mechanism in
comparison to pure sequential cooperative search. This is mainly
because in the case where maintaining more than a single interac-
tion in some of the world states is not favorable the suggested al-
gorithm will converge to one interaction at a time strategy, as used
in the sequential cooperative search (which is a specific case of our
model). Obviously if the search cost is linear and depends solely
on the number of interactions being maintained, then the sequen-
tial cooperative search is the dominating strategy. Nevertheless, a
scenario in which the representative agent’s search cost combines
additional fixed components and/or non-linear dependency on the
number of interactions maintained are much more realistic [16]. In
those scenarios the parallel cooperative search yields great benefits
for searchers.

The novelty of the analysis given in this paper is twofold. First it
supplies us with a better understanding of the opportunities space,
dividing it into improving and non-improving areas, thus instead
of having dual simultaneous dependencies between states we can
now define a single directional dependency for each pair of states.
Second, it supplies a bound for the optimum number of parallel
interactions that the representative agent uses in each state in its op-
timal strategy. These two features allow us to overcome the main
complexities associated with the attempt to solve the problem as
a set of equations and offer a finite algorithm with a polynomial
(rather than current exponential) computational complexity that in-
evitably reaches the optimal strategy. The model does not depend
on attribute preferences or a specific cost function and with appro-
priate modification of the allocation function it can be generalized
to additional markets other than C2C and B2C.

It is notable that the same considerations discussed in [16] con-
cerning the potential for an actual implementation of cooperative
search hold for the parallel (general) model presented in this paper.
Similarly, future research in the area of parallel cooperative search
should extend the scope of research to include additional topics as-
sociated with the coalition formation process such as the coalition
stability, given the MAS settings and the division of payoffs (in
terms of side payments) between the coalition members.
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