
Modelling and Design of Multi�Agent Systems�

David Kinny Michael George�

Australian Arti�cial Intelligence Institute
��� Latrobe Street� Melbourne ����� Australia

fdnk�george�g�aaii�oz�au

Abstract� Agent technologies are now being applied to the development
of large�scale commercial and industrial software systems� Such systems
are complex� involving hundreds� perhaps thousands of agents� and there
is a pressing need for system modelling techniques that permit their com�
plexity to be e�ectively managed� and principled methodologies to guide
the process of system design� Without adequate techniques to support the
design process� such systems will not be su	ciently reliable� maintainable
or extensible� will be di	cult to comprehend� and their elements will not
be re�usable�
In this paper� we present techniques for modelling agents and multi�agent
systems which adapt and extend existing Object�Oriented representation
techniques� and a methodology which provides a clear conceptual frame�
work to guide system design and speci�cation� We have developed these
techniques for systems of agents based upon a particular Belief�Desire�
Intention architecture� but have sought to provide a framework for the
description of agent systems that is su	ciently general to be applicable
to other agent architectures� and which may be extended in various ways�

� Introduction

The agent paradigm in AI is based upon the notion of reactive� autonomous�
internally�motivated entities embedded in changing� uncertain worlds which they
perceive and in which they act� Agent technologies are now being applied to the
development of large�scale commercial and industrial software systems in areas
such as air tra�c control� airline resource management� spacecraft management�
simulation systems� business process and �nancial dealings management� and
communications network management�

Such systems are complex� involving hundreds� perhaps thousands of agents�
and there is a pressing need for system modelling techniques that permit their
complexity to be e�ectively managed� and principled methodologies to guide the
process of system design� Without adequate techniques to support the design
process� such systems will not be su�ciently reliable� maintainable or extensible�
will be di�cult to comprehend� and their elements will not be re�usable�

� This work was supported in part by the Cooperative Research Centre for Intelligent
Decision Systems under the Australian Government
s Cooperative Research Centres
Program�



Foremost amongst the modelling techniques and methodologies that have been
developed for the design and speci�cation of conventional software systems are
various Object�Oriented �OO� approaches �	� 
��� based upon the central notion
of objects which encapsulate state information as a collection of data values and
provide behaviours via well�de�ned interfaces for operations upon that informa�
tion� OO methodologies guide the key steps of object identi�cation� design� and
re�nement� permitting abstraction via object classes and inheritance within class

hierarchies�

In attempting to develop a methodology and models that provide adequate
support for the process of agent system design� our approach� pragmaticallymoti�
vated� has been to explore how existing OO modelling techniques can be extended
to apply to BDI agent systems� OO techniques have achieved a considerable de�
gree of maturity� and there is widespread acceptance of their advantages� A large
community of software developers familiar with their use now exists� By build�
ing upon and adapting existing� well�understood techniques� we take advantage
of their maturity and aim to develop models and a methodology that will be
easily learnt and understood by those familiar with the OO paradigm� Others
have reached similar conclusions about the need for familiar� intuitive modelling
techniques �

��

In specifying agent systems we employ a set of models which operate at two
levels of abstraction� Firstly� from the external viewpoint� a system is modelled as
an inheritance hierarchy of agent classes� of which individual agents are instances�
Agent classes are characterized by their purpose� their responsibilities� the services
they perform� the information about the world they require and maintain� and
their external interactions� Secondly� from the internal viewpoint� we employ a
set of models which allow structure to be imposed upon the informational and
motivational state of the agents and the control structures which determine their
behaviour� In our case� these are beliefs� goals� and plans�

The design methodology is based on the identi�cation of the key roles in an
application and their relationships� which guides the elaboration of the agent class
hierarchy� Analysis of the responsibilities of each agent class leads to the identi��
cation of the services provided and used by an agent� its external interactions� and
the goals and events to which it must respond� This progressive decomposition
produces a �ne�grained model of agency� which is then recomposed to produce
concrete agents that are inherently modular� Decisions about agent boundaries
may be deferred to a late stage of the design process�

In this paper� we assume a reasonable level of familiarity with OO modelling
techniques� We have contrasted the similarities and di�erences between OO and
AO approaches elsewhere �
	�� Here� we focus on the details of the modelling tech�
niques we have developed� In Section 	 we outline our AO modelling technique�
In Section � we present in detail the belief� goal and plan models that describe
individual agents� and in Section 
 the agent model which describes the struc�
ture of a multi�agent system� Finally� in Section � we present the essentials of the
methodology that guides the development and re�nement of these models�



� An Agent�Oriented Modelling Technique

Object�Oriented modelling techniques �	� 
�� describe a system by identifying the
key object classes in an application domain� and specifying their behaviour and
their relationships with other classes� The essential details of a system design are
captured by three di�erent types of models�


� An Object Model captures information about objects within the system� de�
scribing their data structure� relationships and the operations they support�

	� A Dynamic Model describes the states� transitions� events� actions� activities
and interactions that characterize system behaviour�

�� A Functional Model describes the �ow of data during system activity� both
within and between system components�

The dynamic and functional models serve to guide the re�nement of the object
model� in particular� the re�nement of the operations that an object will provide�
A fully re�ned object model is a complete speci�cation of an object based system�
The object concept is applied uniformly at all levels of abstraction�

By contrast� in specifying an agent system� we have found that it is highly
desirable to adopt a more specialized set of models which operate at two distinct
levels of abstraction� Firstly� from the external viewpoint� the system is decom�
posed into agents� modelled as complex objects characterized by their purpose�
their responsibilities� the services they perform� the information they require and
maintain� and their external interactions� Secondly� from the internal viewpoint�
the elements required by a particular agent architecture must be modelled for
each agent� In our case� these are an agent�s beliefs� goals� and plans�

The description of an agent system from the external viewpoint is captured
in two models� which are largely independent of our BDI architecture�


� An Agent Model describes the hierarchical relationship among di�erent ab�
stract and concrete agent classes� and identi�es the agent instances which
may exist within the system� their multiplicity� and when they come into
existence�

	� An Interaction Model describes the responsibilities of an agent class� the ser�
vices it provides� associated interactions� and control relationships between
agent classes� This includes the syntax and semantics of messages used for
inter�agent communication and communication between agents and other sys�
tem components� such as user interfaces�

From the internal viewpoint� each agent class is speci�ed by three models�
speci�c to our BDI architecture� that describe its informational and motivational
state and its potential behaviour�


� A Belief Model describes the information about the environment and internal
state that an agent of that class may hold� and the actions it may perform�
The possible beliefs of an agent and their properties� such as whether or not
they may change over time� are described by a belief set� In addition� one or
more belief states � particular instances of the belief set � may be de�ned and
used to specify an agent�s initial mental state�



	� A Goal Model describes the goals that an agent may possibly adopt� and the
events to which it can respond� It consists of a goal set which speci�es the
goal and event domain and one or more goal states � sets of ground goals �
used to specify an agent�s initial mental state�

�� A Plan Model describes the plans that an agent may possibly employ to
achieve its goals or respond to events it perceives� It consists of a plan set

which describes the properties and control structure of individual plans�

Implicit in this characterization are the execution properties of the architec�
ture which determine how� exactly� events and goals give rise to intentions� and
intentions lead to action and revision of beliefs and goals� These properties� de�
scribed in detail elsewhere �
��� are responsible for ensuring that beliefs� goals� and
intentions evolve rationally� For example� the architecture ensures that events are
responded to in a timely manner� beliefs are maintained consistently� and that
plan selection and execution proceeds in a manner which re�ects certain notions
of rational commitment �

� 
��

Our agent system modelling technique employs object classes and instances to
describe di�erent kinds of entities within a multi�agent system at di�erent levels of
abstraction� Unlike the standard OO approach� the meanings of relationships such
as association� inheritance and instantiation are quite distinct for these di�erent
kinds of entities� By partitioning di�erent types of entities into separate models
we maintain these important distinctions� and simplify the process of consistency
checking� within and between models�

As a result of of our commitment to a particular BDI execution architec�
ture� we can employ OO dynamic models� augmented with a notion of failure� as
directly executable speci�cations which generate agent behaviour� i�e�� as plans�
This provides considerable advantages over the OO approach of programming
object methods guided by the dynamic model� Moreover� plans are not required
to be a total speci�cation of behaviour� certain elements� such as successively
trying di�erent means to achieve a goal� are inherent in the the architecture�

The OO object and dynamic model representation techniques of �
��� suitably
extended and constrained� serves as a basis for our representations� Speci�cations
of the models may be supplied by the agent designer in the form of diagrams
developed with a specialized editing tool� or as text �les� These serve as inputs
to the compilation process that produces an executable system�

� Modelling Individual Agents

��� The Belief Model

A belief model consists of a belief set and one or more belief states� The belief set
is speci�ed by a set of object diagrams which de�ne the domain of the beliefs of an
agent class� A belief state is a set of instance diagrams which de�ne a particular
instance of the belief set�



Helium tank regulator Helium tank valve Helium tank Helium tank leg

status(Regulator, Status)
position(Valve, Position)
quantity(Pressure-vessel, Quantity)
pressure(Pressure-vessel, Pressure)
leaking(Pressure-vessel, Boolean)
p-lower-limit(Pressure-vessel, Pressure)
p-upper-limit(Pressure-vessel, Pressure)
associated-regulator(Helium-tank-valve, Helium-tank-regulator)
connects(Helium-tank-valve, Helium-tank, Helium-tank-leg)

Status status(Regulator)
Position position(Valve)

Boolean leaking(Pressure-vessel))
Pressure p-lower-limit(Pressure-vessel)
Pressure p-upper-limit(Pressure-vessel)

A

type Status = {ok, f-op, f-cl}
Status status = ok

Regulator

A

action open()
action close()

type Position = {op, bp, cl}
Position position

Valve

A

type Pressure = Real
type Quantity = Real

Pressure p-upper-limit {static}

Quantity quantity {opt}
Pressure pressure {opt}

Pressure p-lower-limit {static}
Boolean leaking = false

Pressure vessel

associated-regulator connects

Belief Classes and Associations

Derived Predicates and Functions

Fig� �� Belief Classes and Derived Predicates and Functions

Belief Sets A belief set is a set of predicates and functions whose arguments
are terms over a set of built�in and user�de�ned type domains� These predicates�
functions and domains are directly derived from the class de�nitions in the belief
set diagrams� and the associations between them� Each class de�nition de�nes one
or more domains� and each attribute� operation or association de�nes a predicate
and�or function schema�

A belief set diagram is a directed� acyclic graph containing nodes denoting
both abstract and concrete �instantiable� belief classes� Belief classes are repre�
sented by class icons� and abstract classes are distinguished by the presence of
the adornment�A in the upper section of the icon� Edges in the graph denot�
ing inheritance are distinguished by a triangle with a vertex pointing towards
the superclass� Aggregation and other associations between belief classes are also
permitted�

The classes de�ned in a belief set diagram correspond� in many cases� to
real objects in the application domain� but� unlike an OO object model� the
de�nitions do not de�ne the behaviours of these objects� This is because they are
not implementations of the objects� rather� they represent an agent�s beliefs about
those objects� Each belief class serves to de�ne the type signatures of attributes



of the object� functions that may be applied to the object� and other predicates
that apply to the object� including actions� which have a special role in plans�

A belief set is formally de�ned as follows�

De�nition �

Let I be a set of identi�ers� D � fD�� � � � � Dng be a set of type domains� and Z

be a set of belief property speci�ers�

� An attribute A is a pair hn�Dii� i�e�� a named type domain� The type of the
attribute is denoted dom�A��

� A predicate �schema� over fI�D� Zg� denoted p�A�� � � � � Ak�� is a tuple
hp� Y�A�� � � � � Aki s�t� p � I� Y � Z� �i � 
 � � �k� dom�Ai� � D�

� A function �schema� over fI�D� Zg� denoted f�A�� � � � � Ak��� �� Ak� is a
tuple hf� Y�A�� � � � � Aki s�t� f � I� Y � Z� �i � 
 � � �k� dom�Ai� � D�

� A belief set is a tuple hI�D� Z� P� F i where P is a set of predicate schema over
fI�D� Zg and F is a set of function schema over fI�D� Zg�

�

Attributes� which de�ne binary predicates� are speci�ed in the usual way� If an
attribute�s value can never be unknown� an accessor function is also generated�
Other predicates and functions are de�ned by specializations of the operation
notation� An object of the class upon which the operation is de�ned is implicitly
the �rst argument of the derived predicate or function�

Predicates may also be de�ned by binary and higher order associations be�
tween classes� The multiplicity of these associations is indicated in the usual way�
Figure 
 shows several associated belief classes from a NASA shuttle diagnosis
application� and the predicates functions derived from them�

Some predicates and functions are not associated with any particular object�
i�e� they do not have an implicit �rst argument� In this case� they can be speci�ed
as attributes and operations upon an anonymous �unnamed� class�

We extend the standard notation for attributes and operations by allowing an
optional property list� which is used to specify certain properties of the derived
predicates and functions� such as whether they are abstract� stored in the belief
database or computed� whether they may change over time� and for predicates
whether they have open� or closed�world negation semantics�

Belief Properties The predicates and functions that constitute an agent�s belief
set may be classi�ed as extensional� evaluable� or ephemeral� Extensional pred�
icates are stored as relations in the belief database� Extensional functions are
automatically generated from extensional predicates that are functionally con�
strained� such as the binary predicates derived from attribute de�nitions and
one�to�one associations�

Evaluable predicates and functions are computed when required by externally
supplied functions in the underlying programming language� Actions are special
evaluable predicates that have the e�ect of bringing about some change in the
external environment�



Helium tank regulator Helium tank valve Helium tank Helium tank leg

frcs-ox-he-tk-reg

position(frcs-ox-he-tk-valve, cl)
leaking(frcs-ox-he-tk, false)
p-lower-limit(frcs-ox-he-tk, 500.0)
p-upper-limit(frcs-ox-he-tk, 5000.0)

associated-regulator(frcs-ox-he-tk-valve, frcs-ox-he-tk-reg)

p-lower-limit(frcs-ox-he-tk-leg, 500.0)
leaking(frcs-ox-he-tk-leg, false)

p-upper-limit(frcs-ox-he-tk-leg, 5000.0)

status(frcs-ox-he-tk-reg, ok)

connects(frcs-ox-he-tk-valve, frcs-ox-he-tk, frcs-ox-he-tk-leg)

frcs-ox-he-tk-valve

position = cl
p-lower-limit = 500.0
p-upper-limit = 5500.0

frcs-ox-he-tk

p-lower-limit = 500.0
p-upper-limit = 5500.0

frcs-ox-he-tk-leg

connectsassociated-regulator

Derived Predicate Instances

Belief Instances and Associations

Fig� �� Belief Instances and Derived Predicates

Ephemeral predicates stand for properties or associations that are named but
not remembered from moment to moment� Their major role is in the de�nition
of abstract goals� Ephemeral functions are never evaluated�

Extensional and evaluable predicates and functions may be either static or
dynamic� If static� they represent �xed relations and functions whose de�nitions
do not depend on when they are evaluated� If dynamic� they may change over
time� Ephemeral predicates are always dynamic� Extensional predicates may have
either open� or closed�world negation semantics� Evaluable predicates always have
closed�world semantics� Ephemeral predicates may not be negated�

These properties of predicates and functions are indicated by keywords in the
property list associated with the attribute� operation� or association� By default
predicates are dynamic� extensional� and have closed�world semantics� and func�
tions are ephemeral� Properties may also be associated with classes and instances�
and may represented either by property lists or by adornments on the class icon�

For example� in Figure 
� the attribute p�lower�limit of the class Pressure vessel
has the property static� indicating that its value may not change� and the attribute
pressure has the property optional� indicating that its value may be unknown� The
class itself has an adornment indicating that it is abstract�



Belief States A belief state speci�es a particular state of the agent�s beliefs� and
may be used to initialize its initial mental state� It consists of a set of instances
of extensional predicates�� which are speci�ed by a set of belief diagrams contain�
ing object instances and associations between them� The predicate instances are
derived from the instance diagrams in a manner analogous to the way in which
the predicates are derived from the class diagrams� described above� Figure 	
shows a fragment of an instance diagram from the NASA RCS domain� and the
corresponding predicate instances�

A belief state and belief model are formally de�ned as follows�

De�nition �
Let B � hI�D� Z� P� F i be a belief set�

� An instance of the predicate p�A�� � � � � Ak� � P is a tuple p�a�� � � � � ak� �
A��� � � � � �Ak�

� A belief state S of B is a set of instances of predicates in P �
� A belief model is a pair hB� Si� where S is a set of belief states of B�

�

��� The Goal Model

Each agent class is associated with a particularGoal Model � consisting of a goal set
and one or more goal states� The goal set speci�es the domain of the goals of an
agent of that class� Goal states are sets of ground instances of elements of the
goal set which may be used to initialize an agent�s initial mental state�

A goal set is� formally� a set of goal formula signatures� Each such formula
consists of a modal goal operator applied to a predicate from the belief set� The
modal goal operators are�

achieve ��� denoting a goal of achievement ��Make it that � holds����
verify �	� denoting a goal of veri�cation ��Is it that � holds���� and
test �
� denoting a goal of determination ��Determine if � holds or not���

Goal formulae occur within activities in the bodies of plans and within their
activation events �Section ����� In essence� such an activity is performed by �nding
the set of plans whose activation event matches the goal formula� and executing
one or more of them to determine the success or failure of the activity� The di�er�
ent modalities determine how� exactly� such activities are performed� Depending
on the modality� the type of the predicate� and the agent�s initial beliefs about
the predicate� di�erent execution sequences may occur�

A goal of achievement succeeds �vacuously� if its predicate is believed to hold�
Otherwise� if a matching plan executes successfully �they are tried sequentially
according to a precedence ordering�� the goal succeeds� else it fails� The postcon�
dition of successful completion is that the predicate is believed to hold�

� Extensional functions are derived from predicates� hence not speci�ed separately� The
state of ephemeral and evaluable predicates and functions is opaque� and may not be
initialized�



A goal of veri�cation succeeds �vacuously� if its predicate is believed to hold�
and fails �vacuously� if its predicate is believed not to hold� Only in the case
that the predicate is unknown �hence� must be ephemeral or have open�world
semantics� can plan execution result� If a matching plan executes successfully the
goal succeeds� else it fails� The postcondition of successful completion is that the
predicate is believed to hold�

A goal of determination succeeds �vacuously� if its predicate is believed to hold
or not to hold� Only in the case that the predicate is unknown �hence� must be
ephemeral or have open�world semantics� can plan execution result� If a matching
plan executes successfully the goal succeeds� else it fails� The postcondition of
successful completion is that the predicate is no longer unknown�

De�nition �

Let B � hI�D� Z� P� F i be a belief set�

� A B�compatible goal set G is a set of tuples ho� p� Y i where o � f�� �� �g� p � P �
and Y is a set of goal property speci�ers�

� A B�compatible goal state T is a set of pairs ho� qi where o � f�� �� �g and q

is a ground instance of some predicate p � P �

�

The de�nition requires belief�goal compatibility� all of an agent�s goals must
be based upon predicates from its belief set� Not all combinations of these modal
operators and predicates are sensible� For example� a goal of determination ap�
plied to an evaluable predicate will always succeed vacuously� Nonetheless� all
possible combinations are permitted�

��� The Plan Model

A plan model consists of a set of plans� known as a plan set� Individual plans are
speci�ed as plan diagrams� which are denoted by a form of class icon� Plans may
have attributes� but these may not be arbitrary� rather they are restricted to a
set of prede�ned reserved attributes� A generic plan diagram appears in Figure ��
The lower section� known as the plan graph� is a state transition diagram� similar
to an OO dynamic model� Unlike OO approaches� however� plans are not just
descriptions of system behaviour developed during analysis� Rather� they are
directly executable prescriptions of how an agent should behave to achieve a goal
or respond to an event�

The elements of the plan graph are three types of node� start states� end states

and internal states� and one type of directed edge� transitions� Start states are
denoted by a small �lled circle ���� End states may be pass or fail states� denoted
respectively by a small target ��� � or a small no entry sign ����

Internal states may be passive or active� Passive states have no substructure
and are denoted by a small open circle ���� Active states have an associated
activity and are denoted by instance icons� Activities may be subgoals� denoted
by formulae from the agent�s goal set� iteration constructs� including do and while

loops� or in the case of a graph state� an embedded graph called a subgraph�



Plan Name

Plan Attributes

Plan Graph

�

�

�

�

Plan Bodyx
�

� �
��

activity formula

�uhevent � action �h� event � condition 


�
�hevent � condition 
 �action
�uh� condition 
 �action

x
�

activation event � activation condition 
 � activation action

uh�pass � pass action
h��fail � fail action
h��any � abort condition 
 �abort action

Documentation

��

Fig� �� Generic Plan Diagram

Events� conditions� and actions may be attached to transitions between states�
In general� transitions from a state occur when the associated event occurs� pro�
vided that the associated condition is true� When the transition occurs any asso�
ciated action is performed� Conditions are predicates from the agent�s belief set�
Actions include those de�ned in the belief set� and built�in actions� The latter
include assert and retract � which update the belief state of the agent�

Failure Unlike conventional OO dynamic models� which are based upon Harel�s
statecharts ���� plan graphs have a semantics which incorporates a notion of fail�
ure� Failure within a graph can occur when an action upon a transition fails�
when an explicit transition to a fail state occurs� or when the activity of an active
state terminates in failure and no outgoing transition is enabled�

If the graph is the body of a graph state� then the activity of that state
terminates in failure� If the graph is a plan graph� then the plan terminates in
failure� If the plan has been activated to perform a subgoal activity in another



plan� this may result in that activity terminating in failure� depending on the
availability of alternative plans to perform the activity�

Plan Execution The initial transition of the plan graph is labelled with an
activation event and activation condition which determine when and in what con�
text the plan should be activated� The activation event may be a belief event
which occurs when an agent�s beliefs change or when certain external changes are
sensed� leading to event�driven activation� or a goal event which occurs as a re�
sult of the execution of a subgoal activity in another plan� leading to goal�driven
activation� An optional activation action permits an action to be taken when a
plan is activated�

Each plan must be consistent with the belief and goal models of the agent
class upon which it is de�ned� all predicates� goals and events occurring in the
plan must be de�ned in the belief and goal models� The plan model may include
plans that respond to di�erent events or goals� plans that respond to the same
event or goal in di�erent� possibly intersecting contexts� and plans that respond
to the same event and context� If multiple plans are applicable to a given event
in a given context� they are activated in parallel if activation is event�driven� or
sequentially until successful termination if activation is goal�driven�

Transitions from active states may be labelled with the events pass and fail

which denote the success or failure of the activity associated with the state�
Transitions from active states that are labelled with the event any may occur
whenever their condition becomes true� allowing activities to be interrupted� A
special case of this is the abort transition of a plan� Once the plan is activated� if at
any time during the execution of its body the abort condition becomes true then
it terminates in failure� The �nal transitions of the plan graph may be labelled
with actions to be taken upon the success� failure or aborting of the plan�

Plan Properties Plans may have properties associated with them which are
speci�ed by reserved attributes� Some of these in�uence the way in which plan
execution proceeds in response to a new goal or event�

� The priority property determines the order in which multiple concurrently
active plans are executed�

� The precedence property determines the order in which plans that respond to
a new goal are successively tried�

� The noretry property speci�es that the goal should not be retried if this plan
fails�

In the absence of any such properties� the set of plans applicable to a new
goal is executed one by one in some arbitrary order until some plan succeeds� The
precedence property allows the order in which this happens to be determined� The
noretry property allows the system designer to ensure that if a certain plan is tried
and fails� then no plans of lower precedence will be tried for that goal� Both these
properties have important uses when modifying the behaviour of inherited plans�
these are discussed in Section 
�	�



Wind Data iA Pro�le iA Flight Plan iA Radar Data iA
�

�
�� �

�

Predictor iA Planner iA Monitor iA
�

�

Generic Aircraft iA
��

Wind Model iS B��� B��� � � � A��� Coordinator iS
�
�

�
�

Windmodel

� �
�
�
�

B���

�
� �
�
�
�

B���

�
�

� � �

�
�
�
�

A���

�
� �
�

�
�

Coordinator

�

Fig� �� ATM Agent Class and Instance Diagram

� Modelling Multi�Agent Systems

Having described in detail the models that capture the state and behaviour of
individual agents� we now proceed to describe how a multi�agent system is mod�
elled� We begin by describing the agent model� which speci�es the hierarchical
relationship between di�erent abstract and concrete agent classes� and identi�es
the agent instances which may exist within the system� In modelling agents by
classes� the central problem is to give an appropriate semantics to relationships
between classes such as inheritance� aggregation� and instantiation� we consider
these issues in detail� Finally� we illustrate how the modelling technique may be
employed to model layered architectures in two distinct ways�

��� The Agent Model

An Agent Model has two components� an agent class model� which de�nes ab�
stract and concrete agent classes and captures the inheritance and aggregation
relationships between them� and an agent instance model� which identi�es agent
instances and their properties� In systems containing only a small number of agent
classes and instances they may combined into a single diagram� Figure 
 shows a
simpli�ed combined agent diagram from an Air Tra�c Management application
domain� Note that the attributes of agent classes do not appear in this diagram�

An agent class model is a directed� acyclic graph containing nodes denoting
both abstract and concrete �instantiable� agent classes� Agent classes are repre�
sented by class icons� and abstract classes are distinguished by the presence of



an adornment�A in the upper section of the icon� Edges in the graph denoting
inheritance are distinguished by a triangle with a vertex pointing towards the su�
perclass� and edges denoting aggregation by a diamond adjacent to the aggregate
class� Other associations between agent classes are not allowed�

Agent classes may have attributes� but not operations� Attributes may not be
arbitrary� rather they are restricted to a set of prede�ned reserved attributes� For
example� each class must have associated belief� goal� and plan models� speci�ed
by the attributes beliefs� goals� and plans�

Multiple inheritance is permitted� Inheritance� as usual� denotes an is�a re�
lationship� and aggregation a has�a relationship� but in the context of an agent
model these relationships have a special semantics� Agents inherit and may re�ne
the belief� goal� and plan models of their superclasses� Note that it is� for example�
the set of plans which is re�ned� rather than the individual plans� Aggregation
denotes the incorporation within an agent of subagents that do not have access
to each other�s beliefs� goals� and plans� Instantiation captures certain properties
of agents� such as when they may come into existence and whether they may be
cloned �multiply instantiated��

For example� in Figure 
� Monitor is an abstract agent which is a subagent of
Generic Aircraft� Monitor is both a Radar Data agent and a Flight Plan agent�
Predictor� another subagent of Generic Aircraft� is a Wind Data� aircraft Pro�le
and Flight Plan agent� Monitor and Predictor do not share their beliefs about
�ight plans� Monitor has no beliefs about wind data or aircraft pro�les� and
Predictor has no beliefs about radar data� We consider the details of inheritance
and aggregation further in the sections that follow�

Other attributes of an agent class include its belief�state�set and goal�state�

set� which determine possible initial mental states� Particular elements of these
sets may then be speci�ed as the default initial mental state for the agent class�
via the initial�belief�state and initial�goal�state attributes� For example� the belief
model of the abstract aircraft Pro�le agent de�nes belief states corresponding to
di�erent aircraft types� A concrete aircraft agent such as B�
� inherits these� but
would only specify a particular instance� i�e�� data values appropriate for a �
��
in its belief state set and as its initial belief state�

��� Inheritance in the Agent Model

Inheritance is the fundamental relationship between agent classes which forms the
basis of the structure of an agent class model� Each agent class is characterized by
its belief� goal and plan models� which describe its internal state and behaviour�
Inheritance allows one agent class to be de�ned as an extension or restriction of
another� the belief� goal and plan models of the superclass may be extended and
specialized in the subclass�

Inheritance of Beliefs An agent class inherits the belief models of its super�
classes� As described in Section ��
� a belief model consists of two components�
a belief set� which describes the potential beliefs of an agent of that class �and
their properties� such as whether or not they may change over time�� and zero



or more belief states � particular sets of beliefs � which may be used as possible
values of the agent�s initial mental state�

Formally� the elements of an agent class�s belief set are a set of predicates
and functions whose arguments are terms over a universe of prede�ned and user�
de�ned type domains� These predicates and functions are directly derived from
the belief class de�nitions of the agent class itself and combined with the belief
models of its superclasses in the following manner�

� Types� predicates and functions directly derived from the belief classes and
associations de�ned in the subclass belief diagrams are included in its belief
model�

� Types de�ned in a superclass belief set are included provided no type with
the same name is de�ned on the subclass� or in another superclass�

� Predicates and functions de�ned in a superclass belief set are included pro�
vided that all their attribute types are included�

� Predicate instances de�ned in a superclass belief state are included provided
that the corresponding predicate de�nitions are included�

The net e�ect of this process is that de�nitions in a subclass may override
those in a superclass� and incompatible de�nitions in di�erent superclasses must
be resolved by choosing in the subclass which of the inherited de�nitions to prefer�
The latter can be done straightforwardly by de�ning a belief class on the sub�
class that inherits directly from the preferred de�nition� which can be referred to
unambiguously by its fully quali�ed name� i�e�� by including the superclass name
as a pre�x�

Within the set of predicates and functions derived from a particular set of
belief diagrams� a reference to a particular predicate or function can always be
uniquely resolved� given its name and the type of its �rst argument� because of
the requirement that class� attribute� and association names in the belief model
be unique� The method by which inherited belief models are combined preserves
this desirable property�

This approach to the inheritance of beliefs allows an agent class to override
and extend the belief models of its superclasses� An agent class may also specialize
the elements of the belief models of its superclasses by rede�ning their properties�
such as whether a function may change its value over time� whether a predicate
has closed� or open�world semantics� etc�

Inheritance of Goals An agent class�s goal model determines which goals and
events may validly occur in the activation events of plans and as subgoals in
activities in the bodies of plans� As described in Section ��	� a goal model is
de�ned by specifying for each modal goal operator the subset of the predicates
in the belief set to which the operator may be applied� Events are handled in a
similar manner� The goals and events thus de�ned in an agent class are combined
with the goal models of its superclasses by inheriting those goals and events whose
predicates were inherited into the subclass�s belief model�

This approach to goal inheritance guarantees that belief�goal consistency is
maintained� Just as was the case with beliefs� an agent class may also specialize



goals and events inherited from its superclasses by rede�ning their properties�
such as whether a goal should be retried on failure� etc�

Inheritance of Plans An agent class inherits the plan models of its superclasses�
As described in Section ���� a plan model is a set of named plans� each of which
has an activation event that speci�es the event or goal to which it is relevant� and
an activation condition that speci�es the context in which it is valid� The plans
associated with an agent class and its superclasses are combined as follows�

� All the plans de�ned in the subclass are included in its plan model�
� Plans in a superclass plan model are included provided they are compatible

with the belief and goal models of the subclass� and no plan of the same name
is de�ned on the subclass or in another superclass�

The net e�ect of this process is that the plan model of an agent class can
a�ect the plans de�ned in its superclasses by�

� extending their coverage� by adding new plans to achieve existing goals in
existing contexts� adding new plans to achieve existing goals in new contexts�
or adding new plans to achieve new goals�

� excluding plans by rede�ning them in the subclass� and
� modifying the properties� such as priority or precedence� of inherited plans�

Note that the behaviour of inherited plans can also be a�ected indirectly by
changes in the belief and goal models of the subclass� For example� a change to
the properties of a predicate occurring in a goal may a�ect the way in which plans
are executed in response to that goal �Section �����

By default� inherited plans have lower precedence than those de�ned in a
subclass� so that the order in which applicable plans are executed in response
to a goal re�ects the ordering of the agent inheritance hierarchy� This default
precedence ordering may� however� be overridden� either by explicitly de�ned
precedences� or by the mechanism of a fully quali�ed goal� a goal formula quali�ed
by the name of an agent class� When searching for plans whose activation event
matches such a goal� the search begins on the designated class�

When a plan is inherited from a superclass� its behaviour can be reused by a
subclass plan� or specialized� For example� let A be an agent class that de�nes a
plan P that responds to a goal �� We wish to de�ne an agent class B that inherits
from A� but restricts the context in which P may be activated by adding the
conjunct � to its activation condition� This may be done by de�ning a plan Q on
B with the property noretry that responds to � and fails immediately if � does
not hold� else it posts the subgoal A���� activating P� As a result of the noretry

property� P will never be directly activated by the goal �� even if Q fails�

��� Aggregation in the Agent Model

Aggregation is a secondary relationship between agent classes that allows their
grouping together into a new class in a quite di�erent way from �multiple� inher�
itance� The agents� called subagents� that form part of an aggregate are separate



modules or name spaces� their belief� goal and plan models are quite independent�
The aggregate class itself may also have belief� goal and plan models of its own�
Subagents cannot directly a�ect each others beliefs� goals� and intentions� they
interact by asynchronous message passing in exactly the same way as physically
distinct agents��

The modelling technique we have developed allows a distinction to be drawn
between two sorts of agent�


� A logical agent is an encapsulation of state and behaviour� developed during
the system design process� which may not even be independently actualizable�

	� A physical agent is the actualization of one or more logical agents� all of which
share an identical extent in time� and coexist �in our implementation� within
a single process�

Aggregation is a system structuring construct that allows the boundaries of
physical agents in a multi�agent system to be set di�erently from those of individ�
ual logical agents� In e�ect� physical agents may themselves be simple multi�agent
systems� For example� in Figure 
 each physical aircraft agent consists of a logi�
cally independent predictor� planner� and monitor subagent�

Just as in an object oriented system various processes exist� each of which
contain many objects� so in an agent system processes �physical agents� may
exist� each of which contains internally many �logical� agents� The question �How
many agents are there in the system�� now has two di�erent answers� depending
on whether logical or physical agents are being considered� Decisions about the
number and type of logical agents in a system may be decoupled from decisions
about their physical realization� and deferred to a late stage of the system design
process�

One consequence of the �exibility that these system structuring constructs
o�er is that complex� layered agent architectures may be viewed as systems of
simpler� coupled individual agents� Moreover� this may be extended hierarchically�
with individual layers themselves implemented as multi�agent systems� The ability
to model such architectures within a uniform framework is one of the strengths
of our approach�

��� Instantiation in the Agent Model

Instantiation� the third relationship that occurs in the agent model� is a relation�
ship between an agent class and one or more instances of that class� It is used to
capture certain properties of agents� such as when they may come into existence
and whether they may be cloned �multiply instantiated��

An agent instance model is an instance diagram which de�nes both the static
agent set � the set of agents that are instantiated at compile�time � and the
dynamic agent set � the set of agents that may be instantiated at run�time� The
former are distinguished by the adornment �S in the upper section of the icon�

� Communication between subagents may however be both faster and more reliable
than between agents in separate processes�



Each agent instance is speci�ed by an instance icon linked to a concrete agent
class by an instantiation edge� represented as a dotted vector from instance to
class� Static instances must be named� but the naming of dynamic instances may
be deferred till their instantiation� A multiplicity notation at the instance end of
the instantiation link may be used to indicate whether a dynamic class may be
multiply instantiated�

The initial mental state of an agent instance may be speci�ed by the initial�

belief�state and initial�goal�state attributes� whose values are particular elements
of the belief and goal state sets of the agent class� If not speci�ed� the defaults
are the values associated with the agent class� For dynamic agent instances these
attributes may be overridden at the time the agent is created�

��� Implementing layered architectures

Layer n

Layer 2

Layer 1

Layered Agent Layered Agent
...

..

Fig� �� Combining agent layers by inheritance and aggregation

The ability of our agent modelling technique and architecture to support physical
agents that are themselves multi�agent systems highlights a particular property
of the architecture� it�s ability to straightforwardly implement more specialized
architectures�

For example� consider a layered agent architecture� such as Interrap �
�� �ver�
tical� or the Touring Machine ��� �horizontal�� Suppose the state and behaviour
of each of these layers is speci�ed as a separate logical agent class� There are then
two straightforward ways to combine them in our framework� as illustrated in
Figure ��

Firstly� we can combine them by creating an agent class that inherits from
each layer class� This approach leads to a tight coupling between the layers� in
fact it requires that the beliefs� goals and plans of each layer class be disjoint
�apart from those that serve to implement interlayer interfaces� since otherwise
they would interfere with each other�

Secondly� we can employ aggregation to create an agent class that contains
each layer as a subagent� With this approach� there are no constraints on the
content of the layers� since each exists in a separate namespace� Layers are loosely
coupled� they do not share state� and communication is by message passing� in
exactly the same way as between physically distinct agents�



� An Agent�Oriented Design Methodology

A methodology to support design and speci�cation of agent systems should pro�
vide a clear conceptual framework that enables the complexity of the system to
be managed by decomposition and abstraction� Our agent�oriented methodology
advocates the decomposition of a system based on the key roles in an application�
The identi�cation of roles and their relationships guides the speci�cation of an
agent class hierarchy � agents are particular instances of these classes� Analysis of
the responsibilities of each agent class leads to the identi�cation of the services

provided and used by an agent� and hence its external interactions� Considera�
tion of issues such as the creation and duration of roles and their interactions
determines control relationships between agent classes�

��� Developing the External Models

These details are captured in the Agent and Interaction models described in
Section 	� The methodology for their elaboration and re�nement can be expressed
as four major steps�


� Identify the roles of the application domain� There are several dimensions
in which such an analysis can be undertaken� roles can be organizational or
functional� they can be directly related to the application� or required by the
system implementation� Identify the lifetime of each role� Elaborate an agent
class hierarchy� The initial de�nition of agent classes should be quite abstract�
not assuming any particular granularity of agency�

	� For each role� identify its associated responsibilities� and the services provided
and used to ful�ll those responsibilities� As well as services provided to�by
other agents upon request� services may include interaction with the external
environment or human users� For example� a responsibility may require an
agent to monitor the environment� to notice when certain events occur� and
to respond appropriately by performing actions� which may include notifying
other agents or users� Conversely� a responsibility may induce a requirement
that an agent be noti�ed of conditions detected by other agents or users�
Decompose agent classes to the service level�

�� For each service� identify the interactions associated with the provision of
the service� the performatives �speech acts� required for those interactions�
and their information content� Identify events and conditions to be noticed�
actions to be performed� and other information requirements� Determine the
control relationships between agents� At this point the internal modelling of
each agent class can be performed�


� Re�ne the agent hierarchy� Where there is commonality of information or
services between agent classes� consider introducing a new agent class� which
existing agent classes can specialize� to encapsulate what is common� Com�
pose agent classes� via inheritance or aggregation� guided by commonality
of lifetime� information and interfaces� and similarity of services� Introduce
concrete agent classes� taking into account implementation dependent consid�
erations of performance� communication costs and latencies� fault�tolerance



requirements� etc� Re�ne the control relationships� Finally� based upon con�
siderations of lifetime and multiplicity� introduce agent instances�

Roles� responsibilities� and services are just descriptions of purposeful behav�
iours at di�erent levels of abstraction� roles can be seen as sets of responsibilities�
and responsibilities as sets of services� Services are those activities that it is not
natural to decompose further� in terms of the identity of the performer� The
roles initially identi�ed serve as a starting point for the analysis� not an up�front
decision about what agents will result from the process of analysis�

Once roles have been decomposed to the level of services and internal mod�
elling performed� a �ne�grained model of agency has been produced� When this is
recomposed in accordance with the considerations mentioned above� the concrete
agents which result may re�ect groupings of services and responsibilities that dif�
fer from the original roles� The identi�cation of agent boundaries is deferred until
the information and procedures used to perform services have been elaborated�
This results in concrete agents whose internal structure is inherently modular�

Simple service relationships and interactions between agents could be repre�
sented as associations within the agent model� but we have chosen to describe
them in a separate model� Modelling of agent interactions is currently the subject
of intensive research� and many modelling techniques� often quite complex� have
been proposed and developed �see� for example� �
� �� 
� �� �� �� 
���� They address
issues from information content and linguistic intent through to protocols for coor�
dination and negotiation� We do not hold a strong view on the general suitability
of particular techniques for modelling interactions� hence our methodology and
modelling framework is designed to allow the selection of models appropriate to
the application domain�

The interaction model also captures control relationships between agents� such
as responsibilities for agent creation and deletion� delegation� and team formation�
Modelling techniques for these relationships are the subject of ongoing research�

��� Developing the Internal Models

Our methodology for the development of these models begins from the services
provided by an agent and the associated events and interactions� These de�ne
its purpose� and determine the top�level goals that the agent must be able to
achieve� Analysis of the goals and their further breakdown into subgoals leads
naturally to the identi�cation of di�erent means� i�e�� plans� by which a goal can
be achieved�

The appropriateness of a given plan� and the manner in which a plan is carried
out� will in general depend upon the agent�s beliefs about the state of the envi�
ronment and possibly other information available to the agent� i�e�� the agent�s
belief context� This may also include certain beliefs which represent working data�
A context is represented in terms of various data entities and their relationships�
Analysis of contexts results in the elaboration of the beliefs of an agent� To sum�
marize� the methodology for internal modelling can be expressed as two steps�




� Analyze the means of achieving the goals� For each goal� analyze the di�erent
contexts in which the goal has to be achieved� For each of these contexts�
decompose each goal into activities� represented by subgoals� and actions�
Analyze in what order and under what conditions these activities and actions
need to be performed� how failure should be dealt with� and generate a plan
to achieve the goal� Repeat the analysis for subgoals�

	� Build the beliefs of the system� Analyze the various contexts� and the condi�
tions that control the execution of activities and actions� and decompose them
into component beliefs� Analyze the input and output data requirements for
each subgoal in a plan and make sure that this information is available either
as beliefs or as outputs from prior subgoals in the plan�

These steps are iterated as the models which capture the results of analysis are
progressively elaborated� revised� and re�ned� Re�nement of the internal models
feeds back to the external models� building the plans and beliefs of an agent
class clari�es the information requirements of services� particularly with respect
to monitoring and noti�cation� Analyzing interaction scenarios� which can be
derived from the plans� may lead to the rede�nition of services�

Unlike object�oriented methodologies� the primary emphasis of our methodol�
ogy is on roles� responsibilities� services� and goals� These are the key abstractions
that allow us to manage complexity� We analyze the application domain in terms
of what needs to be achieved� and in what context� The focus is on the end�point
that is to be reached� rather than the types of behaviours that will lead to the
end�point� which are the primary emphasis of OO methodologies�

Although this might seem a small paradigm shift� it is quite subtle and leads to
a substantially di�erent analysis� This is because goals� as compared to behaviours
or plans� are more stable in any application domain� Correctly identifying goals
leads to a more robust system design� where changes to behaviours can be accom�
modated as new ways of achieving the same goal� In other words� a goal�oriented
analysis results in more stable� robust� and modular designs�

The context�sensitivity of plans provides modularity and compositionality�
plans for new contexts may be added without changing existing plans for the same
goal� This results in an extensible design that can cope with frequent changes and
special cases� and permits incremental development and testing�

� Conclusions

The primary contribution of this paper has been to provide the elements of a
rigorous framework for modelling and specifying complex multi�agent systems�
We have presented modelling techniques to describe the external and internal
perspective of multi�agent systems� based on a BDI architecture� which build
upon and adapt existing� well�understood object�oriented models� Our agent�
oriented methodology� with its emphasis on roles� responsibilities� services� and
goals� permits a �ne�grained analysis that allows agent boundaries to be chosen
�exibly and results in system designs that are robust� modular� and extensible�



We have given a semantics for inheritance� aggregation and instantiation rela�
tionships amongst agent classes and instances which provides powerful and �ex�
ible mechanisms for enforcing modularity of state and behaviour within agents�
and for sharing them between agents� Related beliefs� goals� and plans may be
encapsulated in separate classes which may then be grouped together� by ag�
gregation or inheritance� The ability to take an agent class and re�ne it by the
addition of further beliefs� goals� or plans provides a compositional framework for
system design and encourages re�use� Encapsulation makes more tractable the
task of analyzing interactions between plans� which is crucial to the process of
design veri�cation�

By building upon and adapting existing� well�understood techniques� we aim
to take advantage of their maturity to develop models and a methodology which
will be easily learnt and understood by those familiar with the OO paradigm�
This is important if the design� implementation� and maintenance of multi�agent
systems is to be carried out by software analysts and engineers rather than re�
search scientists� and if they are to be successfully applied on a signi�cant scale
to commercial and industrial applications�

References

�� Mihai Barbuceanu and Mark S� Fox� COOL� A language for describing coordination
in multi�agent systems� In Proceedings of the International Conference on Multi�

Agent Systems� ICMAS���� San Francisco� CA� �����
�� Grady Booch� Object�Oriented Analysis and Design with Applications� Ben�

jamin�Cummings� Redwood City� CA� �nd edition� �����
�� Jennifer Chu�Carrol and Sandra Carberry� Generating information�sharing subdi�

alogues in expert�user consultation� In Proceedings of the Fourteenth International

Joint Conference on Arti�cial Intelligence� IJCAI���� pages ���������� Montr�eal�
�����

�� Philip R� Cohen and Hector J� Levesque� Communicative actions for arti�cial
agents� In Proceedings of the International Conference on Multi�Agent Systems�

ICMAS���� San Francisco� CA� �����
�� Innes A� Ferguson� Integrated control and coordinated behaviour� a case for agent

models� In Intelligent Agents� Proceedings of the ECAI��	 Workshop on Agent The�

ories� Architectures� and Languages� LNAI 
��� Amsterdam� ����� Springer Verlag�
�� Tim Finin et al� Speci�cation of the KQML agent communication language� Tech�

nical report� DARPA Knowledge Sharing Initiative� External Working Group� �����
�� Barbara J� Grosz and Candace L� Sidner� Plans for discourse� In P� R� Cohen�

J� Morgan� and M� E� Pollack� editors� Intentions in Communication� MIT Press�
Cambridge� MA� �����

�� Afsaneh Haddadi� Reasoning About Interactions in Agent Systems� A Pragmatic

Theory� PhD thesis� University of Manchester Institute of Science and Technology�
United Kingdom� �����

�� D� Harel and C� Kahana� On statecharts with overlapping� ACM Transactions on

Software Engineering and Methodology� ����� �����
��� David Kinny� The Distributed Multi�Agent Reasoning System Architecture and Lan�

guage Speci�cation� Australian Arti�cial Intelligence Institute� Melbourne� Aus�
tralia� �����



��� David Kinny and Michael George�� Commitment and e�ectiveness of situated
agents� In Proceedings of the Thirteenth International Joint Conference on Ar�

ti�cial Intelligence� IJCAI���� pages ������ Sydney� �����
��� David Kinny� Michael George�� and Anand Rao� A methodology and modelling

technique for systems of BDI agents� In Agents Breaking Away� Proceedings of the

Seventh European Workshop on Modelling Autonomous Agents in a Multi�Agent

World� MAAMAW 
��� LNAI ���
� Eindhoven� The Netherlands� ����� Springer
Verlag�

��� J� P� M�uller� M� Pischel� and M� Thiel� Modelling reactive behaviour in vertically
layered agent architectures� In Intelligent Agents� Proceedings of the ECAI��	

Workshop on Agent Theories� Architectures� and Languages� LNAI 
��� Amster�
dam� ����� Springer Verlag�

��� J� Y� C� Pan and J� M� Tenenbaum� An intelligent agent framework for enterprise
integration� IEEE Transactions on Systems� Man and Cybernetics� ������ �����

��� Anand S� Rao and Michael P� George�� An Abstract Architecture for Rational
Agents� In Proceedings of the Third International Conference on Principles of

Knowledge Representation and Reasoning� KR 
��� pages �������� Boston� MA�
�����

��� James Rumbaugh� Michael Blaha� William Premerlani� Frederick Eddy� and William
Lorensen� Object�Oriented Modeling and Design� Prentice Hall� Englewood Cliifs�
NJ� �����

��� Candace L� Sidner� An arti�cial discourse language for collaborative negotiation� In
Proceedings of the Twelfth National Conference on Arti�cial Intelligence� AAAI��	�
pages �������� Seattle� WA� �����


