Modelling and Design of Multi-Agent Systems*

David Kinny Michael Georgeff

Australian Artificial Intelligence Institute
171 Latrobe Street, Melbourne 3000, Australia
{dnk,georgeff } @aaii.oz.au

Abstract. Agent technologies are now being applied to the development
of large-scale commercial and industrial software systems. Such systems
are complex, involving hundreds, perhaps thousands of agents, and there
is a pressing need for system modelling techniques that permit their com-
plexity to be effectively managed, and principled methodologies to guide
the process of system design. Without adequate techniques to support the
design process, such systems will not be sufficiently reliable, maintainable
or extensible, will be difficult to comprehend, and their elements will not
be re-usable.

In this paper, we present techniques for modelling agents and multi-agent
systems which adapt and extend existing Object-Oriented representation
techniques, and a methodology which provides a clear conceptual frame-
work to guide system design and specification. We have developed these
techniques for systems of agents based upon a particular Belief-Desire-
Intention architecture, but have sought to provide a framework for the
description of agent systems that is sufficiently general to be applicable
to other agent architectures, and which may be extended in various ways.

1 Introduction

The agent paradigm in Al is based upon the notion of reactive, autonomous,
internally-motivated entities embedded in changing, uncertain worlds which they
perceive and in which they act. Agent technologies are now being applied to the
development of large-scale commercial and industrial software systems in areas
such as air traffic control, airline resource management, spacecraft management,
simulation systems, business process and financial dealings management, and
communications network management.

Such systems are complex, involving hundreds, perhaps thousands of agents,
and there is a pressing need for system modelling techniques that permit their
complexity to be effectively managed, and principled methodologies to guide the
process of system design. Without adequate techniques to support the design
process, such systems will not be sufficiently reliable, maintainable or extensible,
will be difficult to comprehend, and their elements will not be re-usable.

* This work was supported in part by the Cooperative Research Centre for Intelligent
Decision Systems under the Australian Government’s Cooperative Research Centres
Program.

Foremost amongst the modelling techniques and methodologies that have been
developed for the design and specification of conventional software systems are
various Object-Oriented (OO) approaches [2, 16], based upon the central notion
of objects which encapsulate state information as a collection of data values and
provide behaviours via well-defined interfaces for operations upon that informa-
tion. OO methodologies guide the key steps of object identification, design, and
refinement, permitting abstraction via object classes and inheritance within class
hierarchies.

In attempting to develop a methodology and models that provide adequate
support for the process of agent system design, our approach, pragmatically moti-
vated, has been to explore how existing OO modelling techniques can be extended
to apply to BDI agent systems. OO techniques have achieved a considerable de-
gree of maturity, and there is widespread acceptance of their advantages. A large
community of software developers familiar with their use now exists. By build-
ing upon and adapting existing, well-understood techniques, we take advantage
of their maturity and aim to develop models and a methodology that will be
easily learnt and understood by those familiar with the OO paradigm. Others
have reached similar conclusions about the need for familiar, intuitive modelling
techniques [14].

In specifying agent systems we employ a set of models which operate at two
levels of abstraction. Firstly, from the external viewpoint, a system is modelled as
an inheritance hierarchy of agent classes, of which individual agents are instances.
Agent classes are characterized by their purpose, their responsibilities, the services
they perform, the information about the world they require and maintain, and
their external interactions. Secondly, from the internal viewpoint, we employ a
set of models which allow structure to be imposed upon the informational and
motivational state of the agents and the control structures which determine their
behaviour. In our case, these are beliefs, goals, and plans.

The design methodology is based on the identification of the key roles in an
application and their relationships, which guides the elaboration of the agent class
hierarchy. Analysis of the responsibilities of each agent class leads to the identifi-
cation of the services provided and used by an agent, its external interactions, and
the goals and events to which it must respond. This progressive decomposition
produces a fine-grained model of agency, which is then recomposed to produce
concrete agents that are inherently modular. Decisions about agent boundaries
may be deferred to a late stage of the design process.

In this paper, we assume a reasonable level of familiarity with OO modelling
techniques. We have contrasted the similarities and differences between OO and
AO approaches elsewhere [12]. Here, we focus on the details of the modelling tech-
niques we have developed. In Section 2 we outline our AO modelling technique.
In Section 3 we present in detail the belief, goal and plan models that describe
individual agents, and in Section 4 the agent model which describes the struc-
ture of a multi-agent system. Finally, in Section 5 we present the essentials of the
methodology that guides the development and refinement of these models.

2 An Agent-Oriented Modelling Technique

Object-Oriented modelling techniques [2, 16] describe a system by identifying the
key object classes in an application domain, and specifying their behaviour and
their relationships with other classes. The essential details of a system design are
captured by three different types of models.

1. An Object Model captures information about objects within the system, de-
scribing their data structure, relationships and the operations they support.

2. A Dynamic Model describes the states, transitions, events, actions, activities
and interactions that characterize system behaviour.

3. A Functional Model describes the flow of data during system activity, both
within and between system components.

The dynamic and functional models serve to guide the refinement of the object
model; in particular, the refinement of the operations that an object will provide.
A fully refined object model is a complete specification of an object based system.
The object concept is applied uniformly at all levels of abstraction.

By contrast, in specifying an agent system, we have found that it is highly
desirable to adopt a more specialized set of models which operate at two distinct
levels of abstraction. Firstly, from the external viewpoint, the system 1s decom-
posed into agents, modelled as complex objects characterized by their purpose,
their responsibilities, the services they perform, the information they require and
maintain, and their external interactions. Secondly, from the internal viewpoint,
the elements required by a particular agent architecture must be modelled for
each agent. In our case, these are an agent’s beliefs, goals, and plans.

The description of an agent system from the external viewpoint is captured
in two models, which are largely independent of our BDI architecture.

1. An Agent Model describes the hierarchical relationship among different ab-
stract and concrete agent classes, and identifies the agent instances which
may exist within the system, their multiplicity, and when they come into
existence.

2. An Interaction Model describes the responsibilities of an agent class, the ser-
vices it provides, associated interactions, and control relationships between
agent classes. This includes the syntax and semantics of messages used for
inter-agent communication and communication between agents and other sys-
tem components, such as user interfaces.

From the internal viewpoint, each agent class is specified by three models,
specific to our BDI architecture, that describe its informational and motivational
state and its potential behaviour.

1. A Belief Model describes the information about the environment and internal
state that an agent of that class may hold, and the actions it may perform.
The possible beliefs of an agent and their properties, such as whether or not
they may change over time, are described by a belief set. In addition, one or
more belief states — particular instances of the belief set — may be defined and
used to specify an agent’s wnitial mental state.

2. A Goal Model describes the goals that an agent may possibly adopt, and the
events to which it can respond. It consists of a goal set which specifies the
goal and event domain and one or more goal states — sets of ground goals —
used to specify an agent’s initial mental state.

3. A Plan Model describes the plans that an agent may possibly employ to
achieve its goals or respond to events it perceives. It consists of a plan set
which describes the properties and control structure of individual plans.

Implicit in this characterization are the execution properties of the architec-
ture which determine how, exactly, events and goals give rise to intentions, and
intentions lead to action and revision of beliefs and goals. These properties, de-
scribed in detail elsewhere [10], are responsible for ensuring that beliefs, goals, and
intentions evolve rationally. For example, the architecture ensures that events are
responded to in a timely manner, beliefs are maintained consistently, and that
plan selection and execution proceeds in a manner which reflects certain notions
of rational commitment [11, 15]

Our agent system modelling technique employs object classes and instances to
describe different kinds of entities within a multi-agent system at different levels of
abstraction. Unlike the standard OO approach, the meanings of relationships such
as assocliation, inheritance and instantiation are quite distinct for these different
kinds of entities. By partitioning different types of entities into separate models
we maintain these important distinctions, and simplify the process of consistency
checking, within and between models.

As a result of of our commitment to a particular BDI execution architec-
ture, we can employ OO dynamic models, augmented with a notion of failure, as
directly executable specifications which generate agent behaviour, i.e., as plans.
This provides considerable advantages over the OO approach of programming
object methods guided by the dynamic model. Moreover, plans are not required
to be a total specification of behaviour; certain elements, such as successively
trying different means to achieve a goal, are inherent in the the architecture.

The OO object and dynamic model representation techniques of [16], suitably
extended and constrained, serves as a basis for our representations. Specifications
of the models may be supplied by the agent designer in the form of diagrams
developed with a specialized editing tool, or as text files. These serve as inputs
to the compilation process that produces an executable system.

3 Modelling Individual Agents

3.1 The Belief Model

A belief model consists of a belief set and one or more belief states. The belief set
1s specified by a set of object diagrams which define the domain of the beliefs of an
agent class. A belief state is a set of instance diagrams which define a particular
instance of the belief set.

Belief Classes and Associations Pressurevesss (A

type Pressure = Real

type Quantity = Real
Valve @ Quantity quantity {opt}
@ type Position = {op, bp, cl} Pressure pressure {opt}
Regulator Position position Boolean leaking = false
type Status = {ok, f-op, f-cl} - Pressure p-lower-limit {static}
Status status = ok action open() Pressure p-upper-limit {static}
action close()

:

Helium tank regulator Helium tank valve Helium tank Helium tank leg
T associated-regulator ‘ ‘ connects J\ T
v

Derived Predicates and Functions

status(Regulator, Status) Status status(Regulator)
position(Valve, Position) Position position(Valve)
quantity(Pressure-vessel, Quantity)

pressure(Pressure-vessel, Pressure)

leaking(Pressure-vessel, Boolean) Boolean leaking(Pressure-vessel))
p-lower-limit(Pressure-vessel, Pressure) Pressure p-lower-limit(Pressure-vessel)
p-upper-limit(Pressure-vessel, Pressure) Pressure p-upper-limit(Pressure-vessel)

associated-regulator(Helium-tank-valve, Helium-tank-regulator)
connects(Helium-tank-valve, Helium-tank, Helium-tank-leg)

Fig. 1. Belief Classes and Derived Predicates and Functions

Belief Sets A belief set is a set of predicates and functions whose arguments
are terms over a set of built-in and user-defined type domains. These predicates,
functions and domains are directly derived from the class definitions in the belief
set diagrams, and the associations between them. Each class definition defines one
or more domains, and each attribute, operation or association defines a predicate
and/or function schema.

A belief set diagram is a directed, acyclic graph containing nodes denoting
both abstract and concrete (instantiable) belief classes. Belief classes are repre-
sented by class icons, and abstract classes are distinguished by the presence of
the adornment &) in the upper section of the icon. Edges in the graph denot-
ing inheritance are distinguished by a triangle with a vertex pointing towards
the superclass. Aggregation and other associations between belief classes are also
permitted.

The classes defined in a belief set diagram correspond, in many cases, to
real objects in the application domain, but, unlike an OO object model, the
definitions do not define the behaviours of these objects. This is because they are
not implementations of the objects, rather, they represent an agent’s beliefs about
those objects. Each belief class serves to define the type signatures of attributes

of the object, functions that may be applied to the object, and other predicates
that apply to the object, including actions, which have a special role in plans.
A belief set is formally defined as follows.

Definition 1
Let I be a set of identifiers, D = {Dy, ..., D, } be a set of type domains, and Z
be a set of belief property specifiers.

An attribute A is a pair (n, D;), i.e., a named type domain. The type of the
attribute is denoted dom(A).

— A predicate (schema) over {I,D, 7}, denoted p(Ay, ..., Ag), is a tuple
(p, Y, A1, .., Ay st pe LY C Z,Vi=1...k, dom(4;) € D.
— A function (schema) over {I,D, 7}, denoted f(A;1, ..., Ax_1) — Ag, is a

tuple (f,Y, A1, ..., Ap)yst. fe LY CZ, Vi=1...k dom(A;) € D.
— A belief set is a tuple (I, D, 7, P, F') where P is a set of predicate schema over
{I,D,Z} and F is a set of function schema over {I, D, Z}.

O

Attributes, which define binary predicates, are specified in the usual way. If an
attribute’s value can never be unknown, an accessor function is also generated.
Other predicates and functions are defined by specializations of the operation
notation. An object of the class upon which the operation is defined is implicitly
the first argument of the derived predicate or function.

Predicates may also be defined by binary and higher order associations be-
tween classes. The multiplicity of these associations is indicated in the usual way.
Figure 1 shows several associated belief classes from a NASA shuttle diagnosis
application, and the predicates functions derived from them.

Some predicates and functions are not associated with any particular object,
i.e. they do not have an implicit first argument. In this case, they can be specified
as attributes and operations upon an anonymous (unnamed) class.

We extend the standard notation for attributes and operations by allowing an
optional property list, which is used to specify certain properties of the derived
predicates and functions, such as whether they are abstract, stored in the belief
database or computed, whether they may change over time, and for predicates
whether they have open- or closed-world negation semantics.

Belief Properties The predicates and functions that constitute an agent’s belief
set may be classified as extensional, evaluable, or ephemeral. Extensional pred-
icates are stored as relations in the belief database. Extensional functions are
automatically generated from extensional predicates that are functionally con-
strained, such as the binary predicates derived from attribute definitions and
one-to-one associations.

Evaluable predicates and functions are computed when required by externally
supplied functions in the underlying programming language. Actions are special
evaluable predicates that have the effect of bringing about some change in the
external environment.

Belief Instances and Associations

Helium tank regulator Helium tank valve Helium tank Helium tank leg

frcs-ox-he-tk h 4 frcs-ox-he-tk-leg h
fresox-hetk-valve p-lower-limit = 500.0 p-lower-limit = 500.0
| fresox-hetk-reg I position = cl p-upper-limit = 5500.0 p-upper-limit = 5500.0
N J . J . J . J
T associated-regulator ‘ connects J\ T

V

Derived Predicate I nstances

status(frcs-ox-he-tk-reg, ok)

position(frcs-ox-he-tk-valve, cl)

leaking(frcs-ox-he-tk, false)

p-lower-limit(frcs-ox-he-tk, 500.0)

p-upper-limit(frcs-ox-he-tk, 5000.0)

leaking(frcs-ox-he-tk-leg, false)
p-lower-limit(frcs-ox-he-tk-leg, 500.0)
p-upper-limit(frcs-ox-he-tk-leg, 5000.0)
associated-regulator(frcs-ox-he-tk-valve, frcs-ox-he-tk-reg)
connects(frcs-ox-he-tk-valve, frcs-ox-he-tk, frcs-ox-he-tk-leg)

Fig. 2. Belief Instances and Derived Predicates

Ephemeral predicates stand for properties or associations that are named but
not remembered from moment to moment. Their major role is in the definition
of abstract goals. Ephemeral functions are never evaluated.

Extensional and evaluable predicates and functions may be either static or
dynamic. If static, they represent fixed relations and functions whose definitions
do not depend on when they are evaluated. If dynamic, they may change over
time. Ephemeral predicates are always dynamic. Extensional predicates may have
either open- or closed-world negation semantics. Evaluable predicates always have
closed-world semantics. Ephemeral predicates may not be negated.

These properties of predicates and functions are indicated by keywords in the
property list associated with the attribute, operation, or association. By default
predicates are dynamic, extensional, and have closed-world semantics, and func-
tions are ephemeral. Properties may also be associated with classes and instances,
and may represented either by property lists or by adornments on the class icon.

For example, in Figure 1, the attribute p-lower-limit of the class Pressure vessel
has the property static, indicating that its value may not change, and the attribute
pressure has the property optional, indicating that its value may be unknown. The
class itself has an adornment indicating that it is abstract.

Belief States A belief state specifies a particular state of the agent’s beliefs, and
may be used to initialize its initial mental state. It consists of a set of instances
of extensional predicates?, which are specified by a set of belief diagrams contain-
ing object instances and associations between them. The predicate instances are
derived from the instance diagrams in a manner analogous to the way in which
the predicates are derived from the class diagrams, described above. Figure 2
shows a fragment of an instance diagram from the NASA RCS domain, and the
corresponding predicate instances.
A belief state and belief model are formally defined as follows.

Definition 2
Let B={(I,D,Z, P, F) be a belief set.
— An instance of the predicate p(Ay, ..., Ay) € P is a tuple p(ay, ..., ax) €
Arx, .., X Ag.
— A belief state S of B is a set of instances of predicates in P.
— A belief model is a pair (B, §), where § is a set of belief states of B.

O

3.2 The Goal Model

Each agent class is associated with a particular Goal Model, consisting of a goal set
and one or more goal states. The goal set specifies the domain of the goals of an
agent of that class. Goal states are sets of ground instances of elements of the
goal set which may be used to initialize an agent’s initial mental state.

A goal set is, formally, a set of goal formula signatures. Each such formula
consists of a modal goal operator applied to a predicate from the belief set. The
modal goal operators are:

achieve (!) denoting a goal of achievement (“Make it that ¢ holds!”),
verify (?7) denoting a goal of verification (“Is it that ¢ holds?”), and
test ($) denoting a goal of determination (“Determine if ¢ holds or not”).

Goal formulae occur within activities in the bodies of plans and within their
activation events (Section 3.3). In essence, such an activity is performed by finding
the set of plans whose activation event matches the goal formula, and executing
one or more of them to determine the success or failure of the activity. The differ-
ent modalities determine how, exactly, such activities are performed. Depending
on the modality, the type of the predicate, and the agent’s initial beliefs about
the predicate, different execution sequences may occur.

A goal of achievement succeeds (vacuously) if its predicate is believed to hold.
Otherwise, if a matching plan executes successfully (they are tried sequentially
according to a precedence ordering), the goal succeeds, else it fails. The postcon-
dition of successful completion is that the predicate is believed to hold.

2 Extensional functions are derived from predicates, hence not specified separately. The
state of ephemeral and evaluable predicates and functions is opaque, and may not be
initialized.

A goal of verification succeeds (vacuously) if its predicate is believed to hold,
and fails (vacuously) if its predicate is believed not to hold. Only in the case
that the predicate is unknown (hence, must be ephemeral or have open-world
semantics) can plan execution result. If a matching plan executes successfully the
goal succeeds, else it fails. The postcondition of successful completion is that the
predicate is believed to hold.

A goal of determination succeeds (vacuously) if its predicate is believed to hold
or not to hold. Only in the case that the predicate is unknown (hence, must be
ephemeral or have open-world semantics) can plan execution result. If a matching
plan executes successfully the goal succeeds, else it fails. The postcondition of
successful completion 1s that the predicate is no longer unknown.

Definition 3
Let B=(I,D,Z, P,) be a belief set.

— A B-compatible goal set (7 is a set of tuples (0, p,Y) where 0 € {!,7,$},p € P,
and Y is a set of goal property specifiers.

— A B-compatible goal state T is a set of pairs (0, ¢q) where o € {!,7,$} and ¢
is a ground instance of some predicate p € P.

O

The definition requires belief-goal compatibility; all of an agent’s goals must
be based upon predicates from its belief set. Not all combinations of these modal
operators and predicates are sensible. For example, a goal of determination ap-
plied to an evaluable predicate will always succeed vacuously. Nonetheless, all
possible combinations are permitted.

3.3 The Plan Model

A plan model consists of a set of plans, known as a plan set. Individual plans are
specified as plan diagrams, which are denoted by a form of class icon. Plans may
have attributes, but these may not be arbitrary, rather they are restricted to a
set of predefined reserved attributes. A generic plan diagram appears in Figure 3.
The lower section, known as the plan graph, is a state transition diagram, similar
to an OO dynamic model. Unlike OO approaches, however, plans are not just
descriptions of system behaviour developed during analysis. Rather, they are
directly executable prescriptions of how an agent should behave to achieve a goal
or respond to an event.

The elements of the plan graph are three types of node; start states, end states
and internal states, and one type of directed edge; transitions. Start states are
denoted by a small filled circle (@). End states may be pass or fail states, denoted
respectively by a small target (@) or a small no entry sign (©).

Internal states may be passive or active. Passive states have no substructure
and are denoted by a small open circle (O). Active states have an associated
actiwity and are denoted by instance icons. Activities may be subgoals, denoted
by formulae from the agent’s goal set, iteration constructs, including do and while
loops, or in the case of a graph state, an embedded graph called a subgraph.

Plan Name

Plan Attributes

Plan Graph
Tactivation event [activation condition] [activation action

T Plan Body

activity formula event [condition] [action

event [action | event[condition] || condition] [action
® %)

- /

any [abort condition] [abort action

o)

fail / fail action

Documentation

pass / pass action

®

Fig. 3. Generic Plan Diagram

Events, conditions, and actions may be attached to transitions between states.
In general, transitions from a state occur when the associated event occurs, pro-
vided that the associated condition is true. When the transition occurs any asso-
ciated action is performed. Conditions are predicates from the agent’s belief set.
Actions include those defined in the belief set, and built-in actions. The latter
include assert and retract, which update the belief state of the agent.

Failure Unlike conventional OO dynamic models, which are based upon Harel’s
statecharts [9], plan graphs have a semantics which incorporates a notion of fail-
ure. Failure within a graph can occur when an action upon a transition fails,
when an explicit transition to a fail state occurs, or when the activity of an active
state terminates in failure and no outgoing transition is enabled.

If the graph is the body of a graph state, then the activity of that state
terminates in failure. If the graph is a plan graph, then the plan terminates in
failure. If the plan has been activated to perform a subgoal activity in another

plan, this may result in that activity terminating in failure, depending on the
availability of alternative plans to perform the activity.

Plan Execution The initial transition of the plan graph is labelled with an
actwation event and activation condition which determine when and in what con-
text the plan should be activated. The activation event may be a belief event
which occurs when an agent’s beliefs change or when certain external changes are
sensed, leading to event-driven activation, or a goal event which occurs as a re-
sult of the execution of a subgoal activity in another plan, leading to goal-driven
activation. An optional activation action permits an action to be taken when a
plan is activated.

Each plan must be consistent with the belief and goal models of the agent
class upon which it is defined; all predicates, goals and events occurring in the
plan must be defined in the belief and goal models. The plan model may include
plans that respond to different events or goals, plans that respond to the same
event or goal in different, possibly intersecting contexts, and plans that respond
to the same event and context. If multiple plans are applicable to a given event
in a given context, they are activated in parallel if activation is event-driven, or
sequentially until successful termination if activation is goal-driven.

Transitions from active states may be labelled with the events pass and fail
which denote the success or failure of the activity associated with the state.
Transitions from active states that are labelled with the event any may occur
whenever their condition becomes true, allowing activities to be interrupted. A
special case of this is the abort transition of a plan. Once the plan is activated, if at
any time during the execution of its body the abort condition becomes true then
it terminates in failure. The final transitions of the plan graph may be labelled
with actions to be taken upon the success, failure or aborting of the plan.

Plan Properties Plans may have properties associated with them which are
specified by reserved attributes. Some of these influence the way in which plan
execution proceeds in response to a new goal or event.

— The priority property determines the order in which multiple concurrently
active plans are executed.

— The precedence property determines the order in which plans that respond to
a new goal are successively tried.

— The noretry property specifies that the goal should not be retried if this plan
fails.

In the absence of any such properties, the set of plans applicable to a new
goal is executed one by one in some arbitrary order until some plan succeeds. The
precedence property allows the order in which this happens to be determined. The
noretry property allows the system designer to ensure that if a certain plan is tried
and fails, then no plans of lower precedence will be tried for that goal. Both these
properties have important uses when modifying the behaviour of inherited plans;
these are discussed in Section 4.2.

Wind Data (A) Profile (&) Flight Plan (&) Radar Data (&)

A \ A
AA_\ | 1 1

Predictor (A) Planner (A) Monitor ()

|] !

&

Generic Aircraft (A)

A

| 1 |
Wind Model @ B737 B747 o A320 Coordinator @

4 4
Windmodel (B737) (B747) Coordinator

Fig.4. ATM Agent Class and Instance Diagram

4 Modelling Multi-Agent Systems

Having described in detail the models that capture the state and behaviour of
individual agents, we now proceed to describe how a multi-agent system is mod-
elled. We begin by describing the agent model, which specifies the hierarchical
relationship between different abstract and concrete agent classes, and identifies
the agent instances which may exist within the system. In modelling agents by
classes, the central problem is to give an appropriate semantics to relationships
between classes such as inheritance, aggregation, and instantiation; we consider
these issues in detail. Finally, we illustrate how the modelling technique may be
employed to model layered architectures in two distinct ways.

4.1 The Agent Model

An Agent Model has two components; an agent class model, which defines ab-
stract and concrete agent classes and captures the inheritance and aggregation
relationships between them, and an agent instance model, which identifies agent
instances and their properties. In systems containing only a small number of agent
classes and instances they may combined into a single diagram. Figure 4 shows a
simplified combined agent diagram from an Air Traffic Management application
domain. Note that the attributes of agent classes do not appear in this diagram.

An agent class model is a directed, acyclic graph containing nodes denoting
both abstract and concrete (instantiable) agent classes. Agent classes are repre-
sented by class icons, and abstract classes are distinguished by the presence of

an adornment @) in the upper section of the icon. Edges in the graph denoting
inheritance are distinguished by a triangle with a vertex pointing towards the su-
perclass, and edges denoting aggregation by a diamond adjacent to the aggregate
class. Other associations between agent classes are not allowed.

Agent classes may have attributes, but not operations. Attributes may not be
arbitrary, rather they are restricted to a set of predefined reserved attributes. For
example, each class must have associated belief, goal, and plan models, specified
by the attributes beliefs, goals, and plans.

Multiple inheritance is permitted. Inheritance, as usual, denotes an ¢s-a re-
lationship, and aggregation a has-a relationship, but in the context of an agent
model these relationships have a special semantics. Agents inherit and may refine
the belief, goal, and plan models of their superclasses. Note that it is, for example,
the set of plans which is refined, rather than the individual plans. Aggregation
denotes the incorporation within an agent of subagents that do not have access
to each other’s beliefs, goals, and plans. Instantiation captures certain properties
of agents, such as when they may come into existence and whether they may be
cloned (multiply instantiated).

For example, in Figure 4, Monitor is an abstract agent which is a subagent of
Generic Aircraft. Monitor is both a Radar Data agent and a Flight Plan agent.
Predictor, another subagent of Generic Aircraft, 1s a Wind Data, aircraft Profile
and Flight Plan agent. Monitor and Predictor do not share their beliefs about
flight plans, Monitor has no beliefs about wind data or aircraft profiles; and
Predictor has no beliefs about radar data. We consider the details of inheritance
and aggregation further in the sections that follow.

Other attributes of an agent class include its belief-state-set and goal-state-
set, which determine possible initial mental states. Particular elements of these
sets may then be specified as the default initial mental state for the agent class,
via the initial-belief-state and initial-goal-state attributes. For example, the belief
model of the abstract aircraft Profile agent defines belief states corresponding to
different aircraft types. A concrete aircraft agent such as B747 inherits these, but
would only specify a particular instance, i.e., data values appropriate for a 747,
in its belief state set and as its initial belief state.

4.2 Inheritance in the Agent Model

Inheritance is the fundamental relationship between agent classes which forms the
basis of the structure of an agent class model. Each agent class is characterized by
its belief, goal and plan models, which describe its internal state and behaviour.
Inheritance allows one agent class to be defined as an extension or restriction of
another; the belief, goal and plan models of the superclass may be extended and
specialized in the subclass.

Inheritance of Beliefs An agent class inherits the belief models of its super-
classes. As described in Section 3.1, a belief model consists of two components;
a belief set, which describes the potential beliefs of an agent of that class (and
their properties, such as whether or not they may change over time), and zero

or more belief states — particular sets of beliefs — which may be used as possible
values of the agent’s initial mental state.

Formally, the elements of an agent class’s belief set are a set of predicates
and functions whose arguments are terms over a universe of predefined and user-
defined type domains. These predicates and functions are directly derived from
the belief class definitions of the agent class itself and combined with the belief
models of its superclasses in the following manner:

— Types, predicates and functions directly derived from the belief classes and
associations defined in the subclass belief diagrams are included in its belief
model.

— Types defined in a superclass belief set are included provided no type with
the same name is defined on the subclass, or in another superclass.

— Predicates and functions defined in a superclass belief set are included pro-
vided that all their attribute types are included.

— Predicate instances defined in a superclass belief state are included provided
that the corresponding predicate definitions are included.

The net effect of this process is that definitions in a subclass may override
those in a superclass, and incompatible definitions in different superclasses must
be resolved by choosing in the subclass which of the inherited definitions to prefer.
The latter can be done straightforwardly by defining a belief class on the sub-
class that inherits directly from the preferred definition, which can be referred to
unambiguously by its fully qualified name, i.e., by including the superclass name
as a prefix.

Within the set of predicates and functions derived from a particular set of
belief diagrams, a reference to a particular predicate or function can always be
uniquely resolved, given its name and the type of its first argument, because of
the requirement that class, attribute, and association names in the belief model
be unique. The method by which inherited belief models are combined preserves
this desirable property.

This approach to the inheritance of beliefs allows an agent class to override
and extend the belief models of its superclasses. An agent class may also specialize
the elements of the belief models of its superclasses by redefining their properties,
such as whether a function may change its value over time, whether a predicate
has closed- or open-world semantics, etc.

Inheritance of Goals An agent class’s goal model determines which goals and
events may validly occur in the activation events of plans and as subgoals in
activities in the bodies of plans. As described in Section 3.2, a goal model is
defined by specifying for each modal goal operator the subset of the predicates
in the belief set to which the operator may be applied. Events are handled in a
similar manner. The goals and events thus defined in an agent class are combined
with the goal models of its superclasses by inheriting those goals and events whose
predicates were inherited into the subclass’s belief model.

This approach to goal inheritance guarantees that belief-goal consistency is
maintained. Just as was the case with beliefs, an agent class may also specialize

goals and events inherited from its superclasses by redefining their properties,
such as whether a goal should be retried on failure, etc.

Inheritance of Plans An agent class inherits the plan models of its superclasses.
As described in Section 3.3, a plan model is a set of named plans, each of which
has an activation event that specifies the event or goal to which it is relevant, and
an activation condition that specifies the context in which 1t is valid. The plans
associated with an agent class and its superclasses are combined as follows.

— All the plans defined in the subclass are included in its plan model.

— Plans in a superclass plan model are included provided they are compatible
with the belief and goal models of the subclass, and no plan of the same name
1s defined on the subclass or in another superclass.

The net effect of this process is that the plan model of an agent class can
affect the plans defined in its superclasses by:

— extending their coverage, by adding new plans to achieve existing goals in
existing contexts, adding new plans to achieve existing goals in new contexts,
or adding new plans to achieve new goals;

— excluding plans by redefining them in the subclass; and

— modifying the properties, such as priority or precedence, of inherited plans.

Note that the behaviour of inherited plans can also be affected indirectly by
changes in the belief and goal models of the subclass. For example, a change to
the properties of a predicate occurring in a goal may affect the way in which plans
are executed in response to that goal (Section 3.3).

By default, inherited plans have lower precedence than those defined in a
subclass, so that the order in which applicable plans are executed in response
to a goal reflects the ordering of the agent inheritance hierarchy. This default
precedence ordering may, however, be overridden, either by explicitly defined
precedences, or by the mechanism of a fully qualified goal; a goal formula qualified
by the name of an agent class. When searching for plans whose activation event
matches such a goal, the search begins on the designated class.

When a plan is inherited from a superclass, its behaviour can be reused by a
subclass plan, or specialized. For example, let A be an agent class that defines a
plan P that responds to a goal ¥». We wish to define an agent class B that inherits
from A, but restricts the context in which P may be activated by adding the
conjunct ¢ to its activation condition. This may be done by defining a plan Q on
B with the property noretry that responds to @ and fails immediately if ¢ does
not hold, else it posts the subgoal A::7), activating P. As a result of the noretry
property, P will never be directly activated by the goal ¢, even if Q fails.

4.3 Aggregation in the Agent Model

Aggregation is a secondary relationship between agent classes that allows their
grouping together into a new class in a quite different way from (multiple) inher-
itance. The agents, called subagents, that form part of an aggregate are separate

modules or name spaces; their belief, goal and plan models are quite independent.
The aggregate class itself may also have belief, goal and plan models of its own.
Subagents cannot directly affect each others beliefs, goals, and intentions; they
interact by asynchronous message passing in exactly the same way as physically
distinet agents®.

The modelling technique we have developed allows a distinction to be drawn
between two sorts of agent.

1. A logical agent is an encapsulation of state and behaviour, developed during
the system design process, which may not even be independently actualizable.

2. A physical agent is the actualization of one or more logical agents, all of which
share an identical extent in time, and coexist (in our implementation) within
a single process.

Aggregation is a system structuring construct that allows the boundaries of
physical agents in a multi-agent system to be set differently from those of individ-
ual logical agents. In effect, physical agents may themselves be simple multi-agent
systems. For example, in Figure 4 each physical aircraft agent consists of a logi-
cally independent predictor, planner, and monitor subagent.

Just as in an object oriented system various processes exist, each of which
contain many objects, so in an agent system processes (physical agents) may
exist, each of which contains internally many (logical) agents. The question “How
many agents are there in the system?” now has two different answers, depending
on whether logical or physical agents are being considered. Decisions about the
number and type of logical agents in a system may be decoupled from decisions
about their physical realization, and deferred to a late stage of the system design
process.

One consequence of the flexibility that these system structuring constructs
offer is that complex, layered agent architectures may be viewed as systems of
simpler, coupled individual agents. Moreover, this may be extended hierarchically,
with individual layers themselves implemented as multi-agent systems. The ability
to model such architectures within a uniform framework is one of the strengths
of our approach.

4.4 Instantiation in the Agent Model

Instantiation, the third relationship that occurs in the agent model, is a relation-
ship between an agent class and one or more instances of that class. It is used to
capture certain properties of agents, such as when they may come into existence
and whether they may be cloned (multiply instantiated).

An agent instance model is an instance diagram which defines both the static
agent set — the set of agents that are instantiated at compile-time — and the
dynamic agent set — the set of agents that may be instantiated at run-time. The
former are distinguished by the adornment (S) in the upper section of the icon.

? Communication between subagents may however be both faster and more reliable
than between agents in separate processes.

Each agent instance is specified by an instance icon linked to a concrete agent
class by an instantiation edge, represented as a dotted vector from instance to
class. Static instances must be named, but the naming of dynamic instances may
be deferred till their instantiation. A multiplicity notation at the instance end of
the instantiation link may be used to indicate whether a dynamic class may be
multiply instantiated.

The initial mental state of an agent instance may be specified by the initial-
belief-state and initial-goal-state attributes, whose values are particular elements
of the belief and goal state sets of the agent class. If not specified, the defaults
are the values associated with the agent class. For dynamic agent instances these
attributes may be overridden at the time the agent is created.

4.5 Implementing layered architectures

E Layer n

Layered Agent Layered Agent

Layer 2

Y4

E Layer 1

Fig. 5. Combining agent layers by inheritance and aggregation

The ability of our agent modelling technique and architecture to support physical
agents that are themselves multi-agent systems highlights a particular property
of the architecture; it’s ability to straightforwardly implement more specialized
architectures.

For example, consider a layered agent architecture, such as Interrap [13] (ver-
tical) or the Touring Machine [5] (horizontal). Suppose the state and behaviour
of each of these layers 1s specified as a separate logical agent class. There are then
two straightforward ways to combine them in our framework, as illustrated in
Figure 5.

Firstly, we can combine them by creating an agent class that inherits from
each layer class. This approach leads to a tight coupling between the layers, in
fact it requires that the beliefs, goals and plans of each layer class be disjoint
(apart from those that serve to implement interlayer interfaces) since otherwise
they would interfere with each other.

Secondly, we can employ aggregation to create an agent class that contains
each layer as a subagent. With this approach, there are no constraints on the
content of the layers, since each exists in a separate namespace. Layers are loosely
coupled; they do not share state, and communication is by message passing, in
exactly the same way as between physically distinct agents.

5 An Agent-Oriented Design Methodology

A methodology to support design and specification of agent systems should pro-
vide a clear conceptual framework that enables the complexity of the system to
be managed by decomposition and abstraction. Our agent-oriented methodology
advocates the decomposition of a system based on the key roles in an application.
The identification of roles and their relationships guides the specification of an
agent class hierarchy; agents are particular instances of these classes. Analysis of
the responsibilities of each agent class leads to the identification of the services
provided and used by an agent, and hence its external interactions. Considera-
tion of issues such as the creation and duration of roles and their interactions
determines control relationships between agent classes.

5.1 Developing the External Models

These details are captured in the Agent and Interaction models described in
Section 2. The methodology for their elaboration and refinement can be expressed
as four major steps.

1. Identify the roles of the application domain. There are several dimensions
in which such an analysis can be undertaken; roles can be organizational or
functional, they can be directly related to the application, or required by the
system implementation. Identify the lifetime of each role. Elaborate an agent
class hierarchy. The initial definition of agent classes should be quite abstract,
not assuming any particular granularity of agency.

2. For each role, identify its associated responsibilities, and the services provided
and used to fulfill those responsibilities. As well as services provided to/by
other agents upon request, services may include interaction with the external
environment or human users. For example, a responsibility may require an
agent to monitor the environment, to notice when certain events occur, and
to respond appropriately by performing actions, which may include notifying
other agents or users. Conversely, a responsibility may induce a requirement
that an agent be notified of conditions detected by other agents or users.
Decompose agent classes to the service level.

3. For each service, identify the interactions associated with the provision of
the service, the performatives (speech acts) required for those interactions,
and their information content. Identify events and conditions to be noticed,
actions to be performed, and other information requirements. Determine the
control relationships between agents. At this point the internal modelling of
each agent class can be performed.

4. Refine the agent hierarchy. Where there is commonality of information or
services between agent classes, consider introducing a new agent class, which
existing agent classes can specialize, to encapsulate what is common. Com-
pose agent classes, via inheritance or aggregation, guided by commonality
of lifetime, information and interfaces, and similarity of services. Introduce
concrete agent classes, taking into account implementation dependent consid-
erations of performance, communication costs and latencies, fault-tolerance

requirements, etc. Refine the control relationships. Finally, based upon con-
siderations of lifetime and multiplicity, introduce agent instances.

Roles, responsibilities, and services are just descriptions of purposeful behav-
1ours at different levels of abstraction; roles can be seen as sets of responsibilities,
and responsibilities as sets of services. Services are those activities that it is not
natural to decompose further, in terms of the identity of the performer. The
roles initially identified serve as a starting point for the analysis, not an up-front
decision about what agents will result from the process of analysis.

Once roles have been decomposed to the level of services and internal mod-
elling performed, a fine-grained model of agency has been produced. When this is
recomposed in accordance with the considerations mentioned above, the concrete
agents which result may reflect groupings of services and responsibilities that dif-
fer from the original roles. The identification of agent boundaries is deferred until
the information and procedures used to perform services have been elaborated.
This results in concrete agents whose internal structure is inherently modular.

Simple service relationships and interactions between agents could be repre-
sented as associations within the agent model, but we have chosen to describe
them in a separate model. Modelling of agent interactions is currently the subject
of intensive research, and many modelling techniques, often quite complex, have
been proposed and developed (see, for example, [1, 3,4, 6,7, 8, 17]). They address
issues from information content and linguistic intent through to protocols for coor-
dination and negotiation. We do not hold a strong view on the general suitability
of particular techniques for modelling interactions, hence our methodology and
modelling framework is designed to allow the selection of models appropriate to
the application domain.

The interaction model also captures control relationships between agents, such
as responsibilities for agent creation and deletion, delegation, and team formation.
Modelling techniques for these relationships are the subject of ongoing research.

5.2 Developing the Internal Models

Our methodology for the development of these models begins from the services
provided by an agent and the associated events and interactions. These define
its purpose, and determine the top-level goals that the agent must be able to
achieve. Analysis of the goals and their further breakdown into subgoals leads
naturally to the identification of different means, i.e., plans, by which a goal can
be achieved.

The appropriateness of a given plan, and the manner in which a plan is carried
out, will in general depend upon the agent’s beliefs about the state of the envi-
ronment and possibly other information available to the agent, i.e.; the agent’s
belief context. This may also include certain beliefs which represent working data.
A context is represented in terms of various data entities and their relationships.
Analysis of contexts results in the elaboration of the beliefs of an agent. To sum-
marize, the methodology for internal modelling can be expressed as two steps.

1. Analyze the means of achieving the goals. For each goal, analyze the different
contexts in which the goal has to be achieved. For each of these contexts,
decompose each goal into activities, represented by subgoals, and actions.
Analyze in what order and under what conditions these activities and actions
need to be performed, how failure should be dealt with, and generate a plan
to achieve the goal. Repeat the analysis for subgoals.

2. Build the beliefs of the system. Analyze the various contexts, and the condi-
tions that control the execution of activities and actions, and decompose them
into component beliefs. Analyze the input and output data requirements for
each subgoal in a plan and make sure that this information is available either
as beliefs or as outputs from prior subgoals in the plan.

These steps are iterated as the models which capture the results of analysis are
progressively elaborated, revised, and refined. Refinement of the internal models
feeds back to the external models; building the plans and beliefs of an agent
class clarifies the information requirements of services, particularly with respect
to monitoring and notification. Analyzing interaction scenarios, which can be
derived from the plans, may lead to the redefinition of services.

Unlike object-oriented methodologies, the primary emphasis of our methodol-
ogy 1is on roles, responsibilities, services, and goals. These are the key abstractions
that allow us to manage complexity. We analyze the application domain in terms
of what needs to be achieved, and in what context. The focus is on the end-point
that 1s to be reached, rather than the types of behaviours that will lead to the
end-point, which are the primary emphasis of OO methodologies.

Although this might seem a small paradigm shift, it is quite subtle and leads to
a substantially different analysis. This is because goals, as compared to behaviours
or plans, are more stable in any application domain. Correctly identifying goals
leads to a more robust system design, where changes to behaviours can be accom-
modated as new ways of achieving the same goal. In other words, a goal-oriented
analysis results in more stable, robust, and modular designs.

The context-sensitivity of plans provides modularity and compositionality;
plans for new contexts may be added without changing existing plans for the same
goal. This results in an extensible design that can cope with frequent changes and
special cases, and permits incremental development and testing.

6 Conclusions

The primary contribution of this paper has been to provide the elements of a
rigorous framework for modelling and specifying complex multi-agent systems.
We have presented modelling techniques to describe the external and internal
perspective of multi-agent systems, based on a BDI architecture, which build
upon and adapt existing, well-understood object-oriented models. Our agent-
oriented methodology, with its emphasis on roles, responsibilities, services, and
goals, permits a fine-grained analysis that allows agent boundaries to be chosen
flexibly and results in system designs that are robust, modular, and extensible.

We have given a semantics for inheritance, aggregation and instantiation rela-
tionships amongst agent classes and instances which provides powerful and flex-
ible mechanisms for enforcing modularity of state and behaviour within agents,
and for sharing them between agents. Related beliefs; goals, and plans may be
encapsulated in separate classes which may then be grouped together, by ag-
gregation or inheritance. The ability to take an agent class and refine it by the
addition of further beliefs, goals, or plans provides a compositional framework for
system design and encourages re-use. Encapsulation makes more tractable the
task of analyzing interactions between plans, which is crucial to the process of
design verification.

By building upon and adapting existing, well-understood techniques, we aim
to take advantage of their maturity to develop models and a methodology which
will be easily learnt and understood by those familiar with the OO paradigm.
This is important if the design, implementation, and maintenance of multi-agent
systems i1s to be carried out by software analysts and engineers rather than re-
search scientists, and if they are to be successfully applied on a significant scale
to commercial and industrial applications.

References

1. Mihai Barbuceanu and Mark S. Fox. COOL: A language for describing coordination
in multi-agent systems. In Proceedings of the International Conference on Multi-
Agent Systems, ICMAS-95, San Francisco, CA, 1995.

2. Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, Redwood City, CA, 2nd edition, 1994.

3. Jenmifer Chu-Carrol and Sandra Carberry. Generating information-sharing subdi-
alogues in expert-user consultation. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, IJCAI-95, pages 1243-1250, Montréal,
1995.

4. Philip R. Cohen and Hector J. Levesque. Communicative actions for artificial
agents. In Proceedings of the International Conference on Multi-Agent Systems,
ICMAS-95, San Francisco, CA, 1995.

5. Innes A. Ferguson. Integrated control and coordinated behaviour: a case for agent
models. In Intelligent Agents: Proceedings of the ECAI-94 Workshop on Agent The-
ories, Architectures, and Languages. LNAT 890, Amsterdam, 1995. Springer Verlag.

6. Tim Finin et al. Specification of the KQMIL agent communication language. Tech-
nical report, DARPA Knowledge Sharing Initiative, External Working Group, 1992.

7. Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in Communication. MIT Press,
Cambridge, MA, 1990.

8. Afsaneh Haddadi. Reasoning About Interactions in Agent Systems: A Pragmatic
Theory. PhD thesis, University of Manchester Institute of Science and Technology,
United Kingdom, 1995.

9. D. Harel and C. Kahana. On statecharts with overlapping. ACM Transactions on
Software Engineering and Methodology, 1(4), 1992.

10. David Kinny. The Distributed Multi- Agent Reasoning System Architecture and Lan-
guage Specification. Australian Artificial Intelligence Institute, Melbourne, Aus-
tralia, 1993.

11.

12.

13.

14.

15.

16.

17.

David Kinny and Michael Georgeff. Commitment and effectiveness of situated
agents. In Proceedings of the Thirteenth International Joint Conference on Ar-
tificial Intelligence, IJCAI-93, pages 82—88, Sydney, 1991.

David Kinny, Michael Georgeff, and Anand Rao. A methodology and modelling
technique for systems of BDI agents. In Agents Breaking Away: Proceedings of the
Seventh Furopean Workshop on Modelling Autonomous Agents in a Multi-Agent
World, MAAMAW °96. LNATI 1038, Eindhoven, The Netherlands, 1996. Springer
Verlag.

J. P. Miiller, M. Pischel, and M. Thiel. Modelling reactive behaviour in vertically
layered agent architectures. In Intelligent Agents: Proceedings of the FCAI-94
Workshop on Agent Theories, Architectures, and Languages. LNAI 890, Amster-
dam, 1995. Springer Verlag.

J. Y. C. Pan and J. M. Tenenbaum. An intelligent agent framework for enterprise
integration. IEEE Transactions on Systems, Man and Cybernetics, 21(6), 1991.
Anand S. Rao and Michael P. Georgeff. An Abstract Architecture for Rational
Agents. In Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, KR °92, pages 439-449, Boston, MA,
1992.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliifs,
NJ, 1991.

Candace L. Sidner. An artificial discourse language for collaborative negotiation. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94,
pages 814-819, Seattle, WA, 1994.

