
Artificial Intelligence 60 (1993) 51-92 51
Elsevier

ARTINT 931

Agent-oriented programming
Yoav Shoham

Robotics Laboratory Computer Science Department, Stanford University Stanford,
CA 94305, USA

Received June 1991
Revised February 1992

Abstract

Shoham, Y., Agent-oriented programming, Artificial Intelligence 60 (1993) 51-92.

A new computational framework is presented, called agent-oriented programming (AOP),
which can be viewed as a specialization of object-oriented programming. The state of an
agent consists of components such as beliefs, decisions, capabilities, and obligations; for
this reason the state of an agent is called its mental state. The mental state of agents
is described formally in an extension of standard epistemic logics: beside temporalizing
the knowledge and belief operators, AOP introduces operators for obligation, decision,
and capability. Agents are controlled by agent programs, which include primitives for
communicating with other agents. In the spirit of speech act theory, each communication
primitive is of a certain type: informing, requesting, offering, and so on. This article
presents the concept of AOP, discusses the concept of mental state and its formal
underpinning, defines a class of agent interpreters, and then describes in detail a specific
interpreter that has been implemented.

1. Introduction

This paper proposes a new programming paradigm. The paradigm pro-
motes a societal view of computation, in which multiple "agents" interact
with one another, although in this document we will concentrate on the
design of the individual agent. Many of the ideas here intersect and interact
with the ideas of others. For the sake of continuity, however, I will not place
this work in the context of other work until the end.

Correspondence to: Y. Shoham, Robotics Laboratory, Computer Science Department,
Stanford University, Stanford, CA 94305, USA. Telephone: (415) 723-3432. E-mail:
shoham @ cs.stan ford.edu.

0004-3702/93/$ 06.00 ~ 1993 - - Elsevier Science Publishers B.V. All rights reserved

52 E Shoham

1.1. What is an agent?

The term "agent" is used frequently these days. This is true in AI, but
also outside it, for example in connection with databases and manufacturing
automation. Although increasingly popular, the term has been used in such
diverse ways that it has become meaningless without reference to a particular
notion of agenthood. Some notions are primarily intuitive, others quite
formal. Some are very austere, defining an agent in automata-theoretic
terms, and others use a more lavish vocabulary. The original sense of the
word, of someone acting on behalf of someone else, has been all but lost
in At (an exception that comes to mind is the use of the word in the
intelligent-interfaces community, where there is talk of "software agents"
carrying out the user's wishes; this is also the sense of agency theoo' in
economics [64]). Most often, when people in AI use the term "agent",
they refer to an entity that functions continuously and autonomously in
an environment in which other processes take place and other agents exist.
This is perhaps the only property that is assumed uniformly by those in AI
who use the term. The sense of "'autonomy" is not precise, but the term
is taken to mean that the agents" activities do not require constant human
guidance or intervention. Often certain further assumptions are made about
the environment, for example that it is physical and partially unpredictable.
In fact, agents are sometimes taken to be robotic agents, in which case
other issues such as sensory input, motor control, and time pressure are
mentioned. Finally, agents are often taken to be "high-level". Although
this sense is quite vague, many take some version of it to distinguish
agents from other software or hardware components. The "high level" is
manifested in symbolic representation and/or some cognitive-like function:
agents may be "informable" [24], may contain symbolic plans in addition
to stimulus-response rules [13.18,29,53], and may even possess natural
language capabilities. This sense is not assumed uniformly in At, and in fact
a certain counter-ideology deliberately denies the centrality or even existence
of high-level representation in agents [I,7].

Clearly, the notion of agenthood in AI is anything but crisp. I should
therefore make it clear what 1 mean by the term "agent", which is precisely
this: An agent is an entity whose state is viewed as consisting of mental
components such as beliefs, capabilities, choices, and commitments. These
components are defined in a precise fashion, and stand in rough correspon-
dence to their common sense counterparts. In this view, therefore, agenthood
is in the mind of the programmer: What makes any hardware or software
component an agent is precisely the fact that one has chosen to analyze and
control it in these mental terms.

The question of what an agent is is now replaced by the question of
what entities can be viewed as having mental state. The answer is that

Agent-oriented programming 53

anything can be so described, although it is not always advantageous to
do so. This view is not original to me. For example, in [15] and other
publications, Daniel Dennett proposes the "intentional stance", from which
systems are ascribed mental qualities such as intentions and free will. The
issue, according to Dennett, is not whether a system really is intentional, but
whether we can coherently view it as such. Similar sentiments are expressed
by John McCarthy in [47], who also distinguishes belween the "legitimacy"
of ascribing mental qualities to machines and its "usefulness":

To ascribe certain beliefs, Ji'ee will, intentions, consciousness, abil-
ities or wants to a machine or computer program is legitimate
when such an ascription expresses the same information about
the machine that it expresses about a person. It is useful when
the ascription helps us understand the structure of the machine,
its past or future behavior, or how to repair or improve it. It is
perhaps never logically required even for humans, but expressing
reasonably briefly what is actually known about the state of the
machine in a particular situation may require mental qualities
or qualities isomorphic to them. Theories of belief, knowledge
and wanting can be constructed for machines in a simpler set-
ting than for humans, and later applied to humans. Ascription of
mental qualities is tnost straigh(forward for machines of known
structure such as thermostats and computer operating systems,
but is most useful when applied to entities whose structure is very
incompletely known.

In [67] I illustrate the point through the light switch example. It is per-
fectly coherent to treat a light switch as a (very cooperative) agent with the
capability of transmitting current at will, who invariably transmits current
when it believes that we want it transmitted and not otherwise; flicking the
switch is simply our way of communicating our desires. However, while this
is a coherent view, it does not buy us anything, since we essentially under-
stand the mechanism sufficiently to have a simpler, mechanistic description
of its behavior. In contrast, we do not have equally good knowledge of the
operation of complex systems such robots, people, and, arguably, operat-
ing systems. In these cases it is often most convenient to employ mental
terminology; the application of the concept of "knowledge" to distributed
computation, discussed below, is an example of this convenience, l

l In [67] I discuss how the gradual elimination of animistic explanations with the increase in
knowledge is correlated very nicely with both developmental and evolutionary phenomena. In
the evolution of science, theological notions were replaced over the centuries with mathematical
ones. Similarly, in Piaget's stages of child development, there is a clear transition from animistic
stages around the ages of 4-6 (when, for example, children claim that clouds move because
they follow us around), and the more mature later stages.

54 E Shoham

1.2. On the responsible use of pseudo-mental terminology

When 1 (like Dennett and McCarthy before me) state that in principle
anything can be ascribed intensionality, l do not mean that there are no
rules for this ascription. We do not arbitrarily label one component of the
machine a "belief" and another a "commitment": that would be gratuitous
fancy naming, against which McDermott has already warned [51]. Indeed,
if the labeling were arbitrary, there would be no reason not to exchange the
labels "belief" and "commitment", or for that matter not to call the first
component "F112"" and the second "F358".

When then are we justified in ascribing a particular mental quality such
as belief to a particular component of a machine? It seems to me reasonable
to require the following elements as justification:

• a precise theory regarding the particular mental category: the theory
must have clear semantics (or, to quote McDermott in [51], "No
Notation without Denotation"), and should correspond to the common-
sense use of the term:

• a demonstration that the component of the machine obeys the theory:
• a demonstration that the formal theory plays a nontrivial role in analyz-

ing or designing the machine (or, to coin a new phrase, "No Notation
without Exploitation"").

As an example, it is instructive to consider the use of logics of knowledge
and belief in distributed computation (cf. [26,27]). The initial motivation
behind that line of research was to prove properties of distributed proto-
cols. Researchers noted that intuitive reasoning about protocols included
statements such as: "'Processor A does not yet know that the network is
back up, but since processor B knows that processor A doesn't know it, it
(processor B) will not send the next message." Wishing to formalize this
sort of reasoning, researchers adopted a logic of knowledge which had been
introduced in analytic philosophy by Hintikka [32] and imported to AI by
Moore [54] (subsequent work on knowledge and belief within AI includes
[37,41,55,69]).

The logic widely (though not universally) adopted, the $5 modal system,
is at best an idealization of the common sense notion of knowledge. Some of
its more counter-intuitive properties include tautological closure (you know
all that follows from your knowledge), positive introspection (if you know
something then you know that you know it), and negative introspection (if
you do not know something then you know that you do not). The important
point is that, for the applications considered in distributed computation, the
deviation from common sense was harmless. Intuitively, in those applica-
tions the knowledge possessed by agents was so simple that complexity of
internal reasoning could be neglected.

Agent-oriented programming 5 5

The first lesson, then, is that while the formal theory of the mental
category should correspond to common sense, this correspondence will not
be exact. It is up to the consumer of the theory to consider the application at
hand, and judge whether the correspondence between theory and common
sense is sufficiently close that s/he will not be misled by allowing common
sense intuition to guide reasoning with the formal construct. For example,
if in the application all the beliefs are propositional Horn clauses, and if
in the application all linear-time computation is negligible, then the axiom
of tautological closure is quite reasonable, since propositional Horn theories
admit a linear-time decision procedure. On the other hand, this same axiom
renders the logic useless for reasoning about number-theoretic cryptographic
protocols. 2

The distributed computation application serves also to illustrate the second
element required to justify the use of a mental term, a demonstration that
the machine obeys the properties of the formal construct. The semantics
adopted for the knowledge operator were standard possible-worlds semantics
[38], but here possible worlds were given a very concrete interpretation: A
possible world was a possible global state of the system (that is, a possible
combination of local states of the various processors) given a fixed protocol,
and the worlds accessible to each agent from a given world consisted of all
global states in which its local state was the same as in the given world. It
was easy to show that this concrete definition obeyed the $5 properties.

Finally, using this definition of knowledge, it became possible to prove cer-
tain properties of distributed protocols. The logic of knowledge was in prin-
ciple dispensable--one could theoretically replace the knowledge operator by
the corresponding statement about the states of the various processors--but
the statements would get complex, and intuition would be lost. In prac-
tice, therefore, logics of knowledge proved invaluable, satisfying the third
requirement of ascribing a mental attitude to a machine.

In this article we will consider mental constructs that are somewhat more
involved than knowledge. We will consider belief, obligation, and capability,
and add a temporal component to each of those. As in the case of knowledge,
however, we will not reach an exact match between the formal properties
of these formal constructs and common sense, but rather will aim to strike
a balance between computational utility and common sense.

1.3. AO P versus OOP

It was mentioned in the previous section that the ascription of mental
constructs must be coherent and useful. The application of the logic of

21ndeed, there have since been a number of proposals to escape the property of tautological
closure, by modifying the logic.

56 Y. Shoham

knowledge in distributed computation, given there as an example, used
the mental construct '+knowledge" in a particular way: It mapped it onto an
existing computational framework (a distributed network of processors), and
used it to reason about the system. The use we will make of mental constructs
is different: Rather than use them for mere analysis, we will employ them to
design the computational system. The various mental categories will appear
in the programming language itself, and the semantics of the programming
language will be related to the semantics of the mental constructs. This
is similar in spirit to a development within the distributed-computation
community, where a proposal has been made to include tests for epistemic
properties in the protocols themselves [28]: at this time the proposal has
not yet been followed up on.

Specifically, I will propose a computational framework called agent-
oriented programming (AOP). The name is not accidental, since from the
engineering point of view AOP can be viewed as an specialization of the
object-oriented programming (OOP) paradigm. I mean the latter in the spirit
of Hewitt's original Actors formalism [31], rather than in the more specific
sense in which it is used today. Intuitively, whereas OOP proposes viewing
a computational system as made up of modules that are able to communi-
cate with one another and that have individual ways of handling incoming
messages, AOP specializes the framework by fixing the state (now called
mental state) of the modules (now called agents) to consist of components
such as beliefs (including beliefs about the world, about themselves, and
about one another), capabilities, and decisions, each of which enjoys a pre-
cisely defined syntax. Various constraints are placed on the mental state of
an agent, which roughly correspond to constraints on their common sense
counterparts. A computation consists of these agents informing, requesting,
offering, accepting, rejecting, competing, and assisting one another. This
idea is borrowed directly from the .vJeech act literature [4.25,66]. Speech
act theory categorizes speech, distinguishing between informing, requesting,
offering, and so on; each such type of communicative act involves different
presuppositions and has different effects. Speech act theory has been applied
in AI, in natural language research as well as in plan recognition [36,59]. To
my knowledge, AOP and McCarthy's Elephant2000 language (see Section
8) are the first attempts to base a programming language in part on speech
acts. Table 1 summarizes the relation between AOP and OOP. 3

3There is one more d imens ion to the compar ison , which I omi t ted from the table, and
it regards inheri tance. Al though absent f rom Hewit t ' s proposal, inheri tance among objects is
today one o f the ma in features o f OOP, const i tu t ing an at tract ive abstract ion mechan i sm. I
have not d iscussed it s ince it is not essential to the idea o f OOP. and even less so to the idea
o f AOP. Nevertheless a parallel can be drawn here too, and I discuss it briefly in the final
section.

Agent-oriented programming 57

Table 1
OOP versus AOP

OOP AOP

Basic unit
Parameters defining
state of basic unit

Process of computation

Types of message

Constraints on methods

object
unconstrained

message passing and
response methods

unconstrained

n o n e

agent
beliefs, commitments,
capabilities, choices

message passing and
response methods

inform, request, offer,
promise, decline

honesty, consistency

1.4. Organization of the document

The rest of the document is organized as follows. In Section 2, I provide
further motivation for the AOP paradigm by looking at two scenarios in
which AOP is expected to prove useful. In Section 3, I outline the main
ingredients of the AOP framework. The bulk of the paper then describes
progress made to date towards realizing the concept. In Section 4, I discuss
the mental categories that are essential to AOP, and as many of the details
involved in formalizing those that are needed for the remainder. In Section 5,
I discuss a general family of agent interpreters. In Section 6, I define a
simple programming language called AGENT-0, and its specific interpreter.
In Section 7, I briefly discuss the process of "agentification", or transforming
an arbitrary device into a programmable agent. In Section 8, I discuss related
work by others in AI. Finally, in the last section I discuss some of the
directions in which the work described here can be extended.

2. Two scenarios

Below are two scenarios. The first is fairly complex, and illustrates the
type of future applications envisioned. The second is a toy example, and
serves three purposes: It illustrates a number of AOP ideas more crisply, it
is implementable in the simple language defined later in this article, and it
illustrates the fact that agents need not be robotic agents.

2. I. Manufacturing automation

Alfred and Brenda work at a car-manufacturing plant. Alfred handles
regular-order cars, and Brenda handles special-order ones. The plant has a
welding robot, Calvin. The plant is controlled by a coordinating program,
Dashiel. The following scenario develops, involving communication between

58 Y. Shoham

Alfred, Brenda, Calvin, and Dashiel. It contains communica t ion acts such
as informing, requesting, committ ing, permitting, and commanding, and
requires agents to reason about the beliefs, capabilities, and commitments
of other agents.

• 8:00: Alfred requests that Calvin promise to weld ten bodies for him
that day: Calvin agrees to do so.

• 8:30: Alfred requests that Calvin accept the first body, Calvin agrees,
and the first body arrives. Calvin starts welding it and promises Alfred
to notify him when it is ready for the next body.

• 8:45: Brenda requests that Calvin work on a special-order car which is
needed urgently. Calvin responds that it cannot right then, but that it
will when it finishes the current job, at approximately 9:00.

• 9:05: Calvin completes welding Alfred's first car, ships it out, and offers
to weld Brenda's car. Brenda ships it the car, and Calvin starts welding.

• 9:15: Alfred enquires why Calvin is not yet ready for his (Alfred's) next
car. Calvin explains why, and also that it (Calvin) expects to be ready
by about 10:00.

• 9:55: Calvin completes welding Brenda's car, and ships it out. Brenda
requests that it reaccept it and do some painting, but Calvin refuses,
explaining that it does not know how to paint. Calvin then offers to
weld another car for Alfred, and proceeds Io weld Alfred's cars for a
while.

• 1 2 : 1 5 : Brenda requests that Calvin commit to welding four more special-
order cars that day. Calvin replies that it cannot, since that conflicts
with its commi tmen t to Alfred, who still has six unwelded cars. Brenda
requests Alfred to release Calvin from its commi tment to Alfred. Alfred
refuses. Brenda requests that Dashiel (remember Dashiel?) order Calvin
to accept her important request and revoke its conlmitmcnt to Alfred.
Dashiel orders Calvin to weld two of Brenda's cars, and then as many
of Alfred's as t ime allows.

• 3:30: Calvin senses it is low on lubricant, and, without interrupting its
work, asks Alfred for when the next lubrication is scheduled. Alfred
responds that he doesn' t know, but that Dashiel should know. Calvin
asks Dashiel, who informs it that the next lubrication is scheduled for
4:00. Since that is sufficiently soon, Calvin continues to weld.

2.2. ,4irline reservat ion

This example is a minor modificat ion of one due to John McCarthy
[48], who uses it to illustrate his Elephant2000 programming language (see
Section 8). The example involves three agents: a passenger P, an airline
clerk C, and C's supervisor S. P and S are human, and C is a program (or
is it the other way around? Or perhaps all three are programs?). Note that

Agent-oriented programming 59

by confirming a reservation the airline enters into a commi tmen t to issue a
boarding pass to the passenger at the appropriate time. Again, the following
exchange involves requesting (a query is a request to inform), informing,
permitt ing, and denying, as well as mental components such as knowledge

and commitment .

March
• P to C: Please inform me what flights you have from San Francisco to

New York on April 18.
• C to P: Flight ~354 departs at 08:30, flight ~293 departs at 10:00, flight

~441 departs at noon
• P to C: Please book me on ~354.
• C to P: That is sold out.
• P to C: Please book me on #293.
• C to P: That is confirmed; your reservation number is 112358.
• P to C: Please book me also on ~441.
• C to P: That conflicts with :~293: I am not allowed to double book a

passenger.
• P to C: Please get permission to do so.
• C to S: I request permission for the following double booking: . . .
• S to C: Permission denied.
• C to P: Sorry, I cannot get approval.

April 18, at the airport
• P to C: My name is P; I have a reservation for flight Z~293.
• C to P: Here is your boarding pass.

3. Overview of the AOP framework

A complete AOP system will include three pr imary components:

• a restricted formal language with clear syntax and semantics for describ-
ing mental state; the mental state will be defined uniquely by several
modalities, such as belief and commitment ;

• an interpreted programming language in which to define and program
agents, with primit ive commands such as REQUEST and INFORM; the
semantics of the programming language will be required to be faithful
to the semantics of mental state;

• an "agent i f ier ' , convert ing neutral devices into programmable agents.

In this article I will fall short of supplying a complete system. My main
purpose in this article is to discuss the second component . However, since
it relies in part on the first one, I will start with a short discussion of
mental state. I will limit discussion of logic to the min imum needed for the

60 Y. Shoham

discussion of the interpreter. There is, however, substantial literature on the
logic of various mental categories, and I will provide references to it.

In contrast to the first two components, of which 1 have relatively good
understanding, the third component is still somewhat mysterious to me, and
I will discuss it only briefly at the end.

4. Mental categories and their properties

The first step in the enterprise is to define the various components of
mental state and their properties. There is not a unique "correct" selection
of mental categories, nor a correct theory regarding them, as different appli-
cations can be expected to call for specific mental properties. 4 In this section
I will discuss what could be viewed as a bare-bones theory of mental state,
a kernel that will in the future be modified and augmented (for in-depth
treatment within our research group of various logical aspects of mental
state, see [14,43,69,73]).

4. I. Components of mental state

In related past research by others in AI (see Section 8), three modalities
were explored: belief, desire, and intention (giving rise to the pun on BDI
agent architectures). Other similar notions, such as goals and plans, were
also pressed into service. These are clearly important notions; however, I
propose starting with a slightly different set of modalities, which are more
modest and, I find, more basic.

By way of motivation, here is an informal view of the world which
underlies the selection. At any point in time, the future is determined by
two factors: The past history, and the current actions of agents. For example,
past history alone does not (in this view) determine whether I raise my
arm; that is determined by whether in fact I take the appropriate action.
The actions of an agent are determined by its decisions, or choices'.5 In
other words, some facts are true for natural reasons, and other facts are true
because agents decided to make them so. Decisions are logically constrained.
though not determined, by the agent's beliefs: these beliefs refer to the state
of the world (in the past, present, or future), to the mental state of other
agents, and to the capabilities of this and other agents. For example, given
that the robot believes that it is incapable of passing through the narrow
doorway, it will not decide to go through it. Decisions are also constrained

4In this respect our motivation here deviates from that of philosophers. However, l believe
there exist sufficient similarities to make the connection between AI and philosophy mutually
beneficial.

5The term choice is somewhat ambiguous: I discuss various senses of choice later.

Agent-oriented programming 61

by prior decisions; the robot cannot decide to be in Room 5 in five minutes
if it has already decided to be in Room 3 at that time.

This perspective motivates the introduction of two basic mental categories,
belief and decision (or choice), and a third category which is not a mental
construct per se, capability. These are precisely the categories I will adopt,
with one modification: rather than take choice as basic, I will start with
the notion of obligation, or commitment, and will treat decision simply as
obligation to oneself.

By restricting the components of mental state to these modalities I have
in some informal sense excluded representation of motivation. Indeed, I will
not assume that agents are "rational" beyond assuming that their beliefs,
obligations and capabilities are internally and mutually consistent. This
stands in contrast to the other work mentioned above, which makes further
assumptions about agents acting in their own best interests, and so on. Such
stronger notions of rationality are obviously important, and I am convinced
that in the future we will wish to consider them. However, neither the
concept of agenthood nor the utility of agent-oriented programming depend
on them.

In the remainder of this section I will describe the various modalities in
more detail. My goal here is not to provide a comprehensive analysis of
them; that is the subject of the papers mentioned earlier. Here I will discuss
them only to the extent that they bear on the development of the interpreter
defined later.

4.2. A language for belief obligation, and capability

Time
Time is basic to the mental categories; we believe things both about dif-

ferent times and at different times, and the same is true of other modalities.
We will adopt a simple point-based temporal language to talk about time; a
typical sentence will be

holding (robot, cup) t

meaning that the robot is holding the cup at time t.

Action
Actions take place at different points in time, and, depending on the

circumstances at the time they are taken, have certain effects. However,
for the purposes of this article, we will not distinguish between actions
and facts, and the occurrence of an action will be represented by the
corresponding fact holding. For example, strictly speaking, rather than say
that the robot took the action ra ise-arm at time t, we will say that the
sentence ra ise-arm(robot) t is true. (However, to retain the agency behind

62 Y. Shoham

the action, we will introduce the notion of decision; see below.) Given that

actions are facts, they too are instantaneous. This too is a l imitation in the
current language.

There is substantial l i terature on representing action; the best-known
representat ive in AI is the situation calculus [50]. There are a number of
proposals to allow time, durational facts, and durational actions all in the
same language. In fact, in [42] we represent t ime and parallel action in the
situation calculus itself. However, the details arc somewhat involved, and
these extensions are not essential to the current discussion. Nonetheless,
since actions are such a natural concept, in the programming language
discussed later we will introduce them as syntactic sugar.

Belie[
We now augment the language with a modal operator B, denoting belief.

As ment ioned above, an agent believes things both at certain times and
about certain times. The general form of belief s tatement is

where a is an agent, t a t ime term, and ~0 a (recursively defined) sentence.
For example, B] B ~ ° l i k e (a , b) 7 wi l l mean that at t ime 3 agent a believes that
at t ime 10 agent b will believe that at t ime 7 a liked b.

Obligation
So far I have used largely well-known notions: Temporal languages are

s tandard fare, operators denoting belief common, and their combinat ion,
although somewhat novel, is straightforward. We now depart more radically
f rom past constructions and introduce a new modal operator, OBL. OBL has
one more argument than B:

DBL~,t,CP

will mean that at t ime t agent a is obligated, or commit ted, to agent b about
~0. Notice that, since actions are represented simply as facts, the agent is
obligated to a fact holding rather than to taking action.

Decision (choice)
The f reedom to choose among several possible actions is central to the

notion of agenthood, 6 and earlier on in the research we indeed took decision,
or choice, to be a primit ive notion. The current definit ion of obligation
provides an alternative, however: decision is defined to be simply obligation,
or commitment , to oneself."

6To quote Isaac Bashevis-Singer, "We must believe in free will; you see, we have no choice."

Agent-oriented programming 63

D E C ~ = d e f GBL~,aN"

Again, the term "choice" carries many connotations, and I emphasize that I
mean it in the sense of "decision"; an agent has chosen something if it has
decided that that something be true. Thus, most of us can decide to own a
new pair of shoes, but few of us can decide to own yacht.

Capability
Int imately bound to the notion of agenthood is also that of capability.

1 may decide to move my arm, but if I am not capable of it then it will
not move. I will not decide to do anything I believe myself incapable of.
Similarly, I will not request a two-year-old, nor a mobile robot, to climb a
ladder, since I do not believe they are capable of it.

It is debatable whether capability is best defined in mental terms or not.
For example, one definit ion would say that agent a is capable of ~0 just in
case the following is true: If a were to decide ~, then ~0 would be true.
There are also reasonable philosophical arguments against this definit ion
(cf. [5,8,19]). Here I will simply introduce the notat ion

CANOe

to represent the fact that at t ime t a is capable of ¢0. We will place certain
constraints on such sentences, but not take a stance on whether CAN is
reducible to mental notions or not. 7 Note that, like the other modalities,
capabilities refer to specific times; a typical sentence is

CANrSobot open (door) 8.

Thus at t ime 5 the robot might be able to ensure that the door is open
at t ime 8, but at t ime 6 it might no longer have that capability. We may
define ABLE to be the " immedia te" version of CAN. First, for any sentences
(p, we define time(~o) to be the outermost t ime occurring in it; for example,
time(open(door) t) = titne(B~do) = t . We now define ABLE as follows:

~_..time(~o)
ABLEa~ 0 = d e f UANa ~9,

and thus

ABLErobot open (door) 5 _ CANrSobo,.open (door) 5.

7However, Thomas [73] does take a stance; capability is taken to be a primitive notion
defined in terms of future-branching structures, not reducible to other notions. This is in the
spirit of recent philosophical treatments of agency [5,8,19] mentioned earlier.

64 K Shoham

4.3. Properties o f the various components

I have so far not placed any constraints on the various modalities defined,
and therefore have not guaranteed that they in any way resemble their
common sense counterparts. We will now place such constraints. Just as there
is no objectively "right" collection of mental categories, there is no "right"
list of properties for any particular mental category. It was already stated in
the introduction that the correspondence between the formal definition and
common sense will always be only approximate, and that we would like to
strike a balance between common sense and utility. Indeed, I expect different
applications of AOP to call for different properties of belief, commitment,
and capability. In this section I will define a number of properties I assume
about the modalities. These properties are quite weak, but they are sufficient
to justify the terminology, and necessary for the design of the interpreter. The
weakness of the assumptions ensures that the interpreters apply to a wide
variety of applications. Still, even these assumptions will be inappropriate
for some purposes, in which case a new type of interpreter will be required.

Internal consistency
We assume that both the beliefs and the obligations are internally consis-

tent. Specifically, we assume:

• for any t,a: {~0: B.taq~} is consistent;
• for any t,a: {rp: OBLtl,(fl for some b} is consistent.

Good ,faith
We further assume that agents commit only to what they believe them-

selves capable of, and only if they really mean it:

• for any t , a , b , (0 " OBL~,j,~o D Bt((ABLEa(P) A ~) .

In trospection
Although in general we do not assume that agents have total introspective

capabilities, we do assume that they are aware of their obligations:

• for any t , a , b , { o : OBL~bq~ ~- BtaOBL~l,{0;

• for any t ,a,b,{o: ~OBL~,~ ~ B~OBL!'~b{o.

On the other hand, we do not assume that agents are necessarily aware of
commitments made to them.

Persistence o f mental state
We have only placed restrictions on mental attitudes at a single instant of

time. We conclude this section by discussing how mental states change or

Agent-oriented programming 65

persist over time. However, unlike in the previous discussion, we will not
place precise constraints, but rather informal guidelines.

Consider, for example, belief. Our restrictions so far allow agents which at
one time believe nothing at all, shortly afterwards have a belief about every
sentence, and then again become quite agnostic. Common sense suggests that
beliefs tend to be more stable than that, and it would indeed be difficult
to rely on the behavior of agents with such volatile beliefs. We will now
place a strong condition on belief; we will assume that agents have perfect
memory of, and faith in, their beliefs, and only let go of a belief if they
learn a contradictory fact. Beliefs therefore persist by default. Furthermore,
we will assume that the absence of belief also persists by default, although
in a slightly different sense: if an agent does not believe a fact at a certain
time (as opposed to believing the negation of the fact), then the only reason
he will come to believe it is if he learns it.

How to formally capture these two kinds of default persistence is another
story, and touches on issues that are painfully familiar to researchers in
nonmonotonic temporal reasoning and belief revision. In fact, a close look
at the logical details of belief (or knowledge) persistence reveals several very
subtle phenomena, which have so far not been addressed in the literature
[431.

Obligations too should persist; they wouldn't be obligations otherwise.
As in the case of belief, however, the persistence is not absolute. Although
by default obligations persist, there are conditions under which obligations
are revoked. These conditions presumably include explicit release of the
agent by the party to which it is obligated, or alternatively a realization
on the part of the agent that it is no longer able to fulfill the obligation.
(In their discussion of the persistence of commitment, Cohen and Levesque
[9] actually propose a more elaborate second condition, one that requires
common knowledge by the committer and committee of the impossibility;
however further discussion of their position and arguments against it would
be too long a detour; see a brief discussion of their work in Section 4.4.)

Since decision is defined in terms of obligation, it inherits the default
persistence. Notice, however, an interesting point about the persistence of
decision: While an agent cannot unilaterally revoke obligations it has to-
wards others, it can cancel obligations held towards it--including obligations
it holds towards itself, namely decisions. An agent is therefore free to mod-
ify an existing decision, but unless he explicitly does so the decision will
stand.

Finally, capabilities too tend to not fluctuate wildly. In fact, in this
document I assume that capabilities are fixed: What an agent can do at
one time it can do at any other time. However, I will allow to condition a
capability of an action on certain conditions that hold at the time of action.

66 E Shoham

The contextual nature o,/;nodal statements
I have throughout the discussion talked of ~'unequivocal" statements re-

garding beliefs, obligations, and capabilities. Common sense, however, sug-
gests that each of these modalities is context-sensitive: I can print the
document right now, but only in the context of the network being up; I am
obligated to you to finish the work by tomorrow, but if my child has just
been rushed to hospital then all bets are off (even though 1 am still capable
of finishing the work). Indeed, McCarthy has argued that all statements,
not only modal ones, should be viewed in context [49]. Although I agree
in principle, and discuss it further in [68], in this article I will ignore the
issue of context sensitivity.

4.4. A short detour: comparison with Cohen and Levesque

In several publications (e.g., [9,10]) Cohen, Levesque, and several asso-
ciates have investigated the logical relationships between several modalities
such as the above-mentioned ones. As mentioned earlier, I have deferred
discussion of related work to a later section. However, since there is room
for confusion between Cohen and Levesque's definitions of mental cate-
gories and our own, I will make an exception in this case. The reader may
skip this subsection, although I believe the discussion may provide further
intuition about our definition as well as Cohen and Levesque's.

Cohen and Levesque employ two basic modalities, BEL (belief) and G
(goal, or choice). Although these bear a resemblance to our belief and
choice modalities, important differences exist. Their belief modality is really
the same as ours, except that they are not as explicit about its temporal
aspect. In their language, one may use the O tense operator to specify that
"Sometime in the future an agent will believe a fact" or "Sometime in the
future the agent will believe a fact either about that time or about a time
yet further into the future", but one is not able to talk about (e.g.) the agent
believing in the future something about the past. This capability could be
achieved by adding other tense operators, if the authors insisted on a tense
logic. 8

The primary intuition offered about the G modality is that it denotes
choice ("Consider the desire that the agent has chosen to pursue as put into
a new category. Call this chosen desire, loosely, a goal"). However, I have
already noted that the term "choice" is multi-faceted, and indeed G is quite
different from our DEC. For Cohen and Levesque, the choices of an agent
constitute a consistent subset of the agent's desires, those that the agent

8However, the authors do find it necessary to mention explicit dates, which they represent by
proposit ions such as "'1/1/90/12:00". That being the case. I do not see the utility of retaining
the lense operators.

Agent-oriented programming 67

has adopted as goals. In contrast, our 0BL modality (and hence the derived
DEC modality) reflects absolutely no motivation of the agent, and merely
describes the actions to which the agent is obligated.

The difference in senses is the difference between a decision to act and
a decision to pursue a goal. This difference is reflected in the different
interactions between choice (or decision) and belief. In our construction,
obligation (and therefore also decision) implies belief: DEC~p D B~p (if
an agent decides on an action he believes it will take place). The con-
verse implication does not hold in our construction (the agent may believe
that the sun will rise tomorrow without making a choice in this regard).
For Cohen and Levesque, on the other hand, belief does imply choice:
(BEL a p) D (G a p) (see, e.g., their Proposition 17). The intuition there
is that the G modality specifies possible worlds chosen by the agent, and these
worlds are selected among the ones the agent believes are possible; therefore
if a fact is true in all worlds believed possible by the agent, it must be true in
the subset he selects. Note that both senses of choice guarantee that an agent
does not choose something he believes impossible: both DEC~D D ~B.ta~p and
(G a p) D ~(BEL a ~p) hold in the respective systems.

Both senses of choice are worthwhile, although one can imagine other
ways of capturing a decision to pursue a goal. In particular, I am not sure
that it is best to use a single operator to capture both "having a goal" and
"deciding to adopt a goal". For example, it may prove advantageous to start
with a G modality denoting "having a goal", and define "goal adoption" by
DgC~G(a,p) (with the appropriate temporal arguments added). However, I
have deliberately avoided such more complex notions in this document as
they are not needed for the fundamentals of AOP, and will not pursue the
issue further.

In summary, the pioneering work of Cohen and Levesque introduces
mental categories that are different from ours. The two frameworks share the
essential view of belief and time. They each introduce modalities absent from
the other: obligation and capability in our framework, goals and intentions
in theirs. Even two notions that at first appear to be similar--our decision
and their choice--turn out to be quite different.

5. A generic agent interpreter

In the previous section I discussed the first component of the AOP
framework, namely the definition of agents. I now turn to the central topic of
this paper, the programming of agents. In this section I will outline a generic
agent interpreter. In the next section I describe a specific programming
language and its implemented interpreter.

68 Y. Shoham

The role of agent programs is to control the evolution of an agent's mental
state; actions occur as a side-effect of the agent's being committed (that is,
obligated) to an action whose time has come. Since the mental state of
agents is captured in a formal language, it might be tempting to view AOP
as a form of logic programming. In this view, the program would consist of
logical statements about the mental state of the agent, and through a process
of theorem proving the mental state at each point in time will be determined.
However, this is not what I intend; although it might be possible in principle
to develop such a programming language, 9 multi-modal temporal theorem
proving is sufficiently daunting to discourage me from attempting it at
this point. Instead, I will allow standard operationally-defined languages:
indeed, I will define such a language myself in the next section. These
languages, however, will include data structures which represent various
logical sentences (for example, those denoting beliefs and commitments),
and the (extra-logical) operations on these data structures will be required
to obey the properties of the various logical operators. For example, no two
data structures denoting contradictory beliefs may be instantiated by the
interpreter at the same time.

The basic loop
The behavior of agents is, in principle, quite simple. Each agent iterates

the following two steps at regular intervals:

(1) read the current messages, and update your mental state, including
your beliefs and commitments (the agent program is crucial for this

update);
(2) execute the commitments for the current time, possibly resulting

in further belief change (this phase is independent of the agent's
program).

Actions to which agents can be committed include communicative ones
such as informing and requesting, as well as arbitrary "private" actions. The
process is illustrated in Fig. 1; dashed arrows represent flow of data, solid
arrows temporal sequencing.

Assumption about message passing
Agent programs will include, among other things, communication com-

mands. In order that those be executable I will assume that the platform is
capable of passing messages to other agents addressable by name, whether
those reside in the same machine or in others. The programming language

91ndeed an early design of agent programs by Akahani was entirely in the style of logic
programming.

Agent-oriented programming 69

initialize mental state
and capabilities;

define rules for
making new commitments

-t

update

mental

state

incoming messages

F

I
I
I

I
I
I I
I I

I I l
I I _cute F_J,

commitments ______J outgoing messages
for current time ~p.

[A~d: control ~'~ ----dat--a ~

Fig. 1. A flow diagram of a generic agent interpreter.

will define the form of these messages, and the interpreter will determine
when messages are sent.

Assumption about the clock
Central to the operation of the interpreter is the existence of a clock; agents

are inherently "real-time" (to use another overloaded term). The main role
of the clock is to initiate iterations of the two-step loop at regular intervals
(every 10 milliseconds, every hour, etc.); the length of these intervals,
called the "time grain", is determined by the settable variable timegrain. I
do not discuss the implementation of such a clock, which will vary among
platforms, and simply assume that it exists. We also assume a variable now,
whose value is set by the clock to the current time in the format defined in
the programming language (an integer, date:hour:minute, etc.).

In the remainder of the description we make the very strong assumption
that a single iteration through the loop lasts less than the time grain; in future
versions of the language we will relax this assumption, and correspondingly
will complicate the details of the loop itself.

Of course, the fact that agents use the same temporal language does not

70 Y. Shoham

ensure that their clocks are synchronized. If all agents are running on the
same machine there will be no problem, but otherwise the possibility of
clock drift exists. Although synchronization does not impact the design and
programming of single agents, it is crucial for ensuring that a society of agents
is able to function usefully. Fortunately, there exist synchronization protocols
which ensure limited drift among clocks (for an overview, see [65]), and
we expect to use these in our applications. However, since the focus in this
article is on the design of single agents, I will not discuss this issue further.

6. AGENT-0, a simple language and its interpreter

Agent interpreters may vary along many dimensions, and in general pose
many challenging problems. In this section I describe a particular program-
ming language called AGENT-0, whose interpreter is an extremely simple
instance of the generic agent interpreter. In fact, the simplifications em-
bodied in AGENT-0 are so extreme that it may be tempting to dismiss it
as uninteresting. However, it was recognized early on that one would not
gain good insight into the strengths and weaknesses of AOP without writing
actual programs. It was decided therefore to implement a simple interpreter
first, and design more complex languages and interpreters based on this ex-
perience. It turned out the design of AGENT-0 itself posed some challenges,
and we have been surprised by the diversity of applications that even this
simple language admits. Furthermore, AGENT-0 is designed in a way that
suggests obvious extensions; a few are being currently pursued, and will be
described in the last section.

6.1. The syntax of AGENT-O

In the programming language itself one specifies only conditions for mak-
ing commitments; commitments are actually made, and later carried out,
automatically at the appropriate times (see discussion of the interpreter in
Section 6.2 below). Commitments are only to primitive actions, those that
the agent can directly execute. In other words, in AGENT-0 an agent cannot
commit to achieving any condition which requires some sort of planning.
Before we define the syntax of commitments we need a few preliminary
definitions. I will first develop the syntax of AGENT-0 in a bottom-up fash-
ion, and then summarize it in BNF notation. The reader may wish to refer
forward to the formal definition while reading the following description.

Fact statements
Fact statements are fundamental to AGENT-0; they are used to specify

the content of actions as well as conditions for their execution. Fact state-

Agent-oriented programming 71

ments constitute a tiny fragment of the temporal language described earlier;
they are essentially the atomic objective sentences (that is, no conjunc-
tion or disjunction, nor modal operators). Typical fact statements will be
(t (employee smith acme)) and (NOT (t (employee jones acme))).

Private and communicative action statements
Agents commit to action, and so we now specify what actions are. We

make two orthogonal distinctions between types of action: Actions may be
private or communicative, and, independently, they may be conditional or
unconditional.

The syntax for private actions is

(DO t p-action)

where t is a time point and p-ac t ion is a private action name. Private
action names are idiosyncratic and unconstrained; a database agent may
have retrieval primitives, a statistical computation agent may run certain
mathematical procedures, and a robot may serve itself. The effects of private
actions may be invisible to other agents, as in the database example, but
need not be so, as in the robot example.

Private actions may or may not involve IO. Communicative actions, on
the other hand, always involve IO. Unlike private actions, communicative
actions are uniform, and common to all agents. While in a general AOP
system we can expect many types of communicative action, the restricted
version AGENT-0 has only three types of communicative action: informing,
requesting, and cancelling a request.

The syntax of informing is

(INFORM t a fact)

where t is a time point, a is an agent name, and fac t is a fact statement.
Note that t is the time at which the informing is to take place, and fac t
itself contains other temporal information, as in (INFORM 5 b i (employee
smith acme))).

The syntax of requesting is

(REQUEST t a action)

where t is a time point, a is an agent name, and ac t ion is an ac-
tion statement, defined recursively. So, for example, (REQUEST 1 a (DO 10
update-database)) constitutes a legitimate request. Again, one should dis-
tinguish between the time at which the requesting is to be done (l, in
this example) and the time of the requested action (10, in the example).
Requests can be embedded further, as in

(REQUEST 1 a (REQUEST 5 b (INFORM I0 c fact))).

72 Y. Shoham

The syntax of cancelling a request is:

(UNREQUEST t a a c t i o n)

where t is a t ime point, a is an agent name, and a c t i o n is an action
statement.

The last uncondi t ional action in AGENT-0 is really a nonaction. Its syntax

is:

(REFRAIN action)

where a c t i o n is an action statement. The role of refraining will be to prevent
commi tmen t to particular actions.

Conditional action statements

In AGENT-0 we distinguish between commitments for condit ional actions,
which include condit ions to be tested right before acting, and condit ions for
entering into commitments in the first place. I now discuss only condit ional
actions, and will discuss condit ions for entering into commitments later.

Condi t ional actions rely on one form of condit ion, called a mental con-

dition. Mental condit ions refer to the mental state of the agent, and the
intuit ion behind them is that when the t ime comes to execute the action,
the mental state at that t ime will be examined to see whether the mental
condit ion is satisfied. For this reason the agent- and t ime-components of
the mental state are implicit and can be omit ted in the specification of
mental conditions. A mental condit ion is thus any combinat ion of modal
s tatements in the temporal -modal language, with the pr imary "agent" and
" t ime" arguments omitted.

Specifically, a mental condit ion is a logical combinat ion of mental patterns.

A mental pattern is one of two pairs:

(B fact) or ((CMT a) action)

where f a c t is a fact statement, a is an agent name, and a c t i o n is an action
s ta tement (we use the term CMT rather than 0BL since, for historical reasons,
this is the notat ion used in the actual implementa t ion) . An example of a
mental pat tern is (B (t (employee smith acme))) .

Given the syntax of mental conditions, the syntax of a condit ional action

is

(IF mntlcond action)

where mntlcond is a mental condit ion and a c t i o n is an action statement.
An example of a condit ional action is

(IF (B (t' (employee smith acme)))

(INFORM t a (t' (employee smith acme)))).

Agent-oriented programming 73

The intuitive reading of this action is "if at time t you believe that at time
t ' smith is an employee of acme, then at time t inform agent a of that fact".

As was said, mental conditions may contain logical connectives. These
connectives are AND, OR, and NOT. The following three actions illustrate the
use of NOT; together they constitute a QUERY about whether f ac t is true (b
is the one being queried, a is the one he is asked to inform):

(REQUEST t b (IF (B,fact) (INFORM t+l a fact))).

(REQUEST t b (IF (B (NQT fact))

(INFORM t+l a (NOT fact)))).

(REQUEST t b (IF (NOT (BW fact))

(INFORM t+l a

(NOT (t+l (BW a fact)))))). 10

Variables
In the style of logic programming and production systems, in AGENT-0

procedures are invoked in a pattern-directed fashion. Specifically, we will
see that commitment rules are "activated" based on certain patterns in the
incoming messages and current mental state. Variables play a crucial role in
these patterns.

A variable is denoted by the prefix "?". Variables may substitute agent
names, fact statements, or action statements. Thus the following is a legiti-
mate conditional action:

(IF (NOT ((CMT ?x) (REFRAIN sing))) sing).

In the tradition of logic programming, variables in action statements (in-
cluding the mental condition part) are interpreted as existentially quantified.
The scope of the quantifier is upwards until the scope of the first NOT, or it is
the entire statement, if the variable does not lie in the scope of a NOT. Thus
the last statement reads informally as "if you are not currently committed
to anyone to refrain from singing, then sing".

It is advantageous to allow other quantifiers as well. The one quantifier
included in AGENT-0 is a limited form of the universal quantifier, but
in the future others, such as the "latest (earliest) time point such that"
quantifier, may be introduced. The universally-quantified variables will be
denoted by the prefix "? !". The scope of these variables is always the entire
formula, and thus the conditional action

(IF (B (t (emp ?!x acme)))
(INFORM a (t (emp ?!x acme))))

10BW is the "believe whether" operator, defined by (t (BW a p)) _= (t (B a p)) V (t (B a
(NOT p))) .

74 Y. Shoham

results in informing a of all the individuals who the agent believes to be
acme employees. II

Having discussed action statements, we can now finally discuss the type of
statements that actually appear in the program, namely commitment rules.

Commitment rules
Since action statements contain information about what needs to be done,

about when it needs to be done, and even the preconditions for doing it,
one might have expected a collection of action statements to constitute a
program. However, there is another crucial layer of abstraction in AGENT-
0. Most of the action statements are unknown at programming time; they
are later communicated by other agents (one of which may be the "user",
in situations where that concept is applicable). The program itself merely
contains conditions under which the agent will enter into new commitments.
Some of these conditions may be trivial, resulting in a priori commitments,
but most commitments will be in response to messages.

The conditions under which a commitment is made include both mental
conditions, discussed above, and message conditions, which refer to the
current incoming messages. A message condition is a logical combination of
message patterns. A message pattern is a triple

(From Type Content)

where From is the sender's name, Type is INFORM, REQUEST, or UNREQUEST,

and Content is a fact statement or an action statement, depending on
the type. The other information associated with each incoming message, its
destination and arrival time, are implicit in this context and are thus omitted
from the message pattern (of course, the Content will include reference to
time, but that is the time of the fact or action, not the arrival time of the
message). An example of a message pattern is (a INFORM f a c t) , meaning
that one of the new messages is from a informing the agent of fac t . An
example of a more complex message condition is

(AND (a REQUEST (DO t walk))

(NOT (?x REQUEST (DO t chew-gum)))),

m e a n i n g tha t t he re is a new message f rom a r e que s t i ng the agent to walk,

and there is no new request from anyone that the agent chew-gum.

T h e syn t ax o f a c o m m i t m e n t rule is

(COMMIT msgcond mntlcond (agent action)*)

11This feature of AGENT-0 was not included in its actual implemenlation, described below.

Agent-oriented programming 75

where m s g c o n d and r0_nt lcond are respectively message and mental conditions,
agent is an agent name, ac t ion is an action statement, and * denote
repetition of zero or more times, t2 Note that the action statement itself
may be conditional, containing its own mental condition.

An example of a simple commitment rule is

(COMMIT (?a REQUEST ?action)

(B (now (myfriend ?a))) 13

(? a ? a c t i o n))

Finally, a program is simply a sequence of commitment rules, preceded
by a definition of the agent's capabilities and initial beliefs, and the fixing
of the time grain.

A BNF description o f the AGENT-O
Before describing the interpreter for AGENT-0 and providing an example,

let me summarize the discussion of the syntax by giving its BNF definition.
(In accordance with standard conventions, * denotes repetition of zero or
more times.)

<program> ::=

<commitrule> ::=

<msgcond> ::=

<msgcon3> ::=

<msgpattern> ::=

<mntlcond> ::=

<mntlconj> ::=

<mntlpattern> ::=

<action> : : =

timegrain := <time>

CAPABILITIES := (<action> <mntlcond>)*

INITIAL BELIEFS := <fact>*

COMMITMENT RULES := <commitrule>*

(COMMIT <msgcond> <mntlcond>

(<agent> <action>)*)

<msgconj> I (0R <msgconj>*)

<msgpattern> I (AND <msgpattern>*)

(<agent> INFORM <fact>) I

(<agent> REQUEST <action>) J

(NOT <msgpattern>)

<mntlconj> i (OR <mntlconj>*)

<mntlpattern> r (AND <mntlpattern>*)

(B <fact>) i ((CMT <agent>) <action>

(NOT <mntlpattern>)

(DO <time> <privateaction>)

(INFORM <time> <agent> <fact>)

(REQUEST <time> <agent> <action>)

12For no good reason, the actual implementation described below allows only one agent-
action pair.

13now is a global variable that evaluates to the current time. The reader might have expected
other conditions, such as the absence of contradictory prior commitments. However, as is
explained below in Section 6.2, these conditions are verified automatically by the interpreter
and therefore need not be mentioned explicitly by the programmer.

76 Y. Shoham

<fact>

<time>

<time-constant> ::= m I h]

(UNREQUEST <time> <agent> <action>)

(REFRAIN <action>)

(IF <mmt icond> <action>)

::= (<time> (<predicate> <arg>*))

::= <integer> I now I <time-constant> I

(+ <time> <time) I (- <time> <time>)

(x <integer> <time>)

; Time may be a <variable> when

; it appears in a commitment rule

d I y

<agent>

<predicate>

<arg>

<variable>

; m (m i n u t e) = 60 , h (h o u r) 3 6 0 0 , e t c .

::= <alphanumeric_string>] <variable>

::= <alphanumeric_string>

::= <alphanumeric_string> i <variable>

::= ?<alphanumeric_string>] ?!<alphanumeric_string>

A note about time: The programming language allows use of symbolic
dates and times; in the actual implementation, described below, each date is
represented internally by the number of seconds that have passed since 1900.

6.2. The AGENT-O interpreter

Since it is an instance of the generic interpreter, the AGENT-0 interpreter
inherits its two-step loop design. However, since in AGENT-0 the mental
state is made up of three specific components, one of which (capabilities)
is fixed, the first step in the loop may be specialized as follows:

(la) Update the beliefs.
(lb) Update the commitments.

We now look at the various substeps in more detail.

Updating beliefs and commitments
In AGENT-0 the beliefs, commitments, and capabilities of an agent are

each represented by a database. The belief database is updated either as a
result of being informed, or as a result of taking a private action. There
is little to say about the latter; a database agent will come to believe a
fact after performing a retrieval operation, and a robotic agent will come
to believe something after performing a visual routine. These updates are
implemented by the analogue of brain surgery, that is, by providing the
appropriate routines with the ability to directly modify the belief database.
More interesting is the former sort of update. In its full generality, the
assimilation of new information into an existing belief base poses difficult
problems, both semantical and algorithmic. It is not obvious what in general

Agent-oriented programming 77

the semantics of this assimilation should be. Indeed, normative theories have
been proposed for at least two different sorts of assimilation, revision [21]
and update [35], and a number of new results on these operations have
recently been discovered.

Beside the semantical issue, one is faced with an algorithmic one as
well. Consider a given database F and a new fact ?. Most theories of belief
assimilation require that, if ? is consistent with 1-, then assimilation amounts
to simply adding q~ to F. But checking consistency for unconstrained theories
is a notoriously hard problem, either intractable (in the propositional case)
or undecidable (in the first-order case). Furthermore, if ~a is inconsistent
with F, most theories of assimilation require that F be "minimally" modified
so as to restore consistency, and this is even a harder problem. What then
are we to do?

There are at least to approaches to getting around the computational
complexity. The first is to relax the requirements, and adopt a heuristic
assimilation algorithm which compromises either soundness, or complete-
ness, or both. The second approach, which is the one taken in AGENT-0,
is to restrict the sentences in the languages sufficiently so that the problem
becomes tractable. In fact, as we have seen, AGENT-0 imposes an extreme
restriction, which is to disallow logical connectives other than negation (this
is in addition to disallowing modal operators, necessary for representing
nested beliefs such as "I believe that you believe . . .") . This makes the
consistency checking trivial--at most linear in the size of the database, and
much less with good data structuring.

This still leaves open the question of what to do with new information.
We will ultimately require a theory of authority, which will dictate whether
or not new information is believed. However, in AGENT-0 agents are
completely gullible; they incorporate any fact of which they are informed,
retracting the contradictory atomic belief if that were previously held.

We now turn to the process of updating commitments. For that we
need to explain the structure of the commitment and capability databases.
Items in the database of commitments are simply pairs (agent action)
(the agent to which the commitment was made, and the content of the
commitment). Items in the database of capabilities are pairs (p r iva teac t ion
mntlcond). The mental condition part allows one to prevent commitment
to incompatible actions, each of which might on its own be possible. An
example of an item in the capability database is:

((!?time (rotate wheelbase ?degrees))
(NOT ((CMT ?x) ?!time (service wheelbase)))).

Existing commitments are removed either as a result of the belief change,
or as a result of IJNKEQUEST messages. Considering the former first, recall
that agents must believe in their ability to perform the actions to which they

78 Y. Shoham

are commit ted. Belief change may affect capabilities, since the capability of
each private action depends on mental preconditions. And thus whenever a
belief update occurs, the AGENT-0 interpreter examines the current com-
mitments to private actions, and removes those whose precondit ions in the
capability database have been violated. Exhaustive examinat ions of all cur-
rent commitments upon a belief change can be avoided through intelligent
indexing, but 1 will not pursue this opt imizat ion issue. It is recommended
that in such a case the agent add a commi tment to immediately inform the
agents to whom he was commit ted of this development , using commitment
rules, but AGENT-0 does not enforce this.

The handling of UNREQUEST messages is trivial: The agent removes the
corresponding item from the commi tmen t database if it exists, and otherwise
does nothing.

Note that the removal of existing commitments is independent of the
program. The addit ion of commitments , on the other hand, depends on the
program very strongly. The algorithm adding commitments is as follows:

Algorithm. Check all program commi tmen t statements; for each program
s t a t e m e n t (COMMIT msgcond i r m t l c o n d (at a c t i o n /) *) , if:

• the message condit ion msgcond holds of the new incoming messages,
• the mental condit ion mntlcond holds of the current mental state,
• for all i, the agent is currently capable of the ac t ion / , and
• for all i, the agent is not commit ted to REFRAIN a c t i o n / , and, i f a c t i o n i

is itself of the form REFRAIN a c t i o n ' / , the agent is not commit ted to

action~i,
then, for all i, commit to ai to perform action i.

Although I am not explicit about it here, it is clear what it means for the
message condit ions and mental condit ions to hold, given their definitions.
An agent is capable of an action under the following conditions:

• An agent can request and unrequest anything from anyone.
• An agent can inform anyone of a fact he (the agent) believes. An agent

can inform i t se l f of any fact whatsoever (this is useful to implement
reasoning in the agent: of course it presents a danger as well, and it is
up to the programmer of commi tment rules to prevent self-delusion).

• An agent is capable of any private action in the capability database
provided the mental condit ion associated in the database with that
private action holds at that time. 14

14This last mental condition is separate from the mental condition mntlcond mentioned
above; the one mentioned above is a condition for making a commitment regardless of
whether the agent is capable of the action: in contrast the mental condition currently discussed
determines whether the agent is capable of it in the first place.

Agent-oriented programming 79

• An agent can refrain from any action, provided he is not already
committed to that action.

• An agent can perform a conditional action (IF mntlcond act ion) if he
can perform ac t ion under the condition mntlcond.

Carrying out commitments
We have so far discussed the first of the two steps in each iteration of the

interpreter, updating the mental state. We now discuss the second step, which
is less complex by far. Recall that each commitment in the commitment
database has a time associated with it: (INFORM t a f a c t) , (IF mntlcond
(DO t p r i va t eac t i on)) , etc. In this second step the interpreter simply exe-
cutes all the actions whose time falls in the interval (now-timegrain, now].
The meaning of "execute" depends on the type of action:

• INFORM, REQUEST, UNREQUEST: Send the appropriate message.
• REFRAIN: No effect on execution (REFRAIN commitments play a role only

in preventing commitment to other actions).
• DO: Consulting the belief and commitment databases, check the mental

condition associated in the capability database with the primitive action;
if it holds then perform the primitive action.

• IF: Consulting the belief and commitment databases, test the mental
condition; if it holds then (recursively) execute the action.

6.3. A sample program and its interpretation

As an example of AGENT-0 programs, consider the flight-reservation
scenario described in Section 2. We now present an annotated program
implementing the airline representative. Although the scenario was simple
to begin with, here I simplify it further by ignoring the exchange relating
to the supervisor as well as other aspects of the communication. The idea
behind the program is that the relevant activity on the part of the airline is
issuing a boarding pass to the passenger, and that confirming a reservation
is in fact a commitment to issue a boarding pass at the appropriate time.

Since some of the low-level definitions are long, it will be convenient to
use abbreviations. We will therefore assume that AGENT-0 supports the
use of macros (the actual implementation, mentioned below, does not). We
define the following macros:

(issue_bp pass flightnum time)
(IF (AND (B ((- time h) (present pass)))

(B (time (flight ?from ?to flightnum))))
(DO time-h (physical_issue_bp pass flightnum time))).

Explanation: This no-frills airline issues boarding passes precisely one hour
prior to the flight; there are no seat assignments, physical_issue_bp is a

80 E Shoham

private action involving some external events such as printing a boarding
pass and presenting it to the passenger.

(query_which t asker askee q)

(REQUEST t askee (IF (B q) (INFORM (+ t i) asker q))).

Explanation: query_which requests only a positive answer; if q contains a
universally-quantified variable then query_which requests to be informed of
all instances of the answer to the query q.

(query_whether t asker askee q)

(REQUEST t askee (IF (B q) (INFORM (+ t I) asker q)))

(REQUEST t askee (IF (B (NOT q))

(INFORM (+ t i) asker (NOT q)))).

Explanation: query_whether expects either a confirmation or a disconfirma-
tion of a fact.

We now define the airline agent. To do so we need to define its initial
beliefs, capabilities, and commitment rules. Of the initial beliefs, the ones
relevant here refer to the flight schedule, and the number of available seats
for each flight. The former are represented in the form (time (f l i g h t from
to number)) (ignoring the fact that in practice airlines have a more-or-less
fixed weekly schedule), and the latter in the form (time (remaining_seats
t imel flight_number sea t s)) . We also assume that the agent can evaluate
arithmetic comparisons, such as 4>0.

There are two relevant capabilities here: Issuing boarding passes, and
updating the count of the available seats on flights. Thus the capability
database contains two items:

((issue_bp ?a ?flight ?time) true)

((DO ?time (update_remaining_seats ?timel ?flight_number
?additional_seats))

(B (?time (remaining_seats ?timel ?flight_number
?current_seats)))).

Explanation: update_remaining_seat is a private action which changes the
belief regarding remaining_seats.

Finally, the airline agent has two commitment rules:

(COMMIT (?pass REQUEST (IF (B,?p) (INFORM ?t ?pass ?p)))
true
?pass
(IF (B,?p) (INFORM ?t ?pass ?p)))

(COMMIT (?cust REQUEST (issue_bp ?pass ?flight ?time))

Agent-oriented programming 81

Table 2
Sample exchange between a passenger and an airline agent

agent action

smith

airline

airline

airline
smith

smith

airline

smith
smith

airline

smith
airline

(query_which imarch/l:O0 smith airline
(18april/?!time (flight sf ny,?!num)))

(INFORM imarch/2:00 smith
(18april/8:30 (flight sf ny #354)))

(INFORM imarch/2:00 smith
(18april/lO:O0 (flight sf ny #293)))

(INFORM imarch/2:00 smith (18april/ ...
(REQUEST imarch/3:00 airline

(issue_bp smith #354 18april/8:30))
(query_whether imarch/4:00 smith airline

((CMT smith) (issue_bp smith #354 18april/8:30)))
(INFORM imarch/5:00 smith

(NOT ((CMT smith) (issue_bp smith #354 18april/8:30))))
(REQUEST imarch/6:00 airline (issue_bp smith #293 18april/lO:O0))
(query_whether imarch/7:O0 smith airline

((CMT smith) (issue_bp smith #293 18april/lO:O0)))
(INFORM imarch/8:00 smith

((CMT smith) (issue_bp smith #293 18april/lO:O0)))

(INFORM 18april/9:00 airline (present smith))
(DO 18april/9:00 (issue_bp smith #293 18april/lO:O0))

(AND (B (?time (remaining_seats ?flight ?n)))
(?n>O)
(NOT ((CMT ?anyone)

(issue_bp ?pass ?anyflight 7time))))
(myself (DO (+ now 1)

(update_remaining_seats ?time
?flight -I)))

(?cust (issue_bp ?pass ?flight ?time)))

In a more realistic example one would have other commitment rules, no-
tifying the passenger whether his reservation was confirmed, and the reasons
for rejecting it in case it was not accepted. In the current implementation
the passenger must query that separately.

This concludes the definition of the simple airline agent. Table 2 is a
sample exchange between a passenger, smith, and the airline agent. The
messages from the passenger are determined by him; the actions of the
airline are initiated by the agent interpreter in response. The times are given
in a convenient date/hh:mm format, rather than the number of seconds that
have passed since 1900.

82 E Shoham

6.4. Implementation

A prototype AGENT-0 interpreter has been implemented in Common
Lisp, and has been installed on Sun/Unix, DecStation/Ultrix, and Macintosh
computers. Both the interpreter and the programming manual [74] are
available to the scientific community. A separate implementation has been
developed by Hewlett Packard as part of a joint project to incorporate AOP
in the New Wave TM architecture. The interpreter for AGENT-l, which
extends AGENT-0 in a number of ways (see below), is under development.

7. Agentification

In the previous two sections I discussed the second component of the
AOP framework, agent programs and their interpretation. In this section I
discuss, briefly, the process of agentification. My purpose in this section is
not to make a substantial contribution to the topic, but to clarify some of
the issues involved and point to some related work.

Agentification refers to bridging the gap between the low-level machine
process and the intensional level of agent programs. Of course, the interpreter
itself is one such bridge, but it requires a direct mapping between the
constructs in the agent language and the machine implementing the agent.
In particular it requires explicit representation in the machine of beliefs,
commitments, and capabilities. When we are the ones creating the agents we
indeed have the luxury of incorporating these components into their design,
in which case the interpreter is adequate. However, we intend AOP as a
framework for controlling and coordinating general devices, and those--cars,
cameras, digital watches, spreadsheets--do not come equipped with beliefs
and commitment rules.

Even if we were in a position to persuade (say) General Motors, Finmec-
canica, and Matsushita to equip every single product with a mental state, we
would be ill-advised to do so. AOP offers a perspective on computation and
communication that has its advantages, but it is not proposed as a uniform
replacement of other process representations. It would be ridiculous to re-
quire that every robot-arm designer augment his differential equations with
beliefs, or that the digital-watch design verifier augment finite automata
with commitments.

However, releasing the manufacturers from the requirement to supply a
mental state creates a gap between the intensional level of agent programs
on the one hand, and the mechanistic process representation of a given
device on the other hand. The role of the agentifier is to bridge this gap.

We inherit this decoupling of the intensional level from the machine level
from situated automata, introduced by Rosenschein in [62] and further

Agent-oriented programming 83

developed by him and Kaelbling [34,63]. In situated automata there is a
low-level language for describing the device, and another, high-level language
for the designer to reason about the device. The compiler takes a program
written in the high-level language and produces a description of a device in
the low-level language.

Like the "knowledge-based" camp in distributed computation we adopt
Rosenschein and Kaelbling's insight that intensional notions can be viewed
as the designer's way of conceptualizing a device (as was discussed also
in the introductory section, in connection with McCarthy's and Dennett's
ideas). Having accepted this decoupling, however, we depart from situated
automata in important ways. First, we consider different high-level and low-
level languages. Concerning the high-level language, situated automata has
had several versions; published versions have included a knowledge operator
(K) and a tense operator (0, or "eventually"). Our intensional language has
already been discussed--it is the AGENT-0 language defined in the previous
section, which is quite richer. In fact, we are currently engaged in enriching
the language even further.

The low-level process languages in the two cases are also different. Many
process languages exist--synchronous Boolean circuits with or without delays
(the choice of situated automata as a process language), finite automata and
Turing machines, and various formalisms aimed at capturing concurrency.
Our requirements of the process language included the following:

• representation of process time, including real-valued durations,
• asynchronous processes,
• multiple levels of abstraction.

We found that no existing process models met all requirements, and have
developed an alternative process model, called temporal automata. 15 The
details of temporal automata are not relevant to the current discussion, so
I will omit them; they appear in [39,40].

The choice of intensional languages and process description is important,
but more crucial than anything is the translation process envisioned. As
was mentioned, in situated automata the idea is to generate a low-level
process model from a high-level, intensional description. In contrast to
that, the goal of agentification is to agentify a particular, given machine.
The input to the translator will include a description of a machine in the
process language, and the output will be an intensional program. From this
perspective, the process considered in situated automata is de-agentification.
Since we have not tackled the problem of agentification in a substantial way,

15However, in recent years the specification and verification community has taken much
interest in real-time computation, and some of the recent proposals make come closer to
meeting our needs.

84 E Shoham

it is premature to assert with certainty how difficult it is. However, I expect
that the unconstrained problem will be quite difficult. By this I mean that,
given only a particular device (say, a camera) and general constraints on
mental state of the sort described in the article, it will be hard to generate
an intensional description of the device which fully captures is functioning.
After all, who is to say where in the camera lie the beliefs? Is it in the
state of a particular component, or perhaps in a complicated sequence
of state changes? It seems to me more fruitful to include in the input
information about the location of at least some mental attitudes ("when
the light meter registers x, the camera believes that . . .") , and attempt to
synthesize a high-level program based on this information (this is closer
in spirit to Rosenschein's original writing, but farther from the subsequent
work). Again, I stress that we do not have sufficient experience with the
problem to report any results.

8. Related work

Except occasionally, I have so far not discussed related past work. This
body of related work is in fact so rich that in this section I will mention
only the most closely related work, and briefly at that. I do not discuss
again past work on logics of knowledge and belief, which the logic of mental
state extends, since I already did that in the introduction. For the same
reason, I will not discuss object-oriented programming and Hewitt's work.
The following is ordered in what I see as decreasing relevance to, and overlap
with, AOP. The order (or, for that matter, inclusion in the list) reflects no
other ranking, nor is it implied that researchers high up on the list would
necessarily endorse any part of AOP.

• McCarthy's work on Elephant2000 [48]. This language under develop-
ment is also based on speech acts, and the airline-reservation scenario
I have discussed is due to McCarthy. One issue explored in connection
with Elephant2000 is the distinction between illocutionary and per-
locutionary specifications, which I have not addressed. In contrast to
AOP, in Elephant2000 there is currently no explicit representation of
state, mental or otherwise. Conditional statements therefore refer to the
history of past communication rather than to the current mental state.

• There is related work within the Distributed-AI community (cf. [60]).
Although AOP is, to my knowledge, unique in its definition of mental
state and the resulting programming language, others too have made
the connection between object-oriented programming and agenthood
[2O,30].

Agent-oriented programming 85

• The Intelligent Communicating Agents project (1987-1988), carried out
jointly at Stanford, SRI, and Rockwell International (Nilsson, Rosen-
schein, Cohen, Moore, Appelt, Buckley, and many others). This ambi-
tious project had among its goals the representation of speech acts and
connection between the intensional level and the machine level. See
discussion of some of the individual work below.

• Cohen and Levesque's work on belief, commitment, intention, and co-
ordination [9,10]. This work was discussed in detail in Section 4.4.
To summarize that discussion, Cohen and Levesque too have investi-
gated the logical relationships between several modalities such as be-
lief and choice. Although they have not approached the topic from a
programming-language perspective as I have, they too have been inter-
ested in speech acts and mental state as building blocks for coordination
and analysis of behavior. Their work has its roots in earlier work in
natural language understanding by Allen, Cohen and Perrault [2,11].
Despite some similarities, crucial differences exist between the mental
categories employed by Cohen and Levesque and ours.

• AOP shares with early work on contract nets [72] the computational role
of contracts among agents. The similarity ends there, though. Contract
nets were based on broadcasting contracts and soliciting bids, as opposed
to the intimate communication in AOP. Contract nets had no other
notion of mental state, no range of communicative speech acts, nor the
asynchronous, real-time design inherent in AOP.

• Rosenschein and Kaelbling's situated automata [34,62,63]. I already
discussed this work in the previous section. To summarize, it is relevant
in connection with the process of agentification; we adopt their idea
of decoupling the machine language from the programmer's intensional
conceptualization of the machine, but differ on the specific details.

• Research on coordination. Several researchers have been concerned with
the process of coordination in modern environments. For example, as a
part of their more global project, Winograd and Flores have developed
a model of communication in a work environment. They point to the
fact that every conversation is governed by some rules, which constrain
the actions of the participants: a request must be followed by an accept
or a decline, a question by an answer, and so on. Their model of
communication is that of a finite automaton, with the automaton states
corresponding to different states of the conversation. This is a macro-
theory, a theory of societies of agents, in contrast to the micro-theory
of AOP. In related work, Malone and his associates are aiming towards
a general theory of coordination, drawing on diverse fields such as
computer science and economics [46].

• Genesereth's work on informable agents [23,24]. Genesereth's interest
lies primarily in agents containing declarative knowledge that can be

86 Y. S hoham

informed of new facts, and that can act on partial plans. In this connec-
tion he has investigated also the compilation of declarative plans and
information into action commands. Genesereth uses the term "agents"
so as to include also low-level finite-automaton-like constructs. AOP's
structure of mental state is consistent with Genesereth's declarative
regime, but is not required by it.

• Recent work on plan representation and recognition by Kautz, Pollack,
Konolige, Litman, Allen and others (e.g., [6,36,44,59]). This literature
also addresses the interaction between mental state and action, but
it is usually concerned with finer-grained analyses, involving the actual
representation of plans, reasoning limitations, and more complex mental
notions such as goals, desires and intentions.

• Nilsson's action nets. ACTNET [58] is a language for computing goal-
achieving actions that depends dynamically on sensory and stored data.
The ACTNET language is based on the concept of action networks
[57]. An action network is a forest of logical gates that select actions
in response to sensory and stored data. The connection to AOP, albeit
a weak one, is that some of the wires in the network originate from
database items marked as "'beliefs" and "goals". The maintenance of
these databases is not the job of the action net.

9. Discussion

I have described the philosophy behind agent-oriented programming, and
progress made towards realizing it--both in terms of formal underpinning
and in terms of algorithm design.

This is clearly only a beginning. Beside debugging and fine-tuning the
logic (which has not been the main focus of this article) and programming
language (which has been), the framework can be extended dramatically in
a number of directions. Below are some of the more important ones.

• Mental categories. The language for describing mental state can be
augmented to include more complex notions such as desires, intentions,
and plans, allowing a richer set of communicative commands and more
structure on the behavior of agents. In this effort we hope to build on
previous work mentioned in the previous section; Thomas [73] explores
a notion of intention and planning, and in [17] we take a stab a the
notion of desire, building on Doyle and Wellman's earlier work.

• Groundedness of mental categories. One of the contributions of dis-
tributed computation to the formal theory of knowledge is the concrete
grounding of the semantics: What were formerly purely formal con-
structs, possible worlds, became the set of possible global states of a

Agent-oriented programming 87

collection of finite-state processors, given a particular protocol. In con-
nection with the process of agentification, it will be satisfying to be able
to anchor belief and commitment similarly.

• Probability and utility. As in most recent work on knowledge and
belief, we have adopted very crisp notions of mental attitude; there
is no representation of graded belief or commitment. This stands in
contrast to game-theoretic work on rational interaction among agents
in economics (e.g., [3,22]) and AI (e.g., [61]), where uncertainty and
utility play a key role. This is a natural direction in which to extend
our framework.

• Inheritance and groups. In the analogy between OOP and AOP I did
not mention inheritance, a key component of OOP today. In OOP,
if an object is a specialization of another object then it inherits its
methods. One analogous construct in AOP would be "group agents";
that is a group of agents will itself constitute an agent. If we define the
beliefs of this composite agent as the "common beliefs" of the individual
agents and the commitments of the composite agent as the "common
commitments" (yet to be defined) of the individual agents, then mental
attitudes of the group are indeed inherited by the individual.

• Persistence of mental states. At the end of Section 4, I mentioned that
dealing formally with the persistence of mental state is even harder
than dealing with the familiar frame problem: If I believe that you
don't believe x, do I believe that you will not believe in a little while?
Do I believe that I will believe that you don't? Will I believe then that
you don't? Will I believe then that I believed in the past that you didn't
know? Answers to these questions depend on some subtle assumptions;
our preliminary results appear in [43].

• Resource limitations. In the definition of the interpreter I assumed that
the belief and commitment updates all happened fast enough before
the next cycle was to start. While often reasonable, this assumption is
violated in many real-time applications. In these cases the manipulation
of data structures (such as beliefs) must be shortened or suppressed in
favor of rapid action. There is much interest nowadays in intelligent
real-time problem solving, including issues such as tradeoff between
quality and timeliness. From the agent interpreter's standpoint this
means that the belief and commitment update cannot proceed blindly,
but must take into account the elapsed time, choosing wisely among
mental operations.

• Belief revision and update. AGENT-0 adopts an extreme form of be-
lief revision, accepting all new information. Obviously there are sit-
uations that call for more discriminating agents, raising the question
of what constitutes a reasonable policy of belief update. We are in-
terested both in semantical and algorithmic questions; our results on

88 Y. Shoham

the former appear in [14].
• Temporal belief maps. AGENT-0 restricts beliefs to "objective" sen-

tences, so one cannot represent beliefs of agents about the beliefs or
commitments of other agents. AGENT-0 keeps tracks of these beliefs
by a t ime map mechanism [12], essentially recording the points of
transition and assuming default persistence between them. In the new
interpreter under development, AGENT-I. we allow nested modalities
in the belief database. For this purpose we introduce a new com-
putational construct, called mental t ime maps, which is essentially a
high-dimensional time map. Temporal belief maps are a special case.
and are described in [33].

• Societies. Both the theoretical development of mental categories and
the AGENT-0 programming language concentrated on a single agent.
Indeed, the view promoted was of agents functioning autonomously.
However, if a society of agents is to function successfully, some global
constraints must be imposed. These include social rules as well as social
roles; both reduce the problem solving required by agents and the com-
munication overhead. There is a rich body of literature on computer
societies, examples of which include Minsky's informal Society of Mind
metaphor [52], Winograd's studies of societal roles, both human and
machine [75], Moses and Tennenholtz's recent discussion of the compu-
tational advantages of social laws [56], and Doyle's pioneering work on
the relationship between AI, rational psychology, and economics [16].
In recent work we have investigated the off-line design of social laws
which strike a good balance between preventing chaos on the one hand,
and allowing sufficient freedom to individual agents on the other hand
[70,71]; we are currently investigating the automatic on-line learning

of such laws.

These are some of the directions we intend to continue to explore. Above
all, it is important to experiment with significant applications. At this
time there are about a half dozen projects experimenting with variants of
AGENT-0, and it will be important to continue this activity. I have been
deliberately conservative so far in the scope of the work, but, I believe, more
ambitious explorations, involving, for example, other mental attitudes, will
benefit from a clear and rigorous basis of the kind l have defined.

Acknowledgement

I have discussed AOP in general and this document in particular with
many people, and have benefited from their comments. Members of the
Nobotics group, including Jun-ichi Akahani, Nita Goyal, Hideki Isozaki,

Agent-oriented programming 89

George John, Jean-Francois Lavignon, Fangzhen Lin, Eyal Moses, Anton
Schwartz, Dominique Snyers, Moshe Tennenholtz, Becky Thomas, Mark
Torrance, and Alvaro del Val have contributed in many ways. I have
discussed agents and agenthood also with Vint Cerf, Tom Dean, Mike
Genesereth, Joe Halpern, Barbara Hayes-Roth, Leslie Kaelbling, Bob Kahn,
Jean-Claude Latombe, Yoram Moses, Nils Nilsson, Stan Rosenschein, Rich
Thomason, Terry Winograd, and many others; I apologize for not mention-
ing everyone. I thank Phil Cohen, Kurt Konolige, Martha Pollack and an
anonymous referee for critical comments. Finally, special thanks to John
McCarthy for enlightening conversations.

References

[1] P. Agre and D. Chapman, Pengi: an implementation of a theory of activity, in:
Proceedings AAAL87, Seattle, WA (1987) 268-272.

[2] J.F. Allen, Recognizing intentions from natural language utterances, in: M. Brady and
R.C. Berwick, eds., Computational Models of Discourse (MIT Press, Cambridge, MA,
1983) 107-166.

[3] R. Aumann, Agreeing to disagree, Ann. Stat. 4 (1976) 1236-1239.
[4] J.L. Austin, How to Do Things with Words (Harvard University Press, Cambridge, MA,

1955/1975).
[5] N.D. Belnap and M. Perloff, Seeing to it that: a canonical form of agentives, Theoria 54

(1989) 175-199.
[6] M.E. Bratman, Intention, Plans, and Practical Reason (Harvard University Press,

Cambridge, MA, 1987).
[7] R.A. Brooks, A robust layered control system for a mobile robot, IEEE J. Rob. Autom.

2 (1) (1986).
[8] B.F. Chellas, Time and modality in the logic of agency, Stud. Logica (to appear).
[9] P.R. Cohen and H.J. Levesque, Intention is choice with commitment, Artif lntell. 42

(3) (1990) 213-261.
[10] P.R. Cohen and H.J. Levesque, Rational interaction as the basis for communication,

in: P.R. Cohen, J. Morgan and M.E. Pollack, eds., Intentions in Communication (MIT
Press, Cambridge, MA, to appear).

[11] P.R. Cohen and C.R. Perrault, Elements of a plan-based theory of speech acts, Cogn.
Sci. 3 (1979) 177-212.

[12] T.L. Dean and D.V. McDermott, Temporal data base management, Artif Intell. 32 (1)
(1987) 1-55.

[13] T.L. Dean and M.P. Wellman, Planning and Control (Morgan Kauffman, San Mateo,
CA, 1991).

[14] A. del Val and Y. Shoham, Deriving the postulates of belief update from theories of
action, in: Proceedings AAAI-92, San Jose, CA (1992).

[15] D.C. Dennett, The Intentional Stance (MIT Press, Cambridge, MA, 1987).
[16] R. Doyle, Artificial intelligence and rational self-government, Tech. Rept. CMU-CS-88-

124, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA (1988).
[17] R. Doyle, Y. Shoham and M. Wellman, A theory of relative desire, in: Proceedings

1SMIS (1991).
[18] M. Drummond, Situated control rules, in: Proceedings First International Conference on

Knowledge Representation and Reasoning, Toronto, Ont. (1989).
[19] D. Elgesem, He would have done it anyway: the logic of agency, ability and opportunity,

Stanford University, CSLI, Stanford, CA (1990).

90 Y. Shoham

[20] J. Ferber and P. Carle, Actors and agents as reflective concurrent objects: a Mering
IV perspective, in: Proceedings lOth International I~orkshop on Distributed Artificial
Intelligence, Tech. Rept. ACT-A1-355-90, MCC, Austin, TX (1990).

[21] P. Gfirdenfors, Knowledge in Flux: Modeling the Dynamics of Epistemic States (MIT
Press, Cambridge, MA, 1987).

[22] J. Geanakoplos, Common knowledge, Bayesian learning, and market speculation with
bounded rationality, Memo, Yale University, New Haven, CT (1988).

[23] M.R. Genesereth, A comparative analysis of some simple architectures for autonomous
agents, Tech. Rept. Logic-89-2, Computer Science Department, Stanford University,
Stanford, CA (1989); also in: K. VanLehn, ed., Architectures Jor Intelligence (Lawrence
Erlbaum, Hillsdale, N J, 1991).

[24] M.R. Genesereth, A proposal for research on informable agents, Tech. Rept. Logic-89-4,
Computer Science Department, Stanford University, Stanford, CA (1989).

[25] P. Grice, Studies in the Ways ~f Words (Harvard Universily Press, Cambridge, MA,
1989).

[26] J.Y. Halpern, Using reasoning about knowledge to analyze distributed systems, in: J.F.
Traub, ed., Annual Review of Computer Science 2 (Annual Reviews Inc., Palo Alto, CA,
1987).

[27] J.Y. Halpern and Y. Moses, A guide to the modal logics of knowledge and belief:
preliminary draft, in: Proceedings IJCA1-85, Los Angeles, CA (1985) 480-490.

[28] J.Y. Halpern and L.D. Zuck, A little knowledge goes a long way: simple knowledge-based
derivations and correctness proofs for a family of protocols, in: Proceedings 6th ,4CM
Symposium on Principles of Distributed Computing (1987) 269-280.

[29] B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett and A. Seiver, Intelligent
monitoring and control, in: Proceedings IJCAI-89, Detroit, M1 (1989) 243-249.

[30] C. Hewitt, Towards open information systems semantics, in: Proceedings lOth
International FVorkshop on Distributed Artificial Intelligence, Tech. Rept. ACT-AI-355-90.
MCC, Austin, TX (1990).

[31] C. Hewitt, Viewing control structures as patterns of passing messages, Art~f lntell. 8
(1977) 323-364.

[32] J. Hintikka, Knowledge and Belie/ (Cornell University Press, Ithaca, NY, 1962).
[33] H. Isozaki and Y. Shoham, A mechanism for reasoning about time and belief, in:

Proceedings Third International ConFerence on Fifth Generation Computer Systems, Tokyo
(1992).

[34] L.P. Kaelbling, Goals as parallel program specifications, in: Proceedings 4AAL88, St.
Paul, MN (1988) 60-65.

[35] H. Katsuno and A.O. Mende[zon, On the difference between updating a knowledge base
and revising it, in: Proceedings Second Con~'rence on Knowledge Representation and
Reasoning, Cambridge, MA (1991).

[36] H.A. Kautz, A circumscriptive theory of plan recognition, in: P.R. Cohen, J. Morgan and
M.E. Pollack, eds., Intentions in Communication (MIT Press, Cambridge, MA, 1990).

[37] K. Konolige, A Deduction Model of BelieF (Pitman/Morgan Kaufmann, London, 1986).
[38] S. Kripke, Semantical considerations of modal logic, Z. Math. Logik GrundL Math. 9

(1963) 67-96.
[39] J.F. Lavignon, A simulator for temporal automata, Tech. Rept., Computer Science

Department, Stanford University, Stanford, CA (1990).
[40] J.F. Lavignon and Y. Shoham, Temporal automata, Tech. Rept. STAN-CS-90-1325,

Computer Science Department, Stanford University, Stanford, CA (1990).
[41] H.J. Levesque, All I know: an abridged report, in: Proceedings AA41-87. Seattle, WA

(1987) 426-431.
[42] F. Lin and Y. Shoham, Concurrent actions in the situation calculus, in: Proceedings

AAA1-92, San Jose (1992).
[43] F. Lin and Y. Shoham, On the persistence of knowledge and ignorance, Stanford

Working Document, Stanford, CA (1992).
[44] D.J. Litman and J.F. Allen, Discourse processing and commonsense plans, in: P.R.

Cohen, J. Morgan and M.E. Pollack, eds.~ Intentions in ('ommunieation (MIT Press,

Agent-oriented programming 91

Cambridge, MA, 1990).
[45] W. Litwin, A model for computer life, Manuscript, Computer Science Department,

Stanford University, Stanford, CA (1990).
[46] T.W. Malone, Toward an interdisciplinary theory of coordination, Tech. Rept. CCS 120,

M1T Sloan School of Management, Cambridge, MA (1991).
[47] J. McCarthy, Ascribing mental qualities to machines, Tech. Rept. Memo 326, Stanford

AI Lab, Stanford, CA (1979).
[48] J. McCarthy, Elephant 2000: a programming language based on speech acts, Unpublished

Manuscript (1990).
[49] J. McCarthy, Notes on formalizing context, Unpublished Manuscript (1991).
[50] J.M. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint

of artificial intelligence, in: B. Meltzer and D. Michie, eds., Machine Intelligence 4
(Edinburgh University Press, Edinburgh, Scotland, 1969) 463-502.

[51] D.V. McDermott, Tarskian semantics, or no notation without denotation!, Cogn. Sci. 2
(3) (1978) 277-282.

[52] M. Minsky, The SocieO' of Mind (Simon and Schuster, New York, 1986).
[53] T.M. Mitchell, Becoming increasingly reactive, in: Proceedings AAAI-90, Boston, MA

(1990) 1050-1058.
[54] R.C. Moore, A formal theory of knowledge and action, in: J.R. Hobbs and R.C. Moore,

eds., Formal Theories of the Commonsense World (Ablex, Norwood, N J, 1985).
[55] L. Morgenstern, Foundations of a logic of knowledge, action, and communication, Ph.D.

Thesis, New York University (1988).
[56] Y. Moses and M. Tennenholtz, In favor of a society, Manuscript, Department of Applied

Mathematics, Weizmann Institute of Science, Rehovot, Israel (1990).
[57] N.J. Nilsson, Action networks, in: Proceedings ~fthe Workshop on Planning, Rochester,

NY (1989).
[58] N.J. Nilsson, R. Moore and M. Torrance, Actnet: an action-network language and its

interpreter (1990).
[59] M.E. Pollack, Plans as complex mental attitudes, in: P.R. Cohen, J. Morgan and

M.E. Pollack, eds., Intentions in Communication (MIT Press, Cambridge, MA, 1990).
[60] Proceedings 10th International Workshop on Distributed Artificial Intelligence, Tech.

Rept. ACT-AI-355-90 MCC Austin, TX (1990).
[61] S.J. Rosenschein and M.R. Genesereth, Deals among rational agents, in: Proceedings

IJCA1-85, Los Angeles, CA (1985).
[62] S.J. Rosenschein, Formal theories of knowledge in AI and robotics, Tech. Rept. 362,

SRI International, Menlo Park, CA (1985).
[63] S.J. Rosenschein and L.P. Kaelbling, The synthesis of digital machines with provable

epistemic properties, in: Proceedings Conference on Theoretical Aspects of Reasoning
about Knowledge, Monterey, CA (1986) 83-86.

[64] S. Ross, The economic theory of agency, ,4m. Econ. Rev. 63 (1973) 134-139.
[65] F. Schneider, Understanding protocols for byzantine clock synchronization, Tech. Rept.,

Computer Science Department, Cornell University (1987).
[66] J.R. Searle, Speech Acts: An Essay in the Philosophy of Language, (Cambridge University

Press, Cambridge, England, 1969).
[67] Y. Shoham, Time for action, in: Proceedings lJCA1-89, Detroit, MI (1989) 954-959.
[68] Y. Shoham, Varieties of context, in: V.A. Lifschitz, ed., Artificial Intelligence and

Mathematical Theory of Computation (Academic Press, New York, 1991) 393-408.
[69] Y. Shoham and Y. Moses, Belief as defeasib.le knowledge, in: Proceedings IJCA1-89,

Detroit, MI (1989) 1168-1172.
[70] Y. Shoham and M. Tennenholtz, On the synthesis of useful social laws for artificial

agents, in: Proceedings A,~L41-92, San Jose, CA (1992).
[71] Y. Shoham and M. Tennenholtz, On traffic laws for mobile robots, Stanford Working

Document, Stanford, CA (1992).
[72] R.G. Smith, The contract net protocol: high-level communication and control in a

distributed problem solver, IEEE Trans. Comput. 29 (12) (1980) 1104-1113.

92 Y. Shoham

[73] S.R. Thomas, A logic for representing action, belief, capability, and intention, Stanford
Working Document, Stanford, CA (1992).

[74] M. Torrance, The AGENT-0 programming manual (revise), Computer Science
Department, Stanford University, Stanford, CA (1991).

[75] T. Winograd, A language/action perspective on the design of cooperative work, Human-
Comput. Interaction 3 (1) (1987/88) 3-30.

