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Abstract

The World Wide Web has become an invaluable information resource but the explosion of
available information has made Web search a time consuming and complex process. The large
number of information sources and their different levels of accessibility, reliability and associated
costs present a complex information gathering control problem. This paper describes the rationale,
architecture, and implementation of a next generation information gathering system—a system that
integrates several areas of Artificial Intelligence research under a single umbrella. Our solution to
the information explosion is an information gathering agent, BIG, that plans to gather information
to support a decision process, reasons about the resource trade-offs of different possible gathering
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1. Introduction and motivation

The vast amount of information available today on the World Wide Web (WWW) has
great potential to improve the quality of decisions and the productivity of consumers.
However, the WWW’s large number of information sources and their different levels of
accessibility, reliability, completeness [5], and associated costs present human decision
makers with a complex information gathering planning problem that is too difficult to solve
without high-level filtering of information. In many cases, manual browsing through even
a limited portion of therelevant information obtainable through advancing information
retrieval (IR) and information extraction (IE) technologies [6,12,38,39] is no longer
effective. The time/quality/cost trade-offs offered by the collection of information sources
and the dynamic nature of the environment lead us to conclude that the user should not
serve as the detailed controller of the information gathering (IG) process [41].

Our solution to the information explosion is to integrate different Artificial Intelligence
(AI) technologies, namely scheduling, planning, text processing, information extraction,
and interpretation problem solving, into a single information gathering agent, BIG
(resource-Bounded Information Gathering) [43,44], that takes the role of the human
information gatherer. In response to a query, BIG locates, retrieves, and processes
information to support a decision process. To evaluate our generic approach, we have
instantiated it for the software domain. BIG’s area of expertise is in helping clients select
software packages to purchase. For example, a client may instruct BIG to recommend
a database package for Windows 98, and specify desired product attributes as well
as constraints on such things as the amount of money they are willing to pay for
such a product, and on the amount of time and money to spend locating information
about database products. The client may also control how BIG searches by specifying
a preference for information precision versus coverage. A preference for coverage will
result in more products being discovered, but with less information about each product.
A preference for greater precision results in BIG spending more resources to construct
very accurate models of products by gathering additional corroborating information. In
response to a query, BIG plans, locates, and processes relevant information, returning a
recommendation to the client along with the supporting data.

The complexity of our objective mandates a high level of sophistication in the
design of BIG’s components. Indeed, several are complex problem solvers in their own
right. A planner and associated task assessor are responsible for translating a client’s
information need into a set of goals and generates plans to achieve those goals. In
the example above, the planner would generate plans detailing the alternative ways to
fetch database product information and the alternative ways to process the information.
To support reasoning about time/quality/cost trade-offs, and thus a range of different
resource/solution paths, the planner enumerates several distinct plans for achieving the
goals and describes them statistically in three dimensions—duration, quality, and cost—via
discrete probability distributions. Another sophisticated problem-solving component, the
Design-to-Criteria [61–63] (DTC) agent scheduler, examines the possible solution paths
within the plan, selects a set of actions to carry out and schedules the actions—coping
with an exponential scheduling problem in real-time through the use of approximation
and goal directed focusing. The resulting single-agent schedule contains parallelism and
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overlapping executions when the primitive actions entail non-local processing, such as
requests that are issued over the network.

As BIG retrieves documents, another problem solver, an Information Extraction (IE)
system [24] works in conjunction with a set of semantic, syntactic, and site-specific tools,
to analyze the unstructured text documents. Information from this analysis is used for
decision making and refinement of other information gathering goals.

Other complex components in BIG include a framework for modeling domain tasks, a
Web server information database, and a task assessor to assist in translating the problem
solver’s domain plans into a domain independent representation appropriate for use by the
Design-to-Criteria scheduler and other high-level components. We will return to the agent
architecture (see Fig. 3) in greater detail in Section 3.

Let us consider a high-level example to illustrate some of BIG’s capabilities and to
set a context for further discussion. A client is interested in finding a word processing
program for the Macintosh. The client submits goal criteria that describes desired software
characteristics and specifications for BIG’s search-and-decide process. A snapshot of the
system’s user specification form is given in Fig. 1.

The search parameters are: duration importance of 100%, soft time deadline of
10 minutes, hard cost limitation of $5, and in terms of precision versus coverage, 50%
of the weight is given to precision and 50% to coverage. This translates to a preference
for a fast search/decision process, possibly achieved by trading off cost and quality for

Fig. 1. BIG’s user interface.
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the fast search. This also indicates that the user wants the process to take ten minutes
or less and cost no more than $53 if the search process incurs expenses when gathering
information. The user also expresses no preference for coverage or precision—BIG can
trade off one in favor of the other. The product parameters are:product price $200 or less,
platform: Macintosh.Additional product evaluation features are discussed in more detail
in Section 5.5. The client is an experienced home-office user who desires a result relatively
quickly and does not want to spend much money on the search, and who is primarily
concerned with getting most power for the dollar in the product.

BIG’s task assessor uses the supplied criteria to determine which information gathering
activities are likely to lead to a solution. Candidate activities include document retrieval
from known word processing software makers such as Corel and Microsoft, as well as
from consumer sites containing software reviews. Other activities pertain to document
processing options for retrieved text. For a given document, there are a range of processing
possibilities, each with different costs and advantages. For example, the heavyweight
information extractor pulls data from free format text, fills templates and associates
certainty factors from the extracted items. In contrast, the simple and inexpensive pattern
matcher attempts to locate items within the text via simple grep-like behavior. BIG’s task
assessor handles the process of laying out these problem-solving options by emitting a
task structure that describes the alternative ways to perform tasks and quantifies them
statistically via discrete probability distributions in terms of quality, cost, and duration.

These problem-solving options are then considered and weighed by the scheduler—
it performs a quality/cost/time trade-off analysis and determines an appropriate course
of action for BIG. The schedule is executed; multiple retrieval requests are issued and
documents are retrieved and processed. In this case, data extracted from documents at
the Corel site is integrated with data extracted from reviews at the Benchin site to form a
product description object (model) of Corel WordPerfect. Additional search and processing
leads to the discovery of 14 other competing products. The decision maker, based on
the product models constructed, indicates that the product that best satisfies the user’s
specifications is Corel WordPerfect 3.5. BIG returns this recommendation to the client
along with the gathered information, corresponding extracted data, and certainty metrics
about its extraction and decision processes.

The primary distinguishing characteristics of this research are:
• Active search and discovery of information.BIG does not rely entirely upon a pre-

specified set of sites from which to gather information. BIG also utilizes general URL
search engines and sites/information sources discovered during previous problem-
solving sessions. Most importantly, uncertainty in the extracted information and
the absence of crucial information drives further search. We provide examples in
Section 4.4.
• Resource-bounded search and analysis.BIG problem solves to meet real-time

deadlines, cost constraints, and precision, coverage and quality preferences. BIG

3 There is no cost associated with accessing data in the experiments reported in this paper thus the cost
constraint specified by the user does not alter BIG’s behavior. However, as detailed in [45], experiments with
BIG involving situations where accessing data from selected sites incurs cost, the cost constraints specified by
the user are accounted for in BIG’s information gathering process.
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Fig. 2. BIG’s final decision for sample run.

reasons about which actions to take to produce the desired result and plans
accordingly. This is accomplished through the use of the Design-to-Criteria scheduler
and by employing an end-to-end, rather than reactive, control process. These issues
are discussed in Sections 3, 4, and 5.
• Opportunistic and top-down control.BIG blends opportunistic, reactive, problem-

solving behaviors with the end-to-end scheduling view required to meet real-time
deadlines and other performance constraints. This enables BIG to work within a
high-level, structured plan without sacrificing the dynamism needed to respond
to uncertainties or inconsistencies that arise in models derived from gathered
information. We will discuss the details in Section 5.4.
• Information extraction and fusion.The ability to reason with gathered information,

rather than simply displaying it for the user, is critical in the next generation of
information gathering systems. BIG uses research-level extraction technology to
convert free format text into structured data; the data is then incorporated and
integrated into product models that are examined by BIG’s decision process, resulting
in a product recommendation. Details are provided in Sections 3, 4, and 5.
• Incorporation of extracted information.In addition to building product models,

extracted information is incorporated in BIG’s search as it unfolds. For example,
competitor products discovered during the search are included in BIG’s information
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structures, possibly resulting in new goals to pursue additional information on these
products. We provide further details in Sections 3 and 4, and cover an example in
Section 5.

This approach to Web-based information gathering (IG) is motivated by several
observations. The first observation is that a significant portion of human IG is itself an
intermediate step in a much largerdecision-making process[41]. For example, a person
preparing to buy a car may search the Web to find out what car models are available,
examine crash test results, obtain dealer invoice prices, or examine reviews and reliability
statistics. In this information search process, the human gatherer firstplans to gather
information and reasons, perhaps at a superficial level, about the time/quality/cost trade-
offs of different possible gathering actions before actually gathering information. For
example, the gatherer may know that the Microsoft CarPoint site has detailed and varied
information on the relevant models, but that it is sometimes slow, relative to the Kelley Blue
Book site, which has less varied information. Accordingly, a gatherer pressed for time may
choose to browse the Kelley site over CarPoint, whereas a gatherer with unconstrained
resources may choose to browse-and-wait for information from the slower CarPoint site.
Human gatherers also typically use information learned during the search to refine and
recast the search process; perhaps while looking for data on the new Honda Accord a
human gatherer would come across a positive review of the Toyota Camry and would then
broaden the search to include the Camry. Thus, the human-centric process is both top-down
and bottom-up: structured, but also opportunistic. A detailed discussion on the specifics of
this type of opportunistic problem solving is presented in Section 5.4. Carver and Lesser
in [9] provide a further exposition on the issue of exercising and balancing various types
of top-down and bottom-up control.

The second observation that shapes our solution is that Web-based IG is an instance
of an interpretation problem. Interpretation is the process of constructing high-level
models from low-level data using feature-extraction methods that can produce evidence
that is incomplete or inconsistent. In our current domain this corresponds to a situation
where the software product descriptions generated from the raw Web documents may
not contain all the desired information, or duplicate information from different sources
may be contradictory. Coming from disparate sources of information of varying quality,
these pieces of uncertain evidence must be carefully combined in a well-defined manner to
provide support for the interpretation models under consideration.

In recasting Web-based IG as an interpretation problem, we face a search problem
characterized by a generally combinatorially explosive state space. In the IG task, as in
other interpretation problems, it is impossible to perform an exhaustive search to gather
information on a particular subject, or even in many cases to determine the total number
of instances of the general subject that is being investigated. We first argue that an IG
solution needs to supportconstructive problem solving[10,11] in which potential answers
(e.g., models of products) to a user’s query are incrementally built up from features
extracted from raw documents and compared for consistency or suitability against other
partially-completed answers. Secondly, any solution to this IG problem needs to support
reasoning about trade-offs among resource or time constraints, the quality of the selected
item, and the quality of the search, analysis and decision processes. Because of the need
to conserve time, it is important for an interpretation-based IG system to be able to
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save and exploit information about pertinent objects learned from earlier forays into the
WWW.

In connection with this incremental model-building process, an interpretation-based IG
problem solution must also support sophisticated scheduling to achieveinterleaveddata-
driven and expectation-driven processing. Processing for interpretation must be driven
by expectations of what is reasonable, but, expectations in turn must be influenced
by what is found in the data. For example, during a search to find information on
word processors for Windows 98, with the goal of recommending some package to
purchase, an agent finding Excel in a review article that also contains Word might
conclude based on IE-derived expectations that Excel is a competitor word processor.
However, scheduling of methods to resolve the uncertainties stemming from Excel’s
missing features would lead to additional gathering for Excel, which in turn would
associate Excel with spreadsheet features and would thus change the expectations about
Excel (and drop it from the search when enough of the uncertainty is resolved). Where
possible, scheduling should permit parallel invocation of IE methods or requests for WWW
documents.

Thus far we have outlined a large information gathering system designed to leverage
the strengths of several AI subfields to address the complex task of using a large and
unstructured information source like the Internet to facilitate decision making. In the
remainder of this paper, we discuss related research in Section 2, and present the BIG agent
architecture and its key components in Section 3. We then present a detailed execution trace
of BIG in Section 4. In Section 5 we present other interesting research issues addressed by
BIG using details from actual BIG runs. We also demonstrate in this section the flexibility
of the architecture to different user objectives and software genres through empirical
results. Conclusions and future directions are presented in Section 6.

2. Related research

2.1. Web-based information assistance

The exponential growth of the Web has not gone unnoticed by the research and
commercial communities. The general solution, as one researcher so aptly put it [21], is to
“move up the information food chain”, in other words, to build higher-level information-
processing engines that utilize existing tools like generalized search engines (e.g., Infoseek
and AltaVista). We first look at three approaches used in information-processing circles.
One class of work toward this end is themeta search engine. Meta search engines typically
issue parallel queries to multiple search engines like AltaVista and Infoseek, customizing
the human client’s query for each search engine and using advanced features of the search
engines where available. Examples of this include SavvySearch [31] and MetaCrawler
[21]; commercial meta search products are also available [33,65]. Some of these tools
supplement the IR technology of the search engines—for example, if a particular advanced
query technique such as phrase matching is missing from the search engine, MetaCrawler
will retrieve the documents emitted from the search engine and perform its own phrase
techniques on the documents. Other supplementary features provided in meta search
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engines include clustering candidate documents. Since meta search engines build on the
services offered by several URL search engines, their results generally offer wider Internet
coverage. However, since their output is often just a list of URLs generated by the same
processing techniques used in URL search engines, it tends to suffer from the same problem
as the output from URL search engines themselves—too much raw data.

A second class of related work is thepersonal information agent[4,52]. Rather
than making single queries to a large number of sites, these agents begin from one
or more specific points on the Web and selectively pursue links in search of relevant
information.4 They are concept-driven, obtaining their area of interest either through
hard-coded rules, explicit questionnaires or simple learning techniques. These systems are
not as fast as the meta search systems, but their design goal has a somewhat different
focus. Personal information agents are typically used to obtain a small number of highly
relevant documents for the user to read, either all at once or continuously over an
extended time period. Thus, because of the potential overhead for both link traversal
and dynamic document processing these systems tend to sacrifice speed for document
quality.

The third class of work addressing the information food chain is theshopping agent.
Shopping agents typically locate and retrieve documents containing prices for specified
products, extract the prices, and then report the gathered price information to the client.
For example, the original BargainFinder [36] and the more recent Shopbot [20] both work
to find the best available prices for music CDs. These tools often differ from meta search
engines and personal information agents in that they typically do not search the Web
to locate the shopping sites; instead, the systems designers develop a library containing
known shopping sites and other information such as how to interact with a particular store’s
local search engine. Some shopping agents also integrate some of the functionality offered
by the personal information agents. For example, the commercial Jango [34] shopping
agent locates reviews as well as extracting price and very specific product features from
vendor Web sites. Research in these systems often focuses on how to autonomously learn
rules (akin to wrappers [48]) for interacting with each store’s forms and for processing the
output, in contrast to having a human manually encode the rules.

Consider the different attempts to move up the information food chain. The meta search
engines provide information coverage, independence from the nuances of particular search
engines, and speed. They also provide a measure of robustness since they are not tied
to a particular search engine. Personal information agents combine IR techniques with
simple heuristics to qualify documents for the client’s review. Shopping agents provide
information processing facilities to support the human client’s information gathering
objective—for example, to find the best price for a music CD. Our work extends these
ideas by combining many of the characteristics that make the systems individually effective
within their areas of expertise.

Like the meta search engines, BIG can use multiple different Web search tools to locate
information on the Web. In contrast to the meta search engines, BIG learns about products
over time and reasons about the time/quality trade-offs of different Web search options.
Akin to the personal information agents, BIG gathers documents by actively searching

4 The colloquial term “spidering” includes this directed traversal along with more undirected search strategies.
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the Web (in conjunction with Web search engines). BIG, however, goes one step further
by also performing information extraction on the data it retrieves. Like the shopping
agents, BIG gathers information to support a decision process. However, BIG differs from
shopping agents in the complexity of its decision process and in the complexity of its
information processing facilities. Through IE technologies, BIG processes free format text
and identifies and extracts product features like prices, disk requirements, and support
policies.

2.2. Database research

Some aspects of BIG relate closely to issues raised by heterogeneous database systems
(HDBS) [35,59]. Such databases must potentially gather data from multiple sources,
which may each have different performance, content and cost. At a high level, these two
problems are thus very similar. Both BIG and HDBS aim to provide transparent access
to a heterogeneous set of information sources from a single access point. BIG, however,
has additional concerns which HDBS typically do not address. BIG’s set of information
sources is more dynamic than a typical HDBS, and is composed of a mixture of search
engine and single-point items. The information BIG deals with is also unstructured and
noisy. As more information sources become available which are designed to be accessed
by agents, HDBS techniques may become more applicable to the overall problem we are
addressing.

Some of BIG’s problem-solving and scheduling activities are analogous to techniques
used in database query optimization. The query optimization process in a centralized
database system is concerned with how best to structure information requests and manage
the processing which must take place on the resulting data. In a distributed database
system, a query optimizer has the additional burden of possibly choosing from among
several information sources and processing locations, which each have different benefits
and drawbacks [1,26,28]. These operations are analogous to the scheduling activity done
in BIG, which makes similar decisions. Both tasks must consider such issues as expected
server performance, data structure, activity parallelism and how best to manage the
retrieved information. An important difference between a conventional query optimizer and
BIG’s scheduling process is the amount of user input involved. BIG uses the Design-to-
Criteria agent scheduler, which takes into account the user’s preferences when generating
the schedule. For instance, one user may be willing to spend a lot of money in exchange
for a very short but high-quality search, whereas another may be willing to spend
more time to save money. DTC allows several metrics to effect its behavior, allowing
a degree of customization not permitted by typical database query optimization. These
trade-offs will be covered in more detail in later sections and are presented more fully
in [61–63].

2.3. Other related issues

Technologies developed in mainstream information retrieval research may also help BIG
find and extract information more reliably. Metadata information, such as RDF/PICS/XML
[56] allow Web page authors to provide concise information in a format sufficiently
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structured to simplify interpretation. Widespread adoption of these formats would greatly
improve the effectiveness of programs like BIG. Other technologies, facilitating general
inter-application (e.g., Z39.50 [2]) and inter-agent (e.g., KQML [23]) communication,
can also assist by providing the standards necessary for simple information transfer. In
some sense, HTTP currently fills this role, but more suitable protocols exist for the task
at hand. A practical drawback with these new techniques is that they have not yet become
widespread enough to make them viable. If and when standards such as RDF become
widely accepted it seems clear that systems like BIG will be able to make more effective
use of available information.

Grass and Zilberstein’s work [25] is closely related to our basic approach, but
differs in that the decision process is centered around a Bayesian network and their
approach to scheduling is more reactive. BIG is also related to the WARREN [19] multi-
agent portfolio management system, which retrieves and processes information from the
Web. However, BIG differs in its reasoning about the trade-offs of alternative ways to
gather information, its ambitious use of gathered information to drive further gathering
activities, its bottom-up and top-down directed processing, and its explicit representation
of sources-of-uncertainty associated with both inferred and extracted information. BIG
shares some characteristics with database-centric, structured-resource approaches like
TSIMMIS [27], SIMS [3], and the Information Manifold [46], but differs in that its
focus is on resource-bounded information extraction and assimilation coupled with
discovery.

The time/quality/cost trade-off aspect of our work is conceptually similar to [13,29,30,
53] and formal methods [22,25] for reasoning about gathering information, except that our
trade-off analysis focuses on problem-solving actions (including text processing) and other
agent activities rather than concentrating only on the trade-offs of different information
resources, i.e., our work addresses both agent control level and information value.

With respect to the development of digital libraries, our research is aimed at partially
automating the function of a sophisticated research librarian, as in [64]. This type of
librarian is often not only knowledgeable in library science but also may have a technical
background relevant to the interests of the research domain. In addition to locating relevant
documents for their clients, such librarians often distill the desired information from the
gathered documents for their clients. They often need to make decisions based on resource
concerns such as the trade-offs between billable hours and solution quality and the resource
time/quality/cost constraints specified by a given client; or whether certain periodicals are
available in-house, and if not, how long it will take to get them and what they will cost. We
see the partial automation of a sophisticated librarian as a natural step in the evolutionary
development of a fully automated digital library.

BIG also relates to research in interfaces and dialogues between human users and agents
[51], though the extraction of software requirements from the user and the agent/user
interaction is not the focus of this research. In the future, we envision a dynamic
human/agent interface in which the client can provide online guidance to BIG to help
focus the search and decision processes. In fact, BIG’s architecture was designed partly to
support such activities and it is one of the strengths of the flexible control paradigm used
in BIG.
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Fig. 3. The BIG agent architecture.

3. The BIG agent architecture

The overall BIG agent architecture is shown in Fig. 3. The agent is comprised of several
sophisticated components that are complex problem solvers and research subjects in their
own rights. The most important components, or component groups, follow in rough order
of their invocation in the BIG agent.

Server and object information databases.The object database stores information
objects constructed by BIG during an information gathering session. Objects represent
entities from the application domain (e.g., software packages, cars) generated by BIG,
about which it will make a decision. Objects may be incompletely specified; field values
may be uncertain through lack of information or because of contradictory information.
These uncertainties are explicitly represented assources of uncertaintydata structures
(SOUs) [7,8]. This enables BIG to plan to find information that either corroborates the
current information or reduces conflicts with the current information, thereby decreasing
the degree of uncertainty. The object database is also used to store information from
previous searches—thus BIG can learn and improve/refine its knowledge over time.

The server information database contains numerous records identifying both primary
(e.g., a review site) and secondary (e.g., URL search engine) information sources on the
Internet. Within each record are stored the pertinent characteristics of a particular source,
which consist of such things as its quality measures, retrieval time and cost, and relevant
keywords, among others. The server database is used by the task assessor to help generate
its initial sketch of information gathering options and again during the actual search process
by the RESUN planner.

Both the server and object databases grow dynamically at runtime. At the start of the
experimental runs described in Section 5.6, the server database is seeded with a small
number (10–20) of generic information sources (e.g., vendor sites and search engines),
while the object database is empty. New sources are added to the server database as they
are discovered, and new characteristics about known sources (i.e., average response time,
file size, references) are used to update existing entries. The object database is grown in a



208 V. Lesser et al. / Artificial Intelligence 118 (2000) 197–244

similar manner by adding new products as they are found and revising records of known
products. The information in these databases is part of a feedback loop, which improves the
quality of data available to BIG for each query it processes. The server database is further
augmented by an off-line spider process which fills the database with sources that meet
general, easily checked characteristics (i.e., keyword matching, minimum textual content).

Blackboard component. The blackboard functions as a multileveled database for the
information the system has discovered and produced thus far. Unlike the object database
mentioned above, the blackboard is a runtime specific tool—it is more efficient to access,
but the information will be lost when the system is shut down. Useful information from
the blackboard is therefore saved into the object database for future use. Our current
blackboard organization has four levels: User-Goal, Decision, Object, and Document,
in order of decreasing abstraction. The layered hierarchy allows for explicit modeling
of concurrent top-down and bottom-up processing, while maintaining a clear record of
supporting and contradictory evidence. The information at a given level is derived from the
level(s) below it, and it in turn supports the hypotheses at higher levels. For example, when
evaluating the appropriateness of a particular decision hypothesis, the system examines the
reliability of the text extraction processes used to generate the properties of the object. The
objects themselves are each supported by the various documents from which they were
generated. Fig. 4 shows the four-level structure of our current blackboard and examples of
the types of objects which are stored there.

Fig. 4. BIG’s blackboard structure.
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In this example, theCorel Wordperfect 3.5product object in the object level provides
supporting evidence to theCorel Wordperfect 3.5recommendation made at the the
decision level. There are several kinds of SOUs shown associated with the “Object” and
“Document” levels in the figure; these SOUs help identify those objects which potentially
require further processing. The “partial-support-sou”, for example, indicates that there are
important features such as platform or processor, missing from this object. The problem
solver would at some point notice this deficiency and attempt to resolve the uncertainty by
retrieving and processing related documents.

Task assessor.The task assessor is responsible for formulating an initial information
gathering plan and for revising the plan as new information is learned. The task assessor
manages the high-level view of the information gathering process and balances the end-
to-end, top-down constraints of the Design-to-Criteria scheduler and the opportunistic
bottom-up RESUN planner (both discussed below). It heuristically generates a network
of high-level plan alternatives that are reasonable, given the user’s goal specification and
the desired performance objectives, in terms of time deadline and information coverage,
precision and quality preferences.

The TÆMS [16] task modeling language is used to hierarchically model the information
gathering process and enumerate alternative ways to accomplish the high-level gathering
goals. The task structures probabilistically describe the quality, cost, and duration
characteristics of each primitive action and specify both the existence and degree of any
interactions between tasks and primitive methods. TÆMS task structures are stored in a
common repository and serve as a domain independent medium of exchange for the domain
independent agent control component. In the single agent implementation of BIG, TÆMS
is primarily used to coordinate and communicate between the scheduler (below), the task
assessor, and the RESUN planner.

Design-to-Criteria scheduler. Design-to-Criteria [61–63] is a domain independent real-
time, flexible computation [13,29,53] approach to task scheduling. The Design-to-Criteria
task scheduler reasons about quality, cost, duration and uncertainty trade-offs of different
courses of action and constructs custom satisficing schedules for achieving the high-level
goal(s). The scheduler provides BIG with the ability to reason about the trade-offs of
different possible information gathering and processing activities, in light of the client’s
goal specification and behavior preferences, and to select a course of action that best
fits the client’s needs in the current problem-solving context. The scheduler receives the
TÆMS models generated by the task assessor as input, produces a schedule in soft real-
time [61], and returns the generated schedule to the RESUN planner for execution.5 The
resulting schedule may contain segments of parallel activities when the primitive actions
entail non-local processing, e.g., issuing requests over the network. The non-local activities
can be embedded within primitive actions or explicitly modeled as primitive actions with
two components, one for initiation and one for polling to gather results, separated by
propagation delays. This enables the agent to exploit parallelism where possible and where

5 For a typical BIG task structure, having 25–30 primitive actions, schedule time is on the order of 10 seconds
on a Digital Alphastation 6000.
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the performance of the parallel activities will not adversely affect the duration estimates
associated with its activities.6

In summary, the scheduler is what enables BIG to address real-time deadlines and to
trade off different aspects of solution quality (e.g., precision, coverage). The scheduler
does not simply trade off time and cost, it is what determines how the process should be
accomplished and the appropriate time allocations given to operations or particular classes
of operations (e.g., information search and retrieval versus text processing).

RESUN planner. The RESUN [7–9] (pronounced “reason”) blackboard-based plan-
ner/problem solver directs information gathering activities. The planner receives an initial
action schedule from the scheduler and then handles information gathering and process-
ing activities. The strength of the RESUN planner is that it identifies, tracks, and plans to
resolve sources-of-uncertainty (SOUs) associated with blackboard objects, which in this
case correspond to gathered information and hypotheses about the information. For ex-
ample, after processing a software review, the planner may pose the hypothesis that Corel
Wordperfect is a Windows 98 word processor, but associate a SOU with that hypothesis
that identifies uncertainty associated with the extraction technique used. The planner may
then decide to resolve that SOU by using a different extraction technique or finding corrob-
orating evidence elsewhere. RESUN’s ability to represent uncertainty as symbolic, explicit
factors that can influence the confidence levels it maintains for hypotheses provides the
cues for an opportunistic control mechanism to use in making context-sensitive decisions.
For example, they might be used to adaptively engage in more unrestricted Web retrieval
when a reference to a previously unknown product is encountered, or to engage in differ-
ential diagnosis to discriminate between two software products’ competitive features.

This hints at an interesting integration issue. RESUN’s control mechanism is funda-
mentally opportunistic—as new evidence and information is learned, RESUN may elect
to work on whatever particular aspect of the information gathering problem seems most
fruitful at a given time. This behavior is at odds with the end-to-end resource-addressing
trade-off centric view of the real-time [61] Design-to-Criteria scheduler, a view necessary
for BIG to meet deadlines and address time and resource objectives. Currently RESUN
achieves a subset of the possible goals specified by the task assessor, but selected and se-
quenced by the scheduler. However, this can leave little room for opportunism if the goals
are very detailed, i.e., depending on the level of abstraction RESUN may not be given room
to perform opportunistically at all. Improving the opportunism via a two-way interface be-
tween RESUN and the task assessor is an area of future work (Section 6). Experiments
with different cost models for Web sites and scheduling with different trade-offs, using the
the current interface model, are presented in [45].

To work effectively, BIG must be able to perform search and discovery on the Web. The
search space size and dynamism of this environment require an agent to

6 This distinction is important because the duration estimates associated with actions are constructed assuming
the dedicated efforts of the agent. In cases where multiple activities are performed in parallel, and the activities
require 100% of the local processor, performance degradation will affect the actual run times of activities and
result in schedules that do not perform as expected.
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(1) respond to data driven opportunities and uncertainties that arise during problem
solving, and

(2) meet real-time deadlines, address resource limitations, and trade off solution quality
for time spent searching.

The RESUN planner and Design-to-Criteria scheduler combine to provide these capabili-
ties. If the environment were static, a simple script would be sufficient to control the agent’s
search process.

Web retrieval interface. The retriever tool is the lowest level interface between the
problem-solving components and the Web. The retriever fills retrieval requests by either
gathering the requested URL or by interacting with both general (e.g., InfoSeek), and site-
specific search engines.

Document classifiers.To more effectively utilize the processing power available to it
and decrease the probability of analyzing unrelated information, BIG prunes the set of
documents to be processed through a series of filtering steps that impose progressively
increasing processing demands and quality standards. During each stage, a test is
performed, which will prevent the document from reaching the next stage if it fails. At
the lowest level is a simple keyword search in the retrieved document’s content. If the
document fails to contain any of the supplied keywords it will fail the test. This is followed
by a more sophisticated check by a Naive Bayes classifier, which is covered in detail in
Section 5.1. The Naive Bayes document classifier performs statistical text classification
and is provided with a set of positive and negative training documents as input. Before
performing classification, the classifier indexes the data by reading the training documents
and archiving a “model” containing their statistics. A document which passes these checks
is then placed on BIG’s blackboard. Documents selected from the blackboard will then
be processed by one or more of the text extraction knowledge sources. The exact set of
extractors applied to the document is governed by the document’s source, or if the source
is unknown to BIG, all extractors are used. This final filtering stage is responsible for
the fine-grained culling of information. Pertinent details from each document are used to
augment the known set of products, while the remaining content is discarded.

Information extractors. The ability to process retrieved documents and extract structured
data is essential both to refine search activities and to provide evidence to support
BIG’s decision making. For example, in the software product domain, extracting a
list of features and associating them with a product and a manufacturer is critical
for determining whether the product in question will work in the user’s computing
environment, e.g., RAM limitations, CPU speed, OS platform, etc. BIG uses several
information extraction techniques to process unstructured, semi-structured, and structured
information.7 Documents in general are used by BIG in two different capacities: product
descriptions and reviews. Different technologies optimized for use on either of these
document classes are used to process the two types of documents. We determine the type

7 The widespread adoption of XML and other structuring specifications for Web documents will help to simplify
the problem of processing Web-based information.
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of some documents by analyzing the site of origin. For those documents with unknown
type, both review and description technologies are applied on them.

The information extractors are implemented as knowledge sources in BIG’s RESUN
planner and are invoked after documents are retrieved and posted to the blackboard. The
information extractors are:

– textext-ks.This knowledge source processes unstructured text documents using the
BADGER [55] information extraction system to extract particular desired data. The
extraction component uses a combination of learned, domain-specific extraction rules,
domain knowledge, and knowledge of sentence construction to identify and extract
the desired information. The BADGER text extractor utilizes knowledge gained
from a training corpus as well as a lexicon/dictionary of domain words and their
classifications in a semantic hierarchy. This component is a heavy-weight NLP-style
extractor that processes documents thoroughly and identifies uncertainties associated
with extracted data.
Our main contribution in this area is how the extracted information is made useful
to the rest of the system by means of back-end processing. The back-end takes the
extractions made by the system and provides the degree of belief for each extraction.
The degree of belief indicates the level of confidence that the extraction is accurate
and is a function of the number of positive and negative training examples covered
by all the rules that support a particular extraction. Using the degree of beliefs as
thresholds, we determine which of the extractions are valid and also compute the
certainty measure of the entire template. Also, the processed information supports
opportunistic control in the sense that newly discovered information could lead to the
examination of a completely different part of the solution space than before.

– grep-ks. This featherweight KS scans a given text document looking for a keyword
that will fill the slot specified by the planner. For example, if the planner needs to fill
a product name slot and the document contains “WordPerfect” this KS will identify
WordPerfect as the product, via a dictionary, and fill the product description slot.

– cgrepext-ks.Given a list of keywords, a document and a product description object,
this middleweight KS locates the context of the keyword (similar to paragraph
analysis), does a word for word comparison with built in semantic definitions
thesaurus and fills in the object accordingly. The cgrep knowledge source uses a
lexicon/dictionary similar to that of BADGER.

– tablext-ks. This specialized KS extracts tables from html documents, processes the
entries, and fills product description slots with the relevant items. This KS is built to
extract tables and identify table slots for particular sites. For example, it knows how
to process the product description tables found at the Benchin review site.

– quick-ks. This fast and highly specialized KS is constructed to identify and extract
specific portions of regularly formatted html files. The quick-ks utility essentially
acts as a wrapper to certain Web sites. It has knowledge about the information
structure each site employs, and can efficiently extract pertinent information from
these sources. The primary drawback to such a technique is the inherent difficulty in
constructing such wrappers. In our system, a human expert must inspect the sites in
question, deduce the structure of the pages, and then encode rules to extract the desired
information. Clearly this is a labor intensive process, and one which must be repeated
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for each Web site to be targeted and each time a targeted Web site alters its format.
We chose to employ this technique because a relatively small number of sites could be
targeted to produce a significant amount of high-quality information. Recent research
in [47] has shown methods which can be employed to simplify wrapper construction
and revision, which could significantly reduce the amount of effort this technology
requires, thus making it more viable in a large-scale system.

Decision maker. After product information objects are constructed, BIG moves into the
decision-making phase. In the future, BIG may determine during decision making that
it needs more information, perhaps to resolve a source-of-uncertainty associated with an
attribute that is the determining factor in a particular decision; however, BIG currently
uses the information at hand to make a decision. We discuss the decision process in greater
detail in Section 5.5; however, the decision is based on a utility calculation that takes into
account the user’s preferences and weights assigned to particular attributes of the products
and the confidence level associated with the attributes of the products in question. Note
that we do not rigorously evaluate the final decisions that BIG produces in this paper, as
we feel the issue is highly subjective. Any selected product falling within or closest to the
user’s desired parameters is considered a valid choice.

All of these components are implemented and integrated in BIG. The construction,
adaptation, and integration of these components was a nontrivial process. BIG is a large,
complex, problem-solving agent that incorporates many areas of AI research under a single
umbrella.8 The culmination of these efforts in BIG has produced an interesting research
tool, but the integration has also influenced and refined the research directions pertaining
to the individual components as well.

4. Execution trace

We now describe a short sample run of the BIG system based on the high-level example
described in the introduction (see Figs. 1 and 2), to better illustrate the mechanisms
used both within and between BIG’s components. The client is a student who uses
the system to find a word processing package which will most closely satisfy a set of
requirements and constraints. For clarity of presentation we describe the example trace in
the following sequential stages: querying, planning, scheduling, retrieval, extraction and
decision making. It is important to note that the details given below are a representative
example of BIG’s problem-solving techniques, and that the specific sequence of actions
is highly dependent on the particular constraints and environment characteristics BIG
encounters.

8 BIG is implemented in C++, Perl, Common-Lisp, and Java. It is run on an Alphastation 6000 with 512
megabytes of RAM and requires nontrivial computing resources. However, in terms of performance, little time
has been spent optimizing the system (excepting the DTC scheduler), and optimization could reduce the overhead
involved with running BIG and improve BIG’s ability to make better use of allocated run-time, i.e., it would be
able to search more or extract more given the same resource allocation.
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4.1. Query formulation

Query processing is initiated when the client specifies and submits the search criteria,
which includes the duration and cost of the search as well as desired product attributes such
as price, quality features and system requirements. In this example the client is looking for
a word processing package for a Macintosh costing no more than $200, and would like
the search process to take ten minutes and the search cost to be less than five dollars. The
client also describes the importance of product price and quality by assigning weights to
these product categories, in this case the client specified that relative importance of price to
quality was 60% and 40% respectively. Product quality is viewed as a multi-dimensional
attribute with features like usefulness, future usefulness,9 stability, value, ease of use,
power and enjoyability constituting the different dimensions. Such characteristics are
observable through specialized analysis techniques used during the extraction phase. As
seen in Fig. 1, these qualities are all equally weighted at 50 units. These are assigned
relative weights of importance. The client specifies the relative importance of product
coverage and precision as 20% and 80% respectively.

4.2. Plan construction

Once the query is specified, the task assessor starts the process of analyzing the client
specifications. Using its knowledge of RESUN’s problem-solving components and its
own satisficing top-down approach to achieve the top-level goal, it generates a TÆMS
task structure that it finds most capable of achieving the goal given the criteria (a task
structure here is akin to an integrated network of alternative process plans for achieving
a particular goal). Although not used in this example, knowledge learned in previous
problem-solving instances may be utilized during this step by querying the database of
previously discovered objects and incorporating this information into the task structure
[43].

Fig. 5 shows the TÆMS task structure produced by the task assessor in response to the
client’s query and the current information in the object and server information databases.
The top-level task is to satisfy the user’s query, and it has three subtasks:Get-Information,
Benchin-Review, and Make-Decision. The three subtasks represent different aspects of
the information gathering and recommendation process, namely, finding information and
building product models, finding reviews for the products, and evaluating the models to
make a decision. The three subtasks are related toSatisfy-User-Queryvia a seq_sum()
quality-accumulation-function (qaf), which defines how quality obtained at the subtasks is
combined at the parent task. Some qafs, likeseq_sum()specify the sequence in which to
perform subtasks in addition to the different combinations that may be employed (theseq
stands for “sequence”).Seq_sum()specifies that all of the subtasks must be performed, in
order, and that the quality of the parent task is a sum of the qualities of its children. The
formal details of TÆMS are presented in [14,15], the evolving specification is at [57], and
other TÆMS examples appear in [42,61,63].

9 This relates to the openness of the software product to be compatible with newer versions of supporting
software and operating system.
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Fig. 5. BIG’s TÆMS task structure for the short run.

TheGet-Informationtask has two children, also governed by aseq_sum(). The dotted
edge leading fromGet-Basic-Informationto Get-Extra-Informationis an enablesnon-
local-effect (task interaction10 ) denoting thatGet-Basic-Informationmust produce quality
beforeGet-Extra-Informationcan be performed. In this case, it models the notion that
product models must be constructed before any time can be spent doing optional or extra
activities like improving the precision of the result or increasing the information coverage
(discussed in Section 5.2). Choice in this task structure occurs any time tasks are grouped
under asum()qaf (there are many other qafs that entail choice, but they are not used in
this example). For example,Look-for-Materialshas six subtasks under asum(), which
means that any combination of these subtasks may be performed and in any order (barring
deadlines on individual tasks or task interactions), i.e., the power-set minus the empty-set
may be performed. Likewise with the children ofGet-More-ObjectsandDetail-Product-
Information. Alternative choices about where to search, how many places to search, which
methods to employ while searching, which information extraction technologies to use, the
number of reviews to gather for products, and so forth are all modeled in TÆMS. This
is also what gives BIG the ability to target its performance for particular situations. For
example, in a situation where a result is desired by a tight deadline, the Design-to-Criteria
scheduler will analyze the task structure and find a solution path that “best” trades off
quality for duration and cost. There is another element of choice in BIG: it is in the level

10 The full range of task interactions expressible in TÆMS were not exploited by the task assessor component in
modeling the planner’s activities. One set of interactions involving facilitation/hindering we hope to use in future
versions of BIG. These relationships allow us to model the fact that the degree of quality produced by a primitive
task will affect in a positive/negative way the behavior of other primitive tasks. Another aspect of TÆMS that
could be potentially useful in modeling IG activities is the ability to represent different outcomes associated with
a task, each of which can have different types of task relationships.
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of abstraction that is used in the creation of the TÆMS task structure—atask assessor
component determines which are the options that are important to enumerate and the
granularity of what is included in a leaf-node (primitive action).

4.3. Schedule generation

Once generated, the task structure is then passed to the scheduler which makes use of
the client’s time and cost constraints to produce a viable run-time schedule of execution.
Comparative importance rankings of the search quality, cost and duration supplied by the
client are also used during schedule creation. The sequence of primitive actions chosen by
the scheduler for this task structure is also shown in Fig. 5. The numbers near particular
methods indicate their assigned execution order. The scheduled time and actual execution
time of each method are shown in Table 1. The differences in these columns are attributable
to two different sources of imprecision. The first is simply the local variance associated
with Web-related activities.11 The second source of imprecision is the balanced interface
between the Design-to-Criteria scheduler and the opportunistic RESUN planner. To give
room for RESUN to respond to data that is extracted during the search process, some of
the primitive actions scheduled by DTC are not actually primitive actions. Some of the
actions are instead abstractions or black boxes denoting bundles of activities. This enables
RESUN to determine particular bindings as appropriate given the evolution of data during
the problem-solving episode, i.e., to be data driven within the confines of the activities
scheduled by DTC. One view is that DTC defines a high-level policy for RESUN that
defines the major steps, and resource allocations to these, of the information gathering
process. This interface is what enables BIG to respond to SOUs (sources of uncertainty)
associated with extracted information and to make decisions during the search about which
information to gather or which extraction processes to run—all while still staying within
the time and resource guidelines set by the scheduler. Thus, at one level the schedule can
be thought of as a specification of a policy that governs RESUN’s activities.

4.4. Information retrieval and extraction

The schedule is then passed to the RESUN planner/executor to begin the process
of information gathering. Retrieval in this example begins by submitting a query to a
known information source, MacZone (www.zones.com), a computer retailer. While this
information is being retrieved, a second query is made to another retailer site, Cyberian
Outpost (www.outpost.com), and a third query is made to MacMall (www.macmall.com)
site. Generally, queries to such sites result in a list of URLs, where each URL is
accompanied by a small amount of text describing the full document. This information is
combined with the query text and any other knowledge the agent has about the document
such as recency, length, number of incoming links, etc., to form adocument description
object that is then put on the RESUN blackboard for consideration by other knowledge
sources. The query to MacZone results in 56 document descriptions being placed on

11 While the Web exhibits strong statistical trends during the course of a day, e.g., increasing delay time around
mid-day, there may be local variance that is difficult to predict.
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Table 1
Time used for scheduling versus actual execution time in seconds

Method name Schedule time Execution time

Scheduling 8

Send_Query_maczone 1 1

Send_Query_cybout 2 1

Send_Query_macmall 1 0

Slack_MyTime 27 27

Get_Back_maczone 19 19

Get_Back_cybout 20 22

Get_Back_macmall 19 8

Medium_Quality_Duration_9 72 67

High_Quality_Duration_5 51 49

Get_More_Detail_2 34 10

Get_More_Detail_2 35 58

Get_More_Detail_5 76 76

User-Review-Method 127 144

Benchin-Review-Method 137 137

Make-Decision 1 2

Total time (request time 600) 622 629

the blackboard, the query to Cyberian Outpost results in 78 document descriptions being
placed on the blackboard, while the MacMall query results in an additional 86 document
descriptions being added. Out of these candidate document descriptions, 13 documents are
chosen for MediumQuality(MQMD)_9 processing. This choice is made heuristically by
examining the keywords contained in the URL label and via a preference for certain Web
sites (those that have yielded useful results in the past). To identify documents most likely
to yield product descriptions, other heuristics, such as document recency and length could
also be used.

The thirteen documents are then retrieved and run through a document classifier to de-
termine if they are indeed word processor products; four documents are rejected by the
classifier. Two of the rejected documents are translation packages, one is a description of
a scanning OCR software, and the other product is a speech recognition package. These
documents contain enough non-word processor related verbiage to enable the classifier to
correctly reject it as a word processing product. The nine remaining (un-rejected) docu-
ments are posted on the blackboard for further consideration and processing. For example,
one of these documents is:http://search.outpost.com/search/proddesc.
cfm?item=16776 ; a MediumQualityMediumDuration(MQMD) text extraction process
is performed on the document. The process involves using quickext-ks and cgrep-ks in
sequence to create an information object that models the product. A further example of
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the type of information which is stored on the blackboard can be seen in Fig. 4. After
quickext-ks runs, the following object is posted:

Product Name : Corel WordPerfect 3.5
Price : $159.95
DiskSpace : 6MB
Processing Accuracy(Rating):

PRODUCTID=0.8 PRICE=1.0 DISKSPACE=0.8

The cgrep-ks finds extra information about the product’s processor, platform, and
other miscellaneous requirements. It also finds corroborating product name and price
information; this increases the processing accuracy12 of these slots. After applying cgrep-
ks:

Product Name : Corel WordPerfect 3.5
Price : $159.95
DiskSpace : 6MB
Processor : -
Platform : macintosh power_macintosh

system_7_or_higher
misc requirement:(cd ram)
Processing Accuracy(Rating):

PRODUCTID=1.4 PRICE=1.6 PROCESSOR=0.0
DISKSPACE=0.8 PLATFORM=2.0 MISCREQ=1.2

Eight other products are found and posted on the blackboard during the execution
of the MQMD_913 method. Similarly, the method HighQualityHighDuration(HQHD)_5
retrieves six documents, rejects one, processes five documents and posts five more products
on the blackboard. At this point the system has a total of 14 competing product objects
on the blackboard which require more discriminating information to make accurate
comparisons. The system has, in effect,discovered14 word processing products.

Those objects which are upgrades are immediately filtered out since the client did not
specify an interest in product upgrades. Also, those products which are certainly not for
the Macintosh platform are discarded. Subsequent efforts are focused on the remaining six
products.

The three methodsGet_More_Detail_1, Get_More_Detail_2andGet_More_Detail_5
make queries to “yahoo” and “infoseek” about the remaining products and find some
review documents. A review process knowledge source is applied on every review
document to extract information. The extracted information is added to the object, but not
combined with existing data for the given object (discrepancy resolution of extracted data
is currently handled at decision time). For each review processed, each of the extractors
generates a pair, denoted<Product Quality, Search Quality> in the information objects

12 The processing accuracy values are a function of the quality of the documents and extractors used to derive
the information. When obtained from a single source, the values are normalized. Concurring information from
different information will result in the individual ratings being added to form the joint rating.
13 There is information available about the quality and processing duration of documents to decide which

documents should be selected for processing. In the current version of BIG, we did not implement this feature.
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pictured below. Product Quality (PQuality) denotes the quality of the product as extracted
from the review (in light of the client’s goal criteria), and Search Quality (SQuality) denotes
the quality of the source producing the review. For example, if a review raves about a set
of features of a given product, and the set of features is exactly what the client is interested
in, the extractor will produce a very high value for the Product Quality member of the pair.
Currently the Source Quality is determined based on the reference number of the document
(see Section 5.5), the more widely a document is referenced, the more highly it is rated.

For example, four documents (above) are found.

• http://www.mpp.com/mediasoft/keystone/cwp7off.htm

• http://www.osborne.com/whatsnew/corelwp.htm

• http://www.cdn-news.com/database/main/1997/2/24/

0224010N.html

• http://www.corel.com/products/wordperfect/

These documents are processed as review documents for product “Corel WordPerfect
3.5” and the resultant product object is:

Product Name : Corel WordPerfect 3.5
Price : $159.95
DiskSpace : 6MB
Processor : -
Platform : macintosh power_macintosh

system_7_or_higher
misc requirement:(cd ram)
Processing Accuracy(Rating):

PRODUCTID=3.8 PRICE=1.6 PROCESSOR=0.0
DISKSPACE=0.8 PLATFORM=2.0 MISCREQ=1.8

Review Consistence:(((PQUALITY 2) (SQUALITY 3))
((PQUALITY 1.2857143) (SQUALITY 2))
((PQUALITY 1.2857143) (SQUALITY 2))
((PQUALITY 2) (SQUALITY 2)))

Actually, not all of these four documents are product reviews; one of them is a list of
all Corel WordPerfect products. This is caused by the weakness in general of search en-
gines and natural language processing technologies. In this case, the only consequence
of the incorrect categorization of the document is that we obtain no information after
we processed it with the review extraction knowledge sources. Thus it is necessary to
get information from some specific product review sites. TheUser-Review-Method
method queries the Benchin site, producing four reviews which are processed. The doc-
umenthttp://www.benchin.com/$index.wcgi/prodrev/1112163 , which
includes 60 users’ reviews, is selected and processed for the product “Microsoft Word
6.01”, Word 6.01 being one of the six competing products still under consideration. The
new review information((PQUALITY 2.857143) (SQUALITY 3)) is added to the
“Microsoft Word 6.01” object. Similarly,Benchin-Review-Method sends queries to
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the Benchin star review site (which uses a star rating system that is simple to process),
producing review information for four different products.

4.5. Decision making

After this phase, the final decision-making process begins by first pruning the set of
product objects which have insufficient information to make accurate comparisons. The
data for the remaining objects is then assimilated. Discrepancies are resolved by generating
a weighted average of the attribute in question where the weighting is determined by the
quality of the source. The detailed decision-making process is described in Section 5.2. The
final decision is shown in Fig. 6. The decision confidence is not very high because there
is a competing candidate “Nisus Writer 5.1 CD ROM with Manual” whose overall quality
is only slightly less than that of “Corel WordPerfect”. This close competition degrades the
decision confidence because only slight variations in search or extraction activities could
have resulted in a different decision.

As will be seen in the next two sections, this information gathering process can change
significantly based on the specific product specifications, the amount of time that the user

Fig. 6. BIG’s final decision for sample run.
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is willing to have the system search, and the coverage, precision and quality criteria that
are specified. Though not emphasized in the description, the amount of money the user is
willing to spend accessing information sources that charge on a per-access basis can also be
factored into the generation of an information gathering plan. Experiments and examples
appear in [45].

5. Research issues in BIG’s design and performance

In this section we present and discuss empirical results that demonstrate the flexibility
and extensibility of the BIG approach to information gathering for decision support.
Sections 5.1 and 5.7 address the issue of domain-specific knowledge and generality in
BIG. Section 5.1 discusses the importance of document classification in improving system
performance by filtering out inappropriate documents. Section 5.7 shows that with little
additional training, new software genres can be added to BIG’s library of expertise.
Section 5.2 demonstrates BIG’s flexibility with respect to precision and coverage. The
section shows that appropriate generation of a TÆMS task structure, by the task assessor,
allows the Design-to-Criteria scheduler to evaluate precision and coverage trade-offs and
to meet the client objectives with respect to these. Sections 5.3 and 5.4 discuss how
information fusion and opportunism manifest in BIG’s information gathering activities.
Section 5.5 details the process that BIG uses to evaluate client requirements and make its
final product selection. Section 5.6 demonstrates empirically that the system accurately
adapts its processing to address client search requirements.

It is important to note that the following sections do not attempt to evaluate system
performance through comparison with an oracle, in which the best possible answer has
been found by the oracle and the system is evaluated based on the proximity of its final
answer to the solution returned by the oracle. Given that optimal answers are difficult
to obtain in this environment, and that the overall objective is to supplement a decision
process, the performance metric by which BIG is evaluated is generally whether or not
the results are reasonable for a given search/query. In almost all of the situations that we
have examined, BIG produces answers that are considered reasonable by a human decision
maker for the given search and product criteria.

5.1. The importance of document classification

Until recently, BIG has been plagued by an interesting extraction problem when
dealing with products that are complimentary to the class of products in which a client
is interested. For example, when searching for word processors, BIG is likely to come
across supplementary dictionaries, word processor tutorials, and even document exchange
programs like Adobe Acrobat. These products are misleading because their product
descriptions and reviews often contain terminology that is very similar to the terminology
used to describe members of the target class. When BIG processes one of these misleading
documents, it getsdistractedand future processing is wasted in an attempt to find more
information about a product that is not even a member of the target class. For example,
if BIG encounters a reference to Adobe Acrobat when searching for word processors,
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Fig. 7. Advantages of document classification.

and then elects to retrieve the product description for Acrobat, the extraction techniques
are likely to yield data that seems to describe a word processor. Subsequently, BIG may
elect to gather more information on Acrobat, further degrading the overall efficiency of
the system. Experiments indicate that this type of distraction can be reduced through the
use of a document classifier before text extraction is performed on candidate documents.
Documents that do not seem to be members of the target class are rejected and text
extraction is not performed on them—thus no new distracting information objects are
added to BIG’s blackboard.

Fig. 7 provides a sample of our initial results. BIG was run in three different modes:
(1) BIG alone,
(2) BIG with the use of a simple grep-like pattern-matching filter to classify documents,
(3) BIG with the use of Naive Bayes document classifier [49] and the simple grep filter.

The grep-like filter examines the document for instances of terms that describe the software
genre in question, e.g., “word processor”. These terms are hand produced for each query
genre—in essence, hardwired into the system. In contrast, the document classifier is trained
using positive and negative examples—it learns term-based similarity and difference
measures. In all three modes, BIG has decided that it has time to process 13 documents
in total for the given search parameters. When filtering and classification of documents
results in certain documents being rejected (rows two and three in Fig. 7), a larger corpus of
documents is examined (44 and 74 respectively) to obtain the target number of documents.

In the first run, shown in the figure, neither filter nor classifier are used. All documents
retrieved are processed by the information extractors. None of the top five objects in this
test case are members of the target product class—they are all related to word processors
but none of them is actually a word processing product. Clearly, BIG does very poorly
when relying on outside sources like vendor’s search engines to classify products. In the
second run, the simple grep-like filter is used to check documents before processing; 31
documents are rejected by the filter and the overall results are a little better. There are word
processing products among the candidates, but the selected product is not a word processor.
In the last run, both classifier and filter are used to check documents; 53 documents are
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rejected. All of the top-ranked candidates are word processing products and the top product,
“ClarisWorks Office 5.0”, is an integrated office suite that includes a word processing
package.

Clearly, document pre-classification is necessary to filter retrieved documents before
they are used to produce product objects. Vendor search engines are typically keyword
based and are therefore prone to return numerous products that are not members of the
target class but are instead related or supplementary products. Improving the classification
of documents and widening the training corpus for the classifier are areas of future
development.

The classifier can be applied to other domains, however, it requires a new training corpus.
This is true with other text processing knowledge sources and document classifiers as
well—components based on statistical properties of text (akin to IR tf/idf statistics) require
training corpora in order to apply them to a different domain. While such training requires
hands-on person hours, it is reasonable to assume that a library of such classifications
for new domains could be compiled over time, allowing the capabilities to grow as
needed.

To explore this issue, we added new genres to BIG’s library of expertise using a simple
procedure. A query for the new genre, e.g., image-editing software, is given to BIG.
BIG then gathers information on image-editing software by submitting various specified
keyword queries to general search engines and by looking at software makers and review
sites. Of course, when BIG retrieves the documents, they are filtered out by BIG’s existing
set of document classifiers. However, this process yields a large pool of documents that
can then be classified by hand and used to train the document classifiers on the new genre.
Using this process, it is possible to integrate a new software genre in a little less than
an hour’s time. The text extraction tools are generic enough to handle the new genre and
no new training documents or additions to the lexicon were required. Currently, no special
tools are being used to automate this process of integration. The performance of the system
on the new genre is described in the experimental results in Section 5.7. As part of our
future work, we foresee developing mechanisms to allow users to provide feedback about
the correctness of the decision process and which products selected by the system are in the
ball-park for a new genre. This information can be used incrementally as we get new/more
users who access this genre.

5.2. Precision versus coverage

Precisionversuscoverageis an issue often discussed in literature relating to information
gathering or information retrieval. In the BIG context, once a satisfactory amount of
information has been processed to support a high-quality decision process, the issue
becomes how best to spend the remaining time, cost, or other constrained resources. One
alternative is to spend the time gathering more information about other products, i.e.,
discovering new products and building models of them. Another alternative is to spend
the time discovering new information about the existing products in order to increase
the precision of the product models. Both alternatives can lead to higher-quality decision
processes since both expand the range of information on which the decision is based.
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BIG supports both of these behaviors, and a range of behaviors in between the binary
extremes of 100% emphasis on precision and 100% emphasis on coverage. BIG clients
specify a precision/coverage preference via a percentage value that defines the amount
of “unused” (if there is any) time that should be spent improving product precision. The
remainder is spent trying to discover and construct new products. For example, if a client
specifies 0.3, this expresses the idea that 30% of any additional time should be spent
improving precision and 70% should be spent discovering new products.

BIG achieves this trade-off behavior in two ways: by planning and scheduling for
it a priori, and by responding opportunistically to the problem-solving context within
the constraints of the schedule. Scheduling for the precision/coverage trade-off is
accomplished by relating the precision and coverage specification to quality14 for the
Design-to-Criteria scheduler and giving the scheduler a set of options, from which to
choose a course of action. In Fig. 5,Get-Extra-Informationhas two subtasks,Get-More-
ObjectsandDetail-Product-Informationdenoting the two different ends of the spectrum.
Get-More-Objectsrepresents the coverage end andDetail-Product-Informationrepresents
the precision end. Thesum()quality accumulation function under the parent task,Get-
Extra, models that the scheduler may choose from either side depending on the quality,
cost, duration, and certainty, characteristics of the primitive actions under each. Client
precision/coverage preference is related to quality for the primitive actions under these
tasks, e.g., the actions pertaining to precision receive higher quality when increased weight
is given to precision. This approach enables the scheduler to reason about these extra
activities, and their value, and relate them to the other problem-solving options from a
unified perspective. Thus, the overall value of pre-allocating “extra” time to coverage or
precision is also considered in light of the other candidate activities.

BIG can also work opportunistically to improve coverage or precision, as is described
in Section 5.4. A third option, not currently implemented, is for BIG to revise its problem-
solving options and reschedule as new information is gained and the context (state of the
blackboard, environment, time remaining, etc.) changes. This would enable BIG to react
opportunistically but to do so wholly in the context of reasoning about the quality, cost,
duration, and certainty trade-offs of its options from a unified perspective.

Table 2 shows BIG’s ability to trade off precision and coverage. In providing this data,
we are not attempting to generalize in this section that any particular trade-off between the
two is better than the other, only that such a trade-off exists. We feel this characteristic is
interesting both because of the way BIG implements and exhibits the behavior, and because
of the ramifications it has on how users can control a search process. The table contains
data for three sets of runs, for the same query and with the same criteria settings (only the
precision setting is varied). In each run, three trials are performed, each with a different
precision preference setting, namely 10%, 50%, and 90% respectively. Since network
performance varies during execution, and there is some element of stochastic behavior
in BIG’s selection of equally ranked documents, no two trials are identical even if they

14 The particular values associated with the qualities of primitive actions is not critical provided that the relative
relationships among qualities of different actions are consistent with the domain. The purpose of the quality
attributes and qafs are to give the scheduler a sound basis for making trade-offs among quality, cost and time
characteristics of different schedules.
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Table 2
Trading off precision and coverage

# DRatio Scheduled Execution T.P. #P. A.C. P.A. D.C.

1 0.1 629 587 33 7 1.86 1.38 0.85

0.5 622 720 14 6 3.83 1.47 0.89

0.9 651 685 8 3 7.0 2.12 0.89

2 0.1 629 656 33 8 1.75 1.32 0.85

0.5 622 686 14 4 3.0 1.5 1

0.9 652 522 7 1 7.0 2.12 1

3 0.1 629 702 29 7 1.71 1.47 0.85

0.5 622 606 15 6 2.33 1.52 1

0.9 651 572 7 2 4.5 1.7 0.99

Key: # is the run number, DRatio = preference for precision, Scheduled = total execution time
as predicted by model and anticipated by scheduler, Execution = actual execution time, T.P. =
total product objects constructed, #P = total products passed to decision process, A.C. = average
coverage per object, P.A. = extraction processing accuracy per object, D.C. = overall decision
process confidence.

have the same preference settings. Note the general trends in the different runs. As more
weight is given to increasing precision, the number of products (T.P.) decreases, as does
the number of products used in the decision process (#P). The difference between these
two values is that some product objects lack sufficient information to be included in the
decision process and some of the product objects turn out to relate to products that do not
meet the client’s specification (e.g., wrong hardware platform, wrong product genre, price
too high, etc.). An extreme example of this is in run number two in the third trial, where
only one product is produced. As the number of products decrease as more weight is given
to precision, the average information coverage per object (A.C.)increases, as does the
information extraction/processing accuracy (P.A.). The decision confidence also generally
increases, particularly in runs two and three, though this item takes into account the total
coverage represented by the products as well as the precision of the product models so its
increase is not proportional to the other increases.

Schedules for the 10% and 90% precision runs (respectively) are shown in Figs. 8 and 9.
The schedules show the sequence of primitive actions and their start times (as expected
values rather than distributions). The schedules diverge on or around time 36 where
schedule 8 begins a series ofMedium_Quality_DurationandLow_Quality_Durationactiv-
ities that retrieve and process additional product related documents. The postfixed integers
on the method names (e.g., method10_Medium_Quality_Duration_6) denote the number
of documents (e.g., 6) that will be retrieved by the method. This series of steps results in
the production of nearly twenty additional product description objects. In contrast, around
that same time, schedule 9 begins a series ofGet_More_Detailactions that seek to find
information about existing product objects.
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Fig. 8. Schedule for 10%/90% precision to coverage.

Fig. 9. Schedule for 90%/10% precision to coverage.

From an end user perspective, the precision/coverage specification enables clients to
express preferences for one solution class over another. For a client who needs a speedy
result, and has an accordingly short deadline, the preference specification may result in
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URL_A http://www.cc-inc.com/sales/detail.asp?dpno=79857&catalog_id=2
URL_B http://www.freedombuilders.com//dramatica.htm
URL_C http://st2.yahoo.com/screenplay/dpro30mac.html
URL_D http://www.heartcorps.com/dramatica/questions_and_answers/dramatica10.htm
URL_E http://www.zdnet.com/macuser/mu_0796/reviews/review12.html
URL_F http://www.macaddict.com/issues/0797/rev.dramaticapro.html

Fig. 10. URLs for documents retrieved during processing.

a slight difference at best. However, for a client with more generous time resources, the
difference can be pronounced.

5.3. Information fusion

We use the terminformation fusionto denote the process of integrating information from
different sources into a single product object; the information may be complimentary, but
also contradictory or incomplete. There are several aspects to the fusion issue. The most
straightforward type of fusion is information addition—where a document provides the
value to a slot that is not yet filled. A more interesting type of fusion is dealing with
contradictory single value information, e.g., two documents reporting different prices for
a product, or two documents identifying a different production company for the product.
When BIG encounters this fusion issue, the item with the highest associated degree of
belief is used.15 Another issue is how to integrate different opinions about the product.
The latter is done in BIG by associating two metrics with each review document, one
representing information or site quality, and one representing the quality of the product
as expressed in the review. This dual then conceptually represents a value/density pair—
the information quality metric determines the weight given to the product quality metric
when comparing different metrics for different reviews. To illustrate BIG’s fusion process,
consider the following partial trace.

In this example, BIG is searching for word processor products for the Macintosh. In
response to a general query about word processing products, theMacMall retail site returns
a list of URLs. URL_A, from Fig. 10, is selected by BIG for retrieval and processed. BIG
extracts “Dramatica Pro 2.0” from the document as the title of the software package; it
also extracts that “Screenplay” (Inc.) is the maker and that the package sells for a price of
$289.99.16 The result of this extraction is the partial product object shown in Fig. 11(a).

The values in theProcessing Accuracy slots are certainty factors denoting the
quality and certainty of the extraction process that filled the respective slots. Since the
document provides very little additional information about Dramatica, BIG associates an
uncertain-supportSOU with the object. Because the product object is a promising area
of exploration, relative to everything else on the blackboard, BIG decides to attempt to
resolve the SOU. Toward that end, it queries Infoseek about Dramatica, resulting in a long

15 In the future, we hope to explore the use of RESUN’s opportunistic control to handle this situation by trying
to retrieve additional information to resolve the conflict.
16 Dramatica is actually a product contained in our corpus of word processor class documents used to train the

document classifier. Thus, the pursuit of Dramatica as a word processing package is valid from BIG’s perspective,
though the classification of Dramatica as a word processor is perhaps debatable.
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(a) Initial product object

(b) Product object after two documents

(c) Intermediate product object

(d) Final product object

Fig. 11. Evolution of the Dramatica product object.
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list of URLs that are combined with their descriptive text to create candidate document
description objects which are added to the blackboard. BIG selects and retrieves a subset of
these, starting with URL_B, which is a detailed description of the product. Processing the
description results in the addition of platform specifications to the product object, namely
that it runs on Windows 95 and Apple Macintosh systems. The description also contains
sufficient verbiage that it is analyzed using a keyword-based review processing heuristic
that looks for positive and negative phrases and rates products accordingly, weighing the
product features by the user preference for such features. Though the verbiage praises the
product, it is given a rating of−0.57 because the review does not praise the product for
the features in which the client is interested. In other words, even though the review is
positive, it does not make specific reference to the product features in which the client is
interested—such as a specific platform or program characteristic—and thus it is given a
negative value to denote that the product is below average quality-wise. However, since
the document in question is not widely referenced by other documents, it is given a low
information quality (source quality) rating and the negative review (product quality) rating
will thus have little weight when compared to other sources. The product object after this
step is shown in Fig. 11(b).

In response to the continued existence of theuncertain-supportSOU, BIG decides to
gather more information. It selects and retrieves URL_C, URL_D, URL_E, and URL_F,
in that sequence. Space precludes presenting an exhaustive sequence of product object
transformations as information is integrated into the object. Fig. 11(c) is the result after
processing the review at URL_D. Note the elevation of the product’s overall quality rating
and the increase in the various rating criteria like ease-of-use and stability. For free format
reviews such as this one (in contrast to sites that employ consistent numerical rating
systems), these metrics are determined by a set of heuristics that examine the text for
certain positive or negative expressions.

The remaining documents are retrieved, processed, and integrated in a similar fashion.
The product object after processing all of the selected documents is shown in Fig. 11(d).
For example, the final product object is subsequently compared to other product objects
during the decision process (see Section 5.5). While this example results in the construction
of a fairly complete product object, the objects used in the final decision process are not
all at the same level of completeness. Some objects may contain less information (but not
much) and some may contain more product details or more review summarization statistics.
The decision process takes into account the quantity and quality of the information
pertaining to the objects.

5.4. Opportunism

As discussed, opportunism in the BIG system currently occurs within the boundaries of
the initial schedule. The primitive actions seen by the scheduler are often abstractions of
sets of operations that BIG plans to perform, thus enabling BIG to respond opportunisti-
cally during the execution of these actions to newly gathered data or changes in the en-
vironment. To illustrate, consider a simple example where BIG is gathering documents to
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recommend a word processor. A portion of the schedule (without the numerical detail),
produced to address the specified resource constraints, follows:

--------------------------------------------------------
... | Get_Back_macmall | MQMD_method|Get_More_Detail_1 |

Benchin-Review-Method | Make-Decision | ...
--------------------------------------------------------

As a consequence of executing the schedule, documents are retrieved from the
MacMall site and processed using medium quality, medium duration text extraction
techniques (meaning a set of simple and more sophisticated extractors), denoted by the
MQMD_methodin the schedule. The product name, “Nisus Writer 5.1 CD ROM with
Manual” is extracted from one of the documents and is posted as an object on the
blackboard. Since the product name is the only information that could be extracted from
the document at hand, ano-supportSOU is attached to the object, signifying the need
to obtain more detailed information on the product in order for it to be used in the final
decision process.

As BIG actively pursues and plans to resolve SOUs, methodGet_More_Detail_1is
selected for execution to resolve the SOU. The method looks for objects which contain the
no-supportSOU and tries to find more information on related products by retrieving and
extracting documents. In this particular example,Get_More_Detail_1queries InfoSeek
with the keywords “Nisus Writer”, resulting in the production of a set of candidate URLs
and partial document descriptions. BIG decides to retrieve and process the review located
at URL [32]. Text processing of this document leads to the discovery of two new potential
competing products, namely “Mac_Publishing” and “WordPerfect” thus two more objects
with the product name slots filled are posted to the blackboard accompanied by no-support
SOUs as the product objects are essentially empty at this time.

BIG now has the following options:
(1) It can continue with its original schedule, which entails executing theBenchin_

Review_Methodto gather reviews for the Nisus Writer product, or,
(2) it can make an opportunistic change in its plans and find more information on

objects which contain unresolvedno-supportSOUs.
In this case, this would mean executing theGet_More_Detail_1method for theMac_
Publishingand WordPerfectobjects. The choice is determined by the precision versus
coverage specification (Section 5.2) as well as how much time is available to perform
this extra processing before the deadline.

In this particular scenario, the latter choice is made and BIG decides to find more
information on the new products rather than follow the original schedule. Method
Get_More_Detail_1is executed and the Cyberian Outpost retail site is queried for in-
formation on the two products. The query for “Mac_Publishing” returns no support-
ing information and the certainty that it is a valid word processing product is de-
creased. The query for “WordPerfect”, on the other hand is supported by the document
http://srch.outpost.com/search/proddesc.cfm?item=30271 and thus
the belief that the product is a word processing product is unchanged. Processing of the
document produces new information about the product, shown in Fig. 12.

The information is incorporated into the product object and BIG continues processing
its initially scheduled activities. However, BIG may later elect to work on the WordPerfect
product object again as it is now a valid candidate product.
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Fig. 12. Information produced.

5.5. BIG’s decision process

The decision maker knowledge source decides which product should be recommended
to the user after the search process is completed. Generally, the decision maker looks at
each product and calculates a total score representing the overall level of consistency with
the client’s query. As there are several features for one product, such as price, quality, and
hardware (platform), the score represents each feature based on how important it is to the
client (see Fig. 1). The rating for a feature is calculated from review sets in one of two
ways:

(1) for reviews of a certain class, in which reviewers give stars or otherwise numerically
(or ordinally) rank products according to certain classes, the ratings serve as a set
of utility weights for these data points;

(2) for reviews that do not include numerical or ordinal values, the documents are
processed with a heuristic that attempts to assign such ratings based on keywords
or anti-keywords that appear in the text.

For instance, if “fast learning curve” is used to describe the product, it is a positive indicator
for the ease of usefeature of the product, while “buggy product” would be a negative
indicator for thestability feature. The formula used to calculate the overall score of a
product is as follows:

overall_ score= price_score * price_weight+ quality_score * quality_weight

+ hardware_score * hardware_weight

Since the information comes from different sources, there may be inconsistencies, and
different sources may have different relative quality or confidence measures. The value
of information in our system is determined by the value of the source; information from
a high-quality source is considered to be closer to the truth. To combine inconsistent
information from different sites, we classify information sources as one of three categories:
high, medium or low quality. The classification of a known information source is based on
human knowledge and prior experience about this source. Our rating system for unknown
sources currently employs a URL reference search to rank sites, similar to the Usenet-
based approach outlined in [58]. Several Web search engines offer a service which allows
the user to search for Web sites which link to a certain page. This essentially allows us
to quantify how often a Web site is referenced by others. Our heuristic ranks sites based
on the assumption that sites which are more useful and credible will be referenced more
often than less credible ones. This trait offers two important qualities: it is independent,
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since the rating is not dictated by any one person or company, and it is also quite generic.
Although we do not do so, it would also be possible to augment this rating with either user
feedback (e.g., “I typically don’t agree with this reviewer’s point of view”) or data from
a centralized Web rating service. This rating is also used in the initial selection of which
documents to process. For each kind of information source, there is a quality measure
distribution table that describes the relationship between the information from this source
and the possible truth values. These quality measure distribution tables were constructed
in an ad hoc fashion, based on hand reviewing of documents from different categories and
experience running the system. These tables help provide more accurate interpretations of
data from those information sources, by taking the observed rating and transposing it into
a distribution of possible ratings, weighted by the source’s quality. The net effect of this
mapping is to add some measure of skepticism to the system, based on the quality of the
site. If, for instance, a highly rated site gives a certain product a rating of 5, BIG is more
apt to believe that the review is accurate, as compared to a lower rated site which offers the
same product rating.

For example, the product “Corel WordPerfect”, based on a review from site A, is highly
rated (it is given a product quality of 4). The review from site B gives it a slightly lower
rating of 3. Site A itself is known to be a medium-quality site with a source quality of 2,
while B has a higher quality rating of 3. The quality measure tables for sites A and B are
shown in Figs. 13, and 14, respectively.

Fig. 13. Review quality interpretation table for site A (source quality 2).

Fig. 14. Review quality interpretation table for site B (source quality 3).
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Based on the review quality from site A and site B and their quality measures, the
decision maker getsquality_scoredistribution as: [(4, 0.25) (3, 0.45) (2, 0.2) (1, 0.1)]. This
means there is 25% probability that quality of “Corel WordPerfect” is 4, 45% probability
it is 3, 20% probability it is 2, and 10% probability it is 1. The expectedquality_scoreof
“Corel WordPerfect” is therefore 2.85. Thus, for each product, the decision maker has a
quality_score distribution and an expected score. The product with the highest expected
score is recommended to the client and the score distributions are used to calculate the
confidence of this decision.

In addition to the decision and product information, the agent also gives the evaluation
of this decision to the client. Since there are many factors contributing to the evaluation
of the decision, it is difficult to represent the decision evaluation as a single number. We
chose decision coverage and precision as two main characteristics of the decision.

Decision coverage is a 3-dimensional vector:
(1) Total product number.Indicates how many products the agent has found; the more

products the agent finds, the higher the quality of the decision.
(2) Candidate product number.Describes the number of competing products used as

candidates in final decision; the more products that are considered for the decision,
the higher the quality of the decision.

(3) Information coverage.Reflective of the number of documents the agent has
processed.

Decision precision is a 4-dimensional vector:
(1) Average coverage.Indicates the average number of documents supporting each

candidate product.
(2) Information quality.Describes the distribution of high-quality sources, medium-

quality sources, and low-quality sources respectively.
(3) Process accuracy.Measures how accurately the agent processes documents. Since

the information extraction process is not perfect for any document, the extraction
tool provides the degree of belief for every item it returns. For example, textext-
ks may find the operating system for “Corel WordPerfect” is “mac”, with a degree
of belief of 0.8. The process accuracy is the average of the degree of belief of all
items.

(4) Decision confidence.Measures how confident the agent feels that the product it
recommended to the client is the best product it found. This is computed from the
quality distributions of the discovered products. For example, if product A has a
distribution of [(5, 0.3) (4, 0.6) (3, 0.1)], product B has score distribution [(5, 0.1)
(4, 0.3) (3, 0.3) (2, 0.2)], product A is recommended because it has a higher expected
score. The possibility B is better than A is: 0.1 * (0.6+ 0.1)+ 0.3 * (0.1)= 0.1, so
the confidence of this decision is 1− 0.1= 0.9;

Using this decision evaluation data allows the client to analyze the final decision with a
more critical eye. An additional tool that we have not yet implemented is an appropriate
interface for a client to access the raw data that was used by the system in making its
decision.
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5.6. Performance under varying time constraints

Table 3 illustrates how the system operates under different time constraints. The
experiments cover searches looking for word processing products. The search and product
criteria is the same for all runs, only the time alloted for the search varies. The intent of this
section is to show that the system can effectively exploit the time allocated to it by the user
to complete its search, and that in most cases its intended schedule closely approximates
the actual execution time.

The first four columns of data provide information about the duration of each search.
User Timedenotes the user’s target search time; the value in parentheses represents the
upper bound on how far over the target search time the scheduler was permitted to go in
order to achieve a good quality/cost/duration trade-off. (Utility in these cases is linearly
decreasing between the expressed deadline and 10% above the expressed deadline.17 )
Scheduleddenotes the expected total duration of the schedule produced by the Design-
to-Criteria scheduler andExecutiondenotes the actual duration of the discovery and
decision process. The difference in these values stems from the high variance of Web-
related activities and reflects issues like changes in network bandwidth during the search,
slowdowns at remote sites, and so forth. The statistical characterizations of these activities
are also often imperfect, though they are improved over time. Given the variances involved,
we are satisfied with the relationship between expectations and reality.

The next four columns denote number of considered products (#C.P.), total number
of products found (T.P.), aggregate information coverage (I.C.), and average information
coverage per product object (A.C.). These values reflect the number and qualities of the
information sources used to generate the final decision. Given additional time, BIG will
adjust its searching behavior in an attempt to find both more sources of information,
and more supporting information for previously discovered products. The results of this
behavior can be seen in the correlation between longer running time and larger information
coverage values; these values represent the total number of documents found and the
average number of supporting documents a product has, respectively. As one would expect,
the larger number of information sources also serves to increase both the number of known
products and the size of the subset selected for consideration, which in turn affects the
confidence BIG has in its final decision.

The last two columns describe how confident the system is in the information
extraction and decision-making processes. Process accuracy (P.A.), supplied in part by the
information processing tools, is the degree of belief that the actual extracted information
is correctly categorized and placed in the information objects. Decision confidence (D.C.),
generated by the decision maker, reflects the likelihood that the selected product is the
optimal choice given the set of products considered. This value is based on the quality
distributions of each product, and represents the chance that the expected quality is correct.
It should be noted that decision confidence therefore is not dependent on execution time or
process accuracy.

17 This approach to deadlines was taken to address client preferences. Despite requests to use a hard deadline
model, clients were often dissatisfied if much better results were possible for slightly more time, and the scheduler
selected an option that stayed within the expressed deadline.
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Table 3
Different time allotments produce different results

User Time # Scheduled Execution #C.P. #T.P. I.C. A.C. P.A. D.C.

300(330) 1 311 367 4 10 12 1.5 1.6 1

2 308 359 3 10 16 1.3 1.4 1

3 305 279 3 10 11 1.3 1.5 1

4 311 275 3 11 13 1.67 1.5 1

5 321 286 4 10 12 1.5 1.6 1

6 321 272 3 10 12 1.3 1.6 0.84

7 262 327 3 11 12 1.67 1.5 1

8 262 337 3 10 11 1.3 1.5 1

9 262 301 2 11 10 1.0 1.4 1

10 259 292 2 11 11 1.5 1.5 1

average 302 310 3 10.4 12 1.4 1.5 0.98

s.d. 33 35 0.67 0.5 1.6 0.2 0.07 0.05

600(660) 1 658 760 6 17 45 4.0 1.7 0.99

2 658 608 4 17 44 6.75 1.8 1.0

3 645 732 5 20 46 5.4 2 1.0

4 649 809 10 28 49 3.1 1.8 0.96

5 649 730 7 17 42 4.3 1.8 0.84

6 653 774 4 23 55 6.5 2.3 0.99

7 653 671 4 18 35 5.3 2.1 0.99

8 653 759 6 18 41 4.8 2.2 0.84

9 653 760 5 28 50 5.4 2.2 0.94

10 653 852 5 18 42 4.6 2.0 0.85

average 652 746 5.6 20 45 5.0 2.0 0.95

s.d. 4 68 1.8 4.4 5.6 1.1 0.2 0.06

900(990) 1 951 975 5 37 61 5.8 2.2 0.99

2 968 956 8 30 55 4.1 2.1 1

3 914 919 8 23 64 4.0 1.9 1

4 960 796 6 34 64 5.3 1.9 0.96

5 960 1026 9 24 32 4.1 1.9 0.99

6 987 968 8 27 60 4.4 2.1 0.94

7 987 1102 8 27 63 5.5 1.7 0.94

8 987 896 5 32 69 5.4 2.1 0.84

9 987 918 7 32 66 5.1 2.0 0.84

10 978 1289 14 39 79 3.9 2.0 1

average 968 985 7.8 31 61 4.8 2.0 0.95

s.d. 23 134 2.6 5.3 12 0.7 0.14 0.06

Key: User Time = user’s preferred search time (linearly decreasing utility post- deadline
in this case), Scheduled = total execution time as predicted by model and anticipated by
scheduler, Execution = actual execution time, I.C. = information coverage, T.P. = total
product objects constructed, #C.P. = total products passed to decision process, A.C. = average
coverage per object, P.A. = extraction processing accuracy per object, D.C. = overall decision
process confidence, s.d. = standard deviation.
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Our query for the test runs is that of a client looking for a word processing package
for the Macintosh costing no more than $200, and would like the search process to take
300/600/900 seconds and the search cost to be less than five dollars. The client specifies
the relative importance of price to quality to be 60/40 and the relative importance of
coverage to confidence to be 50/50.

Looking at the results, one can see that the process accuracies for the 300-second run
are consistently lower than those for the 600- and 900-second runs, which are roughly the
same. Process accuracy is affected by the amount of available evidence, in that matching
information from different sources increases the perceived accuracy of the data. Since the
latter two runs have similar average coverage values, one would expect similar levels of
information matching, and thus similar levels of process accuracy. Using the same logic,
one can see why the process accuracy for the 300-second runs would be consistently lower,
resulting from its lower levels of average coverage.

The decision confidence value is affected by both the number of products considered and
their respective attributes and qualities. BIG first selects a product, based on its attributes
and the user’s preferences. It then calculates the decision confidence by determining the
probability that the selected product is the optimal choice, given the available subset of
products. In the 300-second runs, the total number of considered products is fairly low,
which increases the chance that the pool of products is heterogeneous. In such a population,
it is more likely that a single candidate will stand out from the others, which goes to explain
the large percentage of perfect scores in the shortest run. When BIG is given more time to
find more products, the chance that individual candidates will sharply contrast is reduced.
Greater average coverage affects this contrast by increasing the likelihood that product
candidates will be fully specified. This will typically make the candidate set have a higher
quality rating which makes the population more homogeneous. It is this blurring across
attribute dimensions which reduces BIG’s confidence in the final decision.

Two interesting cases in this last column are worth explaining in more detail. In the
sixth 300-second run, one can see that the decision quality was calculated to be 0.84,
much lower than other runs in the same set. This was due to the fact that two of the three
products considered were actually the same product, but one was an academic version.
These two products had relatively similar quality ratings, which were significantly higher
than the remaining product, which caused BIG to have a lower confidence in its decision.
The second anomaly occurs in the tenth run in the 900-second scenario. In this case, 14
products were considered for selection. Of the group, 11 had a price higher than $400,
two were above $200 and the remaining product was roughly $70 with good coverage of
the user’s desired characteristics. This large price discrepancy led the selected product to
have a much higher quality rating than the competition, which led to the high decision
confidence.

5.7. Experiments in different domains

Besides the word processing domain, we have also experimented with BIG in three
other domains: image editors, html editors, and database systems. For each domain, we
spent approximately one hour collecting and classifying documents to form a corpus for
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Key: Scheduled = total execution time as predicted by the model and anticipated by the scheduler, Execution=
actual execution time, #C.P.= total candidate products passed to the decision process, # T.P.= total product
objects constructed, I.C.= information coverage, A.C.= average coverage per object, P.A.= extraction
processing accuracy per object, D.C.= overall decision process confidence; final decision= the product most
frequently recommended by the system in 10 runs; occurrence= the frequency the product recommended by the
system; s.d.= standard deviation.

Fig. 15. Experiments in three different domains.

the Bayes classifier. As we discussed in Section 5.1, this process can be automated by
equipping BIG with the ability to learn from user feedback.

Fig. 15 shows the results of experiments in each of these domains. The query criteria
for each domain specifies that a relevant software package for the Windows platform is
needed, with a search deadline of 10 minutes (600 seconds); the query was repeated 10
times for each domain. All items in Fig. 15 also appear in Table 3 and have been explained
in Section 5.6. The DTC scheduler generates the same schedule for all queries because the
search and product criteria are the same and the object database is cleared after each run
(BIG does not have knowledge about these productsa priori and knowledge that is learned
during one trial is removed before the next trial).

The search for html editor products takes longer to execute than the other two queries
because there are more available products (#C.P. and #T.P.) in this domain. Thus some
methods a take longer time than expected, because their execution times are related to the
number of product descriptions that are either retrieved or actively being considered as
candidates (such as the “Search_For_Reviews” method).

The final decision presents the product that is most frequently recommended by the
system in the 10 runs. The occurrence indicates how many times it is recommended in those
10 runs. Different products are recommended in different runs because the system does not
have sufficient time to exhaustively process all available documents, so it randomly selects
equally rated documents for processing. The selected document set therefore varies from
one run to the next, so the system may have different information, which in turn may
support an alternate final decision.

For the image editor domain, the Adobe product Image Ready was recommended each
time because there are fewer candidate products in this domain and because Image Ready
is the best among the candidate products; other products’ prices are about $300, which is
much higher than the price of Image Ready. For the html editor domain, out of 10 runs,
the system recommended Adobe Pagemill 3.0 eight times, and in the other two runs it
recommended Symantec’s Visual Page 2.0 and WebSpice respectively. All three products
have similar functionality and price. In the database domain, the system recommended
FileMaker Pro seven times, MS Access once and MSFT Access for Win 95 Step by
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Step twice. The first two products are reasonable selections, but the last one is actually
a book. Our classifier fails to reject this alternative since there were many database-related
keywords in the description and it had a very low price compared with other real software
products.18

The techniques and technologies employed by BIG are also applicable to decision-
making tasks in other domains as well, such as the car purchasing domain mentioned
earlier. The core components of BIG, including the RESUN planner, design-to-criteria
scheduler, task assessor, and databases are entirely domain independent, and may be used
without modification to address different questions. The blackboard architecture is also
domain independent, but a designer would need to enumerate different characteristics for
objects placed on the blackboard. In the car domain, for instance, the “hard drive” and
“platform” traits are not pertinent; elements such as “engine” or “model” would be more
appropriate. The most demanding aspects requiring changes in a new domain relate to text
processing. Both the NLP-style text extraction (textext-ks) and the document classifier rely
on a one-time training session on a domain corpus to achieve their results. The wrapper
text extraction utility (quickext-ks) is also domain dependent, and would require new rules
to correctly process the different Web sites used in the domain. The other text extractors
(grep-ks, cgrep-ks, tablext-ks) are domain independent.

6. Strengths, limitations, and future directions

The combination of the different AI components in BIG and the view of information
gathering as an interpretation task has given BIG some very strong abilities. In contrast to
most other work done in this area, BIG performsinformation fusion—not just document
retrieval. That is, BIG retrieves documents, extracts attributes from the documents,
converting unstructured text to structured data, and integrates the extracted information
from different sources to build a more complete model of the product in question. The use
of the RESUN interpretation-style planner enables BIG to reason about the sources-of-
uncertainty associated with particular aspects of product objects and to plan to resolve
these uncertainties by gathering and extracting more information that serves as either
corroborating or negating evidence. Though this feature was not brought out in our simple
trace, it is a definite strength when operating in a realm of uncertain information combined
with uncertain extraction techniques.

BIG is also quite scalable, because of the way it can filter and focus a large amount of
information into a concise, useful representation. BIG can obtain and process information
from a large variety of sources on the Web, and given sufficient time, can process as
much information as it is able to find during its search. The hierarchical structure of the
blackboard allows BIG to effectively use the data because it is condensed and abstracted
as it rises through the levels. The key phrase here, however, isgiven sufficient time.

18 There is an interesting question whether more extensive training of the classifier would have solved this
problem. We could have also added special heuristics to reflect the fact that products priced so low for the genre
were likely either to not be complete software packages or not software. Shareware, freeware and other low-cost,
but potentially viable, solutions further complicate issues.
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BIG is still a single entity system, so while the higher levels of the blackboard are
manageable, the lower levels can accumulate a large number of objects on them, which
can be slow to process. A proposed solution to this problem is to make BIG a multi-
agent system. In such a system, multiple BIG agents could independently search for
information, conceptually branching the lower levels of the blackboard. Not only will this
solution increase information throughput through parallelism, but communication between
the agents can also help focus the system as a whole.

Another feature of BIG not fully detailed in this paper is the use of the Design-
to-Criteria scheduler to reason about the quality, cost, time, and certainty trade-offs of
different candidate actions. The use of the scheduler enables BIG to address deadlines
and search resource constraints, a feature that is particularly important given the scope of
the search space, the uncertainty involved, and the very real requirement for information
systems to address time and resource constraints. Relatedly, while the issue of planning for
information cost constraints is not stressed in this paper, we feel that in the future the cost of
accessing particular information sources will need to be taken into account by information
gathering agents. Examples of the use of cost in BIG’s IG process are presented in [45].

Also not a focus of this paper is BIG’s ability to learn from prior problem-solving
instances [43]. Information objects (along with their associated sources-of-uncertainty) can
be stored and used to supplement subsequent search activities. In this fashion, BIG gains
from prior problem-solving instances, but, it also refines and modifies the product models
over time by resolving previously unresolved SOUs and gathering new information about
the products.

In terms of limitations and extensibility, many of the components used in the system,
such as the Web retrieval interface and some of the information extractors like grep-ks and
tablext-ks, are generic and domain independent. However, certain aspects of the system
require domain-specific knowledge; adapting BIG to operate in another domain, perhaps
the auto-purchase domain, would require the addition of specific knowledge about the
particular domain. For example, as discussed in Section 5.7, information extractors like the
information extraction system, cgrepext-ks, and quickext-ks, require supervised training to
learn extraction rules and make use of semantic dictionaries to guarantee a certain level
of performance. Additionally, both the server and object databases, being persistent stores
of the system’s past experiences, are inherently domain dependent, rendering most of this
knowledge useless and possibly distractive when used in other scenarios.

Another possible limitation with the current incarnation of BIG is the use of text
extraction technology to convert unstructured text to structured data. The text extraction
techniques are sometimes fragile, particularly when asked to extract data from a document
not belonging to the class of document on which the system was trained. The use of a
document classifier greatly improves the situation, but, information extraction remains
a nontrivial issue. The use of XML and other data structuring mechanisms on the Web
will help alleviate this issue. Interestingly, because RESUN represents and works to
resolve sources-of-uncertainty, the limitations and sometimes erroneous output of the text
extraction tools is not nearly as problematic as it might seem at first glance. Given sufficient
time for search, the planner will usually recover from misdirections stemming from poor
information extraction.
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Our future interests lie in improving the integration of the top-down view of the
Design-to-Criteria Scheduler and the opportunistic bottom-up view of the RESUN planner.
Currently, the scheduler’s primary role in the system is to produce the initial schedule.
However, as the control structure evolves, we foresee a feedback loop in which the RESUN
planner and the task assessor pose what-if type questions to the scheduler to support
high-level decisions about which actions to perform next. A stronger two-way interface
will also support more opportunistic problem-solving strategies by enabling the problem
solver to respond to changes and evaluate the value of changing its planned course of
action. We see this as particularly valuable in light of the uncertainty in the information
gathering domain and the high-order combinatorics of the trade-off decision process. In
this secondary role, the scheduler becomes the trade-off expert employed by the task
assessor/problem solver to guide agent activities during execution. Another important
direction is to exploit user feedback about the appropriateness of the system’s decision and
the documents/sites that support that decision. We feel this will allow us to both strengthen
the processing of existing software genres and also allow us to more seamlessly integrate
other software genres that have not been trained for. Finally, we would like to move BIG
into a multi-agent system involving mobile agents. Our group [60] has a long history of
developing distributed problem-solving and multi-agent systems [9,17,18,37,40,54] and
we are interested in exploring multi-agent coordination via a group of agents descended
from the current BIG agent.
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