
Consenting Agents:
Designing Conventions for Automated

Negotiation

Jeffrey S. Rosenschein
Institute of Computer Science

Hebrew University
Givat Ram, Jerusalem

Israel
jeff@cs.huji.ac.il

Gilad Zlotkin
Center for Coordination Science

Sloan School of Management, MIT
1 Amherst Street, E40-179

Cambridge, MA 02139 USA
gilad@mit.edu

This is the adapted text of an invited lecture given by the first author at IJ-
CAI93, in Chambery, France, on September 2, 1993. Slides that were used during
the talk are included as figures in the text below. First-person phrasing has also
been maintained in the text.

Abstract: As distributed systems of computers play an increasingly important
role in society, it will be necessary to consider ways in which these machines can
be made to interact effectively. We are concerned with heterogeneous, distributed
systems made up of machines that have been programmed by different entities to
pursue different goals.

Adjusting the rules of public behavior (the rules of the game) by which the
programs must interact can influence the private strategies that designers set up

1

in their machines. These rules can shape the design choices of the machines’
programmers, and thus the run-time behavior of their creations. Certain kinds of
desirable social behavior can thus be caused to emerge through the careful design
of interaction rules. Formal tools and analysis can help in the appropriate design
of these rules.

We here consider how concepts from fields such as decision theory and game
theory can provide standards to be used in the design of appropriate negotiation
and interaction environments. This design is highly sensitive to the domain in
which the interaction is taking place.

Keywords: multi-agent systems, negotiation, distributed artificial intelligence

1 Introduction

We’ve all been hearing a lot about convergence between telephone, television,
and computer technology. The basic idea is that the networks that constitute our
telephone infrastructure, our television (particularly cable) infrastructure, and our
computer infrastructure will be coalescing into one harmonious whole. Then the
user, sitting in his home or office, has some kind of “information appliance” that
can handle the wealth of resources that are available.

Now, artificial intelligence has a role to play in how the computer works in this
brave new world of information consolidation. Several groups of AI researchers
are already actively involved in trying to design automated agents that will help the
user filter or retrieve information from the network. To mention just one example,
Oren Etzioni’s group at the University of Washington in Seattle is building what
he calls SoftBots, software robots, to handle the interface between humans and
network resources. And there are lot of good, meaty, classic AI problems that
need to be solved in this context, like knowledge representation and planning
problems.

What I’m going to talk about today has a very strong connection to those
efforts at building software agents. What I’ve been interested in over the last few
years has been to look at the ways in which these software agents, automated
agents, will be dealing with one another. In other words, it’s all very well and
good to have agents residing in your home computer that help you deal with all
that information, but that agent of yours is going to have to deal with agents of
other people, either private agents if you’re trying to do some job like setting up
a meeting with a group of people, or agents belonging to a company if you’re

2

trying to access information from a company database. These software agents
are on their way, and they’re going to be getting a lot of things accomplished by
interacting with each other. The question is, how will these agents be cooperating
with each other, competing with each other, negotiating with each other?

1.1 Machines Controlling and Sharing Resources

There are actually a lot of different environments in which machines are mak-
ing more and more decisions that affect our daily lives, and they’re making these
decisions not in isolation but in in concert with other machines. Computers that
control electrical grid networks, and need to load balance their power require-
ments, can share electricity with other computers controlling other networks. If
there’s a drop or rise in power consumption, one computer can sell or buy excess
power from other utilities to which it’s connected.

Another example is telecommunication networks, routing. Information or
packets may pass over one network, controlled by one company, and then pass
onto another network controlled by another company, or pass through one country
and then pass on through another country. Computers that control a telecommuni-
cations network might find it beneficial to enter into agreements with other com-
puters, controlling other networks, about routing packets more efficiently from
source to destination. The point is, it might make sense for both machines to be
able to exploit the resources controlled by the other so that they can both get their
jobs done more effectively.

We’re also seeing the emergence of things like personal digital assistants,
small, hand-held computers, like the Newton, which more and more of us will
start to carry around with us all the time. These PDAs are going to take over a
lot of roles in managing our daily lives, as notebooks, as communicators, as fax
machines, telephones, and automated schedulers. We’re going to have some kind
of agent software on that PDA, and it’s ultimately going to get part of its work
done interacting with other agents on other PDAs.

Another example is the proliferation of shared databases, where there’s in-
formation spread all over the world. It’s something we’ve seen spring up with a
vengeance in the last decade. You’ve already got agents that are going out there
to gather information, like Etzioni’s SoftBots, that go into a shared database to
gather information about, for example, a person’s Internet address. Finally, even
something like traffic control, coordination of vehicular traffic, or air traffic con-
trol, stands as an example where software agents will be making decisions, based
on communication and agreements with other agents.

3

Each of these situations is an instance where computers are controlling some
resource, and might be able to help themselves by strategically sharing that re-
source with other computers. With PDAs, the resource might be a person’s time,
while with a telecommunications network the resource might be communication
lines, switching nodes, or short and long-term storage. But in each situation, the
computers that control these resources can do their own job better by reaching
agreements with other computers.

1.2 Heterogeneous, Self-motivated Agents

Now, the agents that I’m interested in looking at are “heterogeneous,” “self-motivated”
agents. The systems are not assumed to be centrally designed. For example, if you
have a personal digital assistant, you might have one that was built by IBM and
the next person over might have one that was built by Apple. They don’t neces-
sarily have a notion of global utility. Each personal digital assistant, or each agent
operating from your machine, is interested in your idea of utility, is interested
in furthering your notion of “goodness.” They’re dynamic; for example, agents
might enter and leave the system in an unpredictable way. The system as a whole
is very flexible, it’s very dynamic, new PDAs are coming in, even new types of
PDAs are being built and coming in to the system and have to interact with other
agents.

And in particular, very importantly, they’ll not act benevolently unless it’s in
their interest to do so. They will not necessarily share information, they will not
necessarily do things that other agents ask them to do unless they have a good
reason for doing so. So imagine lots of agents, each one residing in your per-
sonal computer or on your personal digital assistant, trying to carry out tasks, and
interacting with other agents.

1.3 The Aim of the Research

Now, the aim of the research that we’ve been doing can really be thought of as
a kind of social engineering for communities of machines. What do I mean by
“social engineering”? You know what social engineering is when we talk about
communities of people. It means setting up laws or setting up an environment that
causes people to act in a certain beneficial way or causes people to act in certain
ways that we have decided ahead of time are good ways for them to act. At the
very least, it constrains their behavior.

4

Well similarly, we’re interested in the creation of interaction environments
that foster a certain kind of social behavior among machines. We want to develop
conventions, Rules of Encounter, for these software agents that will cause them to
act in certain ways. Another way of looking at the research is that we’re trying to
exploit formal tools, in this case game theory tools, for high-level protocol design.
We’re looking at protocols for interactions among agents. And we would like to
design protocols that cause, for example, those PDA agents to act in certain ways.

1.4 Broad Working Assumption

Those agents are obviously still pursuing their own utility, they’re still pursuing
their own goals, but they’re going to be constrained somehow by the environment
that we design. But who’s “we,” right? What do I mean by “we”? Well, “we”
means the designers of the network or the designers of the system. Let’s say, as
a working assumption, that designers from IBM, Apple, Toshiba, Sony all come
together, and they say, “OK, we’ve got this domain. The domain is personal digital
assistants doing scheduling, time scheduling. Given that domain, we would like
to set up the rules for the way in which schedules will be set. We want to set up
the rules that are going to be like a high-level protocol that determines the kind of
deals, let’s say, that agents can make among themselves.” We’ll get more into the
details of deal-making later.

So these designers come together, they try to agree on standards for how their
automated agents interact. And an important part of this is that it’s in a given do-
main. They might decide on different protocols for different domains. But given
the domain, like scheduling among PDAs, they’re going to decide on standards
for how the agents reach agreements.

Now, what are they actually doing in this meeting? See, this is a standards
committee meeting, they sit around a big table, and they start discussing the trade-
offs of different decisions. And one of them says, “You know, if we have this
kind of protocol, the agents will be able to come to agreement very quickly. The
agreements probably won’t be optimal, but we’ll be able to get to them very fast.”
And somebody else at the table says, “Yes, but it’s very important to us at IBM
that these protocols not allow agents to manipulate one another. You know, we
don’t want any manipulative, exploitative agents getting into the system and taking
advantage.” And another designer says, “Well, that’s not so important to me. The
most important thing is that the average utility among all the agents be as high as
possible.”

We, we the researchers here, are not trying to impose a group of decisions that

5

these company representatives are going to make. Instead, what we’re trying to do
is come forward, elucidate a variety of protocol decisions and show how certain
protocols have certain desirable attributes. Once we have shown that protocol A
has a certain attribute, the designers of those PDAs may decide to choose it and
they might not, they might choose something else. But the idea of the research
is to come forward and elucidate the possibilities, elaborate on the possibilities.
Protocol A has this set of attributes, protocol B has this slightly different set of
attributes. Which do you want to choose when you design your agents? It’s up to
you. Part of the research is to make it clear to those designers what the options
are.

1.5 Attributes of Standards

Now, what are the sorts of things we’re looking at when we try to design a stan-
dard? Well, we might look at things like efficiency of the system, things like
Pareto Optimality, meaning that the agreement that’s reached by the agents can
be made no better for any one of the them without making it worse for one of the
other agents. So that might be a broadly acceptable doctrine of general goodness.

Stability: an agent has no incentive to deviate from a particular strategy. This
is an idea related to the game theory notion of equilibrium.

Simplicity: this is certainly a very important one, by the way, for computer
science, much, much less important for game theorists. We certainly want our
protocols to have low computation and communication costs. This is an attribute
of the standard that we might propose and those designers might say, “This is
absolutely important, it’s very important that our small processor not have a very
heavy load in doing negotiation,” let’s say.

We’d like the protocol to be distributed, usually, because if we’re going to have
a lot of distributed agents it would be nice not to have a central decision-maker. It
would be nice to have it be symmetric, so that no agent plays a special role. When
the agents come together they don’t have to decide who’s going to be the master
and who’s going to be the slave, or who’s going to do what.

So the idea is to design protocols for specific classes of domains that satisfy
some or all of these attributes. As I present protocols, or design decisions, it may
be the case that it’s very simple but it’s not distributed, or that it’s stable but it’s
not efficient, or efficient but not stable. That’s a classic tradeoff.

6

1.6 Distributed Artificial Intelligence

How does this work relate to other research that people are doing out in the field?
Well, it fits into the broad area of distributed artificial intelligence, which itself
can be broken down into two, related areas. Now these two areas constitute dis-
tinctions between research agendas; they’re not really appropriate as descriptions
of running systems.

One stream of research is called “Distributed Problem Solving,” which consti-
tuted the original emphasis of distributed AI, namely the study of distributed, but
centrally-designed, artificial intelligence systems. How do you build a distributed
system, made up of many agents, who have some global problem to solve? You’re
going to design the system so that they solve the problem in a good way, in a dis-
tributed way, in an efficient way, whatever. In Distributed Problem Solving, there
is assumed to be a single body who is able, at design time, to directly influence
the preferences of all agents in the system.

This contrasts with another stream of research within distributed artificial in-
telligence called “Multi-Agent Systems.” In multi-agent systems, you again have
multiple agents in a distributed system, but you do not assume that there is a sin-
gle designer who stands behind all of them, or put another way, you don’t assume
that the individual agents have a group sense of utility, a group notion of utility.
Each of the agents in the system may be working at different goals, even conflict-
ing goals. So you have to deal with a system made up of multiple agents where
there’s going to be possibly competition between the agents, possibly coopera-
tion. In Multi-Agent Systems, there is assumed to be no single body who is able,
at design time, to directly influence the preferences of all agents in the system.
The agents’ preferences arise from distinct designers.

In particular, if a DPS researcher can show that acting in a particular way is
good for the system as a whole, he can impose this behavior on all the agents in the
system at design time. For the MAS researcher, such an alternative is unavailable.
At best, he might be able to design aspects of the environment that motivate all
the (selfish) agents to act in a certain way. This need for indirect incentives is one
element that distinguishes MAS research from DPS research.

The work that I am describing today is Multi-Agent Systems research.

7

Phone Call Competition ExamplePhone Call Competition Example

•• Customer wishes to place long-distance callCustomer wishes to place long-distance call
•• Carriers simultaneously bid, sending proposed pricesCarriers simultaneously bid, sending proposed prices
•• Phone automatically chooses the carrier (dynamically)Phone automatically chooses the carrier (dynamically)

AT&TAT&TMCIMCI SprintSprint

$0.20$0.20
$0.18$0.18 $0.23$0.23

Figure 1: A System for Placing a Call

2 The Phone Call Competition Example

I’ve mentioned how we’re trying to design protocols for agent interactions. To
illustrate this point, I want to go through an example of a hypothetical environ-
ment, and show how different protocols motivate agents to act in different ways,
and how these different protocols end up having different global properties.

In the United States, there are several long-distance telephone companies, and
each phone customer sends in a postcard to hook up with one or another of them.
That company becomes their default carrier, and you have to dial extra numbers to
place a long-distance call with some other company. What if we imagined another
kind of system, one that is perfectly well within the current technology, and has
certain benefits over the way things are done now? What if, when a customer
lifts the handset and dials a long-distance call, a microprocessor within the phone
automatically collected bids from the various carriers? Each company’s computer
automatically and simultaneously declares the price per minute that it’s willing
to carry the call. So here we see the MCI computer relaying 18 cents, while the
AT&T computer bids 20 cents, and so on [see Figure 1]. This can all be done in a
split second, and without really delaying the call significantly.

2.1 Best Bid Wins

Now, our phone’s microprocessor collects these bids. Assume that the protocol in-
volves our phone choosing the company with the lowest bid, which is completely

8

reasonable, and placing the telephone call with that company. The winning carrier
receives a price per minute equal to the amount that it bid, and that’s that. OK, so
we have a pretty interesting system set up here. The prices set by the companies,
for telephone calls at different times of the day, no longer have to be fixed ahead
of time, nor does it have to be simple enough to be remembered by consumers. It
can be completely dynamic, and sensitive to the real costs or economies that exist
at any given moment. The system appears to be much more open to competition,
too; a new long-distance carrier doesn’t have to win over consumers with a costly
advertising campaign, it just needs to set up its computers to enter into the bidding
game. In fact, the companies now have a great motivation to sink their budgets
into research on how to lower their costs, rather than into advertising campaigns
to grab consumers. Now, I’m not really analyzing all the ramifications of this
scenario, but I’m bringing it mainly to illustrate a point, which we’ll get to in a
moment.

So far, so good. But this bidding mechanism has a serious flaw [see Figure 2].

Best Bid WinsBest Bid Wins

•• Phone chooses carrier with lowest bidPhone chooses carrier with lowest bid
•• Carrier gets amount that it bidCarrier gets amount that it bid

AT&TAT&TMCIMCI SprintSprint

$0.20$0.20
$0.23$0.23

$0.18$0.18

Attributes of the MechanismAttributes of the Mechanism

�� DistributedDistributed
�� SymmetricSymmetric
�� StableStable
�� SimpleSimple
�� EfficientEfficient

AT&TAT&T
MCIMCI SprintSprint

$0.20$0.20

$0.18$0.18 $0.23$0.23

Carriers have anCarriers have an
incentive toincentive to
invest effort ininvest effort in
strategicstrategic
behaviorbehavior

“Maybe I can
bid as high as
$0.21...”

Figure 2: Rules of the Game, and Resulting Attributes

2.2 Attributes of the Mechanism

We have managed to make the long-distance carrier selection be distributed and
symmetric. But the protocol, the rules by which the agents play to win the tele-
phone call, does not encourage stable, simple, nor efficient behavior on the part
of the telephone company computers. To see why this is so, let’s pretend that our
consumer wants to make a long-distance call, and consider the MCI computer’s
reasoning. Although it could carry the call for 18 cents and get an acceptable
profit, it might rationally try to increase that profit by bidding higher. It might

9

think that the next highest bidder won’t go below 22 cents, and consequently
make its own bid be 21 cents. Now, that’s a risky strategy, but the point is that
the carriers have a great incentive to invest effort in strategic behavior. Instead of
putting their money into polished ad campaigns, they’ll pay programmers to de-
velop sophisticated models of their opponents’ bidding strategies, how much can
carrier X really afford to carry a call for right now? They’ll invest effort in trying
to find out relevant information about their opponents, which switching stations
are down, how’s the other company’s profit and loss for this quarter, all sorts of
things that might affect the bid the opponent puts in. Ultimately, that sort of effort
drains resources that might be better spent elsewhere. Equally important, the ac-
tual bidding procedure may result in an inefficient outcome. In this example, MCI
may lose the bid when it could have served as the lowest cost alternative.

Can we do better, by changing the protocol of bidding? The answer is yes.

2.3 Best Bid Wins, Gets Second Price

Let’s say that in our new protocol, all the company computers put their bids in,
and our phone’s computer again automatically chooses the lowest bidder as the
winner. However, this time, the carrier that wins gets paid a price per minute equal
to the second lowest bid. This bidding system, called Vickrey’s Mechanism, has
the attractive property that it provides no incentive for a company to underbid,
nor to overbid. A company has an incentive only to provide the true, minimum
acceptable price. A company won’t bid lower than it’s minimum acceptable price,
because it fears that some other company might bid in the gap that it’s opened
up (and in fact, if no one else bids in the gap, the first company would have won
anyway, without bidding low). If MCI bid 1 cent and won, somebody else might
bid 10 cents; then MCI would be forced to carry the call for less than its minimal
acceptable 18 cents per minute. On the other hand, no company has an incentive
to overbid, either. What possible benefit could MCI get from declaring a price
higher than 18 cents? If it says, for example, 20 cents, it might lose a bid it would
otherwise have won, and in any case, its own bid will never affect how much
money it gets! By separating the issues of who wins the bid, and how much the
winner gets, we’ve fundamentally altered the way in which computers should play
the game [see Figure 3].

10

Best Bid Wins, Gets Second PriceBest Bid Wins, Gets Second Price

•• Phone chooses carrier with lowest bidPhone chooses carrier with lowest bid
•• Carrier gets amount of second-best priceCarrier gets amount of second-best price

AT&TAT&TMCIMCI SprintSprint

$0.20
$0.18$0.18 $0.23$0.23

Attributes of the MechanismAttributes of the Mechanism

�� DistributedDistributed
�� SymmetricSymmetric
�� StableStable
�� SimpleSimple
�� EfficientEfficient

AT&TAT&T
MCIMCI SprintSprint

$0.20$0.20

$0.18$0.18 $0.23$0.23

Carriers have Carriers have nono
incentive toincentive to
invest effort ininvest effort in
strategicstrategic
behaviorbehavior

“I have no
reason to
overbid...”

Figure 3: Different Protocol, Different Attributes

2.4 Attributes of the Mechanism

Now, the carriers at our long-distance companies have no incentive to invest effort
in strategic behavior. They can put all their money into lowering the costs of
long-distance calls, so that they’ll win more bids and get more business. We’ve
got a distributed, symmetric, stable, simple, and efficient mechanism for these
self-motivated machines to be using. Of course, we’ve bought these wonderful
attributes at a cost; the consumer has to pay a hopefully small premium on each
call to make things work, in this example paying 20 cents rather than 18 cents
per minute. With many carriers, this effect will be minimized, but in any case,
the whole point of showing this example are not its details, but rather to illustrate
the overall idea, of how we can design the Rules of the Game for multiple agent
interactions, and reach a situation where rational agents are motivated to play in
certain ways.

The telephone call domain is actually incredibly simple, and we’re interested
in more complicated situations, with computers controlling and sharing resources,
real-world situations.

3 Domain Theory

I mentioned before that it is very important in which domain our independently
motivated agents are working, because these domain attributes are going to affect
the properties of our protocols. A technique that works in one domain class, that
motivates agents to act in a certain way in one type of domain, won’t necessarily
work in another type of domain.

11

We’ve found it useful to categorize classes of domains into a three-level hi-
erarchy, where each level is more general than the last. This is not exhaustive;
there are other, more general categorizations of domains that go beyond this. But
let me go over these three because they’re both interesting, and cover a lot of the
real-world domains in which we’re interested.

The lowest level, the simplest kinds of domain that we’ve looked at, are called
Task Oriented Domains (TODs). A Task Oriented Domain exists when agents
have non-conflicting jobs to do, and these jobs or tasks can be redistributed among
the agents. So, the agents receive some list of jobs that they have to accomplish
and the object of negotiation in these kinds of environments is to redistribute tasks
among the agents, for everyone’s mutual benefit, if that is possible. Most of the
talk will be on this first area.

The next higher level we call State Oriented Domains. State Oriented Domains
are a superset of Task Oriented Domains. State Oriented Domains have goals
that specify acceptable final states, in the classic artificial intelligence way. Very
importantly, and this is probably the critical aspect of State Oriented Domains in
contrast to Task Oriented, actions can have side effects. In Task Oriented Domains
there are never any side effects. State Oriented Domains have side effects, and an
agent doing one action might hinder another agent, or might help the other agent.
The object of negotiation is to develop joint plans and schedules for the agents.
What they’re trying to do is to figure out when each agent should do each action,
mainly to stay out of each other’s way but also to help one other if appropriate.

Finally, we come to Worth Oriented Domains, which are a superset of State
Oriented Domains. Worth Oriented Domains assume, like State Oriented Do-
mains, that there are goals that specify final states, but that fact is encoded in a
function that rates states’ acceptability. Every state in the world is better or worse,
but it’s not this binary notion of goal that we have in State Oriented Domains. In
a Worth Oriented Domain, we have a decision-theoretic kind of formulation, with
the agent striving for better states. Again, the object of negotiation is a joint plan,
schedules, and also goal relaxation. In other words, agents may not be able to get
to the state that is their ultimate objective, but be willing to arrive at a state that is a
little bit worse. Because the agents have a function that rates states’ acceptability
they’re able to evaluate gradations among goal states, which they couldn’t do in
State Oriented Domains.

12

3.1 Examples of Task Oriented Domains

3.1.1 Postmen Domain

Postmen DomainPostmen Domain

Post OfficePost Office

a

c

d e

�

21

�

�

�

�

TODTOD

b

f

Figure 4: Example of Task Oriented Domain

Let’s look at some examples, to see what I mean by this hierarchy [see Fig-
ure 4]. Here’s a classic Task Oriented Domain that we’ve looked at quite a bit,
called the Postmen Domain. In this case two agents arrive at the post office early
in the morning and they receive sacks of letters that they then have to take and
deliver around the city, which is represented by a graph. At each node there is a
little mailbox. Let’s say agent 1 has to go to c, and f, and e, and then return to
the post office, while the other agent might have to go to c, b, and d, and then
return to the post office. That’s a Task Oriented Domain. The cost of carrying out
a delivery is only in the travel distance. There are no side effects to what they are
doing, there is no limit to the number of letters they can carry, there’s no limit to
how many letters they can put into a mailbox. There’s no worry about hitting each
other. They just have these tasks they’re going to do. No possibility of getting in
each other’s way.

So what the agents want to do, is that they would like to cooperate, before they
start out on their journey, look at the letters, and say, “You know, it doesn’t really
make sense. You’re going past c anyway, why don’t you take my letter? No extra
cost to you, the cost is only in the travel distance, and I’ll have a shorter trip.” And
what they’re trying to do is to evaluate these deals. There are different possible
divisions of the tasks, some are better for one, some are better for the other, and

13

we would like the agents to come to some agreement about how they are going to
divide up the tasks.

3.1.2 Database Domain

Let’s look at another domain, it’s also a Task Oriented Domain, called the Database
Domain. There’s a common database, residing on the Internet, let’s say. Two
agents are sent out to get information. One is supposed to get all the female em-
ployees making over $50,000 a year, and return with the names, the other one is
supposed to get all female employees with more than three children, and bring
back the names. In this domain, each subquery to the database costs money. Now
these two agents approach the database, and they look at each other and say, “You
know, one of our subqueries is the same. We could structure our requests for
information so that only one of us asked for all female employees, and then sub-
sequently we would each do another operation on that subset of names. We don’t
have to both ask for all female employees.” So this is another Task Oriented
Domain. No side effects, no getting in each other’s way, just the possibility for
cooperation [see Figure 5].

Database DomainDatabase Domain

Common DatabaseCommon Database

“All female
employees
with more
than three
children.”

2

1

TODTOD

“All female
employees
making over
$50,000 a
year.”

Fax DomainFax Domain

faxes tofaxes to
sendsenda

cb

d e

f

Cost isCost is
only toonly to
establishestablish
connectionconnection

21

TODTOD

Figure 5: More Examples of Task Oriented Domains

3.1.3 Fax Domain

One final example of a Task Oriented Domain, one similar to the Postmen Do-
main, is called the Fax Domain. In the Fax Domain two agents arrive in the
morning and they are given lists of faxes they have to send all over the world. The
agents fortunately only have to pay for connecting to this other fax machine, and

14

once they connect they are allowed to download as many faxes as they want. The
cost is all in establishing the connection.

The two agents might find that they both have faxes to send to London, and
they say “It doesn’t make sense for both of us to pay the charge of connecting to
London. You take my London faxes, I’ll take your Rome faxes, we’ll divide the
faxes up.” Task Oriented Domain.

3.2 Slotted Blocks World—State Oriented Domain

Slotted Blocks WorldSlotted Blocks World

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

11 22 33

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

11 22 33

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

SODSOD

2

1

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

The Multi-Agent TileworldThe Multi-Agent Tileworld

2 2
2

2

5
5

34

AB tiletile
holehole

obstacleobstacle

agentsagents

WODWOD

Figure 6: State Oriented Domain and Worth Oriented Domain Examples

Now what do I mean by a State Oriented Domain? Well, the Blocks World,
that’s an example of a State Oriented Domain. An agent comes and he wants the
blocks in a certain configuration. The other agent comes and he wants the blocks
in a certain configuration. Now these goals may be identical, or they may be in
conflict with one another. This agent may want the orange block on top of the
blue block, and this agent might want to have the blue block on top of the orange
block. There’s a possibility of real conflict [see Figure 6].

There are other possibilities too, like accidental cooperative action, where one
agent inadvertently does something that’s good for the other without the other one
having to ask for it. This is not true in our Task Oriented Domains, where there
has to be some communication, passing of tasks back and forth, for cooperative
action to take place. Here there are side effects that really affect our analysis of
the domains.

15

3.3 The Multi-Agent Tileworld—Worth Oriented Domain

Let’s take one more example, of a Worth Oriented Domain. This is a multi-agent
version of the Tileworld, originally introduced by Martha Pollack. The basic idea
is that we have agents, operating on a grid, and there are tiles that need to be
pushed into holes. The holes have value to one or both of the agents, there are
obstacles, and agents move around the grid and push tiles into holes. Now it’s true
that there is a most desirable state that each agent has, where all of the tiles are in
his holes and so on, but there are also other states that are good, though less good
than that most desirable state. So each agent is able to rank different states, and
agreements can more easily reflect the possibility of compromise.

4 Task Oriented Domain (TOD)

Let’s go back now and look at those Task Oriented Domains. Here’s a more formal
definition. A TOD consists of a tuple, < T;A; c >, where T is the set of tasks,
all the possible actions in the domain, A is the list of agents, and c is some kind
of monotonic cost function from any set of tasks to a real number. An encounter,
then, within a Task Oriented Domain, is a list, T1; : : : ; Tn, of finite sets of tasks
from the task set T , such that each agent needs to achieve all the tasks in his set.
You might as well also call that task set his “goal.” That’s an encounter, a group
of agents coming together, each one with a list of tasks.

Remember, we’re doing an analysis for the sake of all those designers from
IBM and Toshiba and Sony that are going to be sitting around the table deciding
how to design their PDAs.

4.1 Building Blocks

In doing this analysis, we have three things we would like to look at. The first is, a
precise specification of the domain, a definition of what a goal is and what agent
operations are. We just did that in a broad sense for a Task Oriented Domain.

There are two other pieces of what we would like to do. The first thing is
to design a negotiation protocol, for the domain. Now a negotiation protocol
involves a definition of what a deal is among the agents, a definition of what
utility is among the agents, and a definition of the so-called Conflict Deal. The
Conflict Deal is the deal, the default deal, that the agents get if they fail to reach
an agreement. You can think of the negotiation protocol as being sort of like the

16

“Rules of the Game.” An analogy would be in chess: if I told you what kind of
move each piece could make, well that’s the negotiation protocol. I define what
all the moves are. What are the possible moves in this negotiation, what kinds of
deals can be offered, and so on.

Ah, but what’s missing? A negotiation strategy. A negotiation strategy is
how an agent should act given the set of rules. Think about it, think about a
chess game. Think about breaking apart on the one hand, the rules that describe
the game from, on the other hand, the technique that an agent is going to use
in response to the environment, in response to the rules. First, we would like
to define the rules of the negotiation, and then, for purposes of illuminating the
situation for our designers, we would like to discuss negotiation strategies that
they might choose to put into their agents.

4.2 Deal and Utility in 2-Agent TOD

So first we would like to have a definition of a deal, and utility, and the conflict
deal. Here we have it for a two-agent Task Oriented Domain:

� A deal Æ is a pair (D1; D2) such that D1 [D2 = T1 [T2

� The conflict deal is defined as � � (T1; T2)

� Utility
i
(Æ) = Cost(Ti)� Cost(Di)

A nice simple definition. A deal in a two-agent TOD, is a pair, D1; D2, such
that their union is equal to the union of the original task sets. Think about those
postmen with their letters. They come together with T1 and T2, their original sacks
of letters. A deal is a new distribution, such that all the letters are taken care of.

The conflict deal in this case is simply the original sets of letters. You don’t
reach agreement, you deliver your original sack of letters.

Utility of a deal for an agent we define to be the cost of his original work
minus the cost of his new work, given the deal. The difference is how much he
has gained from the deal. He used to have to walk five miles, now he only has to
walk three miles, his utility is two.

4.3 Negotiation Protocols

Now as far as the protocol that the agents are going to use, actually there are lots
of good choices. For the purposes of the rest of this discussion, we’re going to

17

assume that the agents are using some kind of product maximizing negotiation
protocol, like in Nash bargaining theory. It really doesn’t matter which one they
use, for our purposes, as long as it’s symmetric, maximizes the product of the
utilities. There are all sorts of examples of different protocols, different rules, that
will bring the agents to come to an agreement that maximizes the product of their
utilities. You can even have a one-step protocol; if they know everything, they can
compute the agreement point and that will be the point they jump to. Or you can
instead have some kind of a monotonic concession protocol, where the agents first
start with a deal that’s best for them and then iteratively make compromises to the
other agent. There are a lot of different product maximizing protocols.

But now we return to the last item on our Building Blocks list. Given that we
have set up a Task Oriented Domain specification, a definition of a deal, utility and
the conflict deal, and an overall protocol, what is the negotiation strategy that
the agents should use? Now, given the discussion above, you could say, “Well,
strategy is not really very important in this situation, because once the designers
have decided on the protocol, and they know exactly what the tasks are for the
other agent and what their own tasks are, there’s a well-defined agreement point.
There a well-defined point that tells them when they’ve maximized the product of
their utilities. They can just move to that point, one way or another. it doesn’t
really matter how.”

And that’s true, when the agents have complete information.

5 Negotiation with Incomplete Information

But what about the case where they don’t have complete information? What about
that situation where the postmen show up in the morning, and the sacks of letters
are opaque, and they have to decide how to negotiate. Let’s assume that the first
agent has to carry letters to b and to f, and the second agent has to go to e. They
don’t know each other’s letters, so they can’t simply compute the agreement for
the two of them. Instead they need some other kind of mechanism that will allow
them to come to an agreement. So one very simple, straightforward technique for
doing this is to set up a �1 phase game, a sort of pre-game exchange of informa-
tion [see Figure 7].

The two-agents broadcast their tasks, and then continue as before, computing
where the agreement is going to be. Agent 2 announces that he has to go to e,
agent 1 says “I have to go to b and f,” and they decide who’s going to do what.
Now, just to carry out its own tasks, each one would have to go a distance of 8.

18

Agent 1 would certainly go all the way around, and 2 might go half way around
and back, but it’s equivalent for him to going all the way around. In this particular
case, because of the structure of the problem, the agents will eventually come to
the agreement where they flip a coin, and one of them travels all the way around
while the other one stays in the Post Office. And assuming it’s a fair coin, they’ve
divided up the work equally.

–1 Phase Game: Broadcast Tasks–1 Phase Game: Broadcast Tasks

Agents will flipAgents will flip
a coin to decidea coin to decide
who deliverswho delivers
all the letters.all the letters.

a

c

bh

f d

g

e

Post OfficePost Office

�

� �

11

11 22

2

1

ee

b, fb, f

Hiding LettersHiding Letters

They then agree thatThey then agree that
agent 2 delivers toagent 2 delivers to
f and e.f and e.

(hidden)(hidden)

a

c

bh

f d

g

e

Post OfficePost Office

�

� �

(1)(1)

11 22

ee

bb

2

1
ff

Figure 7: Dealing with (and Exploiting) Incomplete Information

5.1 Hiding Letters

See, but our intrepid agent has been built by a smart group of designers, and he
makes the following claim. Agent 2 honestly says “I have to go to e,” agent 1
says “I have to go to f” and he hides his letter to b [see the right side of Figure 7].
Now, the negotiation situation has changed. The negotiation situation has changed
because agent 1 is purporting to say here that he only has to travel 6, and he should
be required to do less of the final work. In fact, in this situation, the only pure
deal that the agents can agree to is that agent 2 takes the letters to f and e, while
agent 1 supposedly does nothing. The reason this is the agreed-upon deal is that
it would not be rational for agent 1 to agree to carry letters all the way around
the loop. Then it would be doing 8 units of work, more than the 6 units of work
it would supposedly be doing by itself. And it can’t be expected to agree to a
deal that makes it do extra work; that wouldn’t be rational. On the other hand,
agent 2 doesn’t benefit from this deal, it still travels 8, but it isn’t harmed, either.
So the deal where agent 2 does all the work is the only rational, Pareto Optimal
deal. In the meantime, agent 1 runs off and delivers his hidden letter to b, at a
cost of 2 units. So agent 1 has really made off very well with this manipulation,

19

guaranteeing himself 2 units of work instead of 8 if he were alone, or even 4 units
if he were honest in his deal-making.

5.2 Phantom Letters

Let’s look at another possibility for deception [see Figure 8]. Let’s say our agents
both have to deliver letters to nodes b and c. It’s an entirely symmetric situation.
Obviously it makes sense for one agent to go to b and one to go to c. But b is
relatively far away, and c is relatively close; each agent would prefer to be the one
to go to c. If they tell the truth and declare their true tasks, they’ll flip a coin to
decide which one goes to which node.

Another Possibility for DeceptionAnother Possibility for Deception

a

c

b
They will agree to flipThey will agree to flip

a coin to decide whoa coin to decide who
goes to b and whogoes to b and who
goes to c.goes to c.

Post OfficePost Office

�

�

b, cb, c

2

1

b, cb, c

1, 21, 2
1, 21, 2

Phantom LetterPhantom Letter

b, c, b, c, dd
Post OfficePost Office

2

1

b, cb, c
a

c

b
�

�
1, 21, 2

1, 21, 2 d�
11 (phantom) (phantom)

They agree thatThey agree that
agent 1 goes to c.agent 1 goes to c.

Figure 8: Creating a Phantom Task

But agent 1 again decides to manipulate the agreement. He announces that he
has a letter to deliver to node d, which is a long way off in the direction of node
c. So now, it only makes sense for agent 1 to go to c, and presumably continue on
to d. If agent 2 were given the right side of this route, it would have to do more
work than when it’s alone, and that wouldn’t be acceptable to agent 2. So they
have to agree that agent 2 goes to the left side, and agent 1 goes to the right side.
Of course, the letter to d doesn’t exist; agent 1 just goes to c and comes back, and
benefits from his manipulation.

Part of what’s going on here, is that the form of a “deal” that we defined has
constrained the kinds of agreement the agents can come to. Remember, a deal is
just a division of tasks, and we get certain discontinuities when we define a deal
that way. But it’s really this fact that our deal space is discrete that gives rise
to some of these possibilities for deception. In other words, you have a certain
limited number of ways of dividing up tasks between agents. And depending on

20

the particular encounter, an agent might be able to maneuver his way to a certain
deal that’s better for him, exploiting the fact that there are only certain ways of
dividing the tasks.

5.3 Negotiation over Mixed Deals

So one straightforward way of getting rid of some deception is to make the deal
space continuous. We can redefine what a deal is, what a division of tasks is, to
include probability. A mixed deal is defined to be a division of tasks (D1; D2)
with an associated probability p, so that with probability p agent 1 does task set
D1, and with probability 1 � p it does task set D2 (and vice versa for agent 2).
This results in a continuous space of deals. In addition, because of the way that our
class of Task Oriented Domains is defined, if the agents use mixed deals they can
always restrict their agreements to the so-called “all-or-nothing” deal, meaning
the deal where all tasks are put into one big set, and a weighted coin is tossed to
decide which agent does all the tasks. This kind of agreement, an all-or-nothing
agreement, will in our examples always be a potential deal; there may be others,
of course.

So by adding this probability into the deal definition, we’ve managed to make
the space of deals be continuous, instead of discrete, the way it was originally.

And that means that at least some of the agents’ possibilities for deception
have vanished. Let’s revisit our original Postmen Domain example, but now the
protocol has agents negotiating over mixed all-or-nothing deals [see Figure 9].
Now, if agent 1 hides his letter to node b, he still has a certain probability of going
all the way around the loop. Which means that he doesn’t get off for free, the
way he did in the original example. There is some possibility (less than 1=2, but
it’s there) that he might deliver the declared letters. In any case, he still has a
guaranteed trip of 2 to node b, even if he wins the coin toss. If you work out the
numbers, you see that agent 1 has not benefited anymore from his hiding one of
his tasks.

Similarly, in the second encounter, where agent 1 declared an extra, phantom
task, the use of probability in the deal ends up worsening agent 1’s position. He’ll
end up doing extra work, because he had the audacity to claim that he came into
the encounter with extra work to begin with. The logic of maximizing the product
of utilities here means that if he came into the encounter with extra work, he has
to bear more of the burden of the final deal. So in both of these specific cases,
we’ve done pretty well by just introducing probability into the deal definition.

But what’s really going on here? Does adding in probability really solve all

21

Hiding Letters with MixedHiding Letters with Mixed
All-or-Nothing DealsAll-or-Nothing Deals

They will agree on theThey will agree on the
mixed deal wheremixed deal where
agent 1 has a 3/8 chanceagent 1 has a 3/8 chance
of delivering to f and e.of delivering to f and e.

(hidden)(hidden)

a

c

bh

f d

g

e

Post OfficePost Office

�

� �

(1)(1)

11 22

ee

bb

2

1
ff

Phantom Letters with Mixed DealsPhantom Letters with Mixed Deals

They will agree on theThey will agree on the
mixed deal where A hasmixed deal where A has
3/4 chance of delivering3/4 chance of delivering
all letters, lowering hisall letters, lowering his
expected utility.expected utility.

a

c

b

b, c, b, c, dd
Post OfficePost Office

2

�

1

�

b, cb, c

1, 21, 2

1, 21, 2 d�
11 (phantom) (phantom)

Figure 9: Mixed All-or-Nothing Deals Discouraging Deception

our problems? And the answer is no, it removes problems for specific kinds of
encounters. So we have to understand the kinds of Task Oriented Domains that
exist; not all Task Oriented Domains are the same.

6 SubAdditive TODs

You see, all the examples we’ve given so far, have been examples of what are
called “subadditive” Task Oriented Domains. A TOD is subadditive if for all
finite sets of tasks, the cost of the union of tasks is less than or equal to the sum of
the costs of the separate sets (for finite X; Y in T , c(X [Y) � c(X) + c(Y)). In
other words, if you have two sets of tasks, and you put them together, you’ll never
increase the cost, and perhaps you’ll decrease it.

You can see the general idea in the diagram [see Figure 10]. Putting the sets
of tasks together lowers the overall cost of the combined set. That’s the meaning
of subadditivity.

Now, all the examples we’ve looked at so far have been subadditive, the Post-
men Domain, the Database Domain, and the Fax Domain. But not all TODs are
necessarily subadditive. For example, consider a minor variation on the Postmen
Domain, we call it the Delivery Domain, where agents go out and deliver their
packages, but are not required to return to the Post Office at the end of the day.
In that case, we don’t have a subadditive domain anymore [see the right side of
Figure 10]. If one agent has the task of delivering to the left node, and another
agent has the task of delivering to the right node, then each has a task that costs 1
unit. The combined set of tasks costs 3 units, down one side, back to the original
node, then down the other side. So the combined tasks costs more than the sum

22

Sub-AdditivitySub-Additivity

cc(X (X ∪∪ Y) Y) ≤≤ cc(X) + (X) + cc(Y)(Y)

XX YY

Sub-Additive TODsSub-Additive TODs

The Postmen Domain, Database Domain, andThe Postmen Domain, Database Domain, and
Fax Domain are sub-additive.Fax Domain are sub-additive.

The “Delivery Domain” (whereThe “Delivery Domain” (where
postmen don’t have to return to thepostmen don’t have to return to the
Post Office) is not sub-additive.Post Office) is not sub-additive.

��

Figure 10: The Nature of Subadditivity

of the individual tasks. This is not subadditive. If this were the Postmen Domain,
each separate delivery would cost 2 units, the combination would cost 4 units, and
that is subadditive.

6.1 Incentive Compatible Mechanisms

Incentive Compatible MechanismsIncentive Compatible Mechanisms

Sub-AdditiveSub-Additive

a

c

b /

/
1, 21, 2

1, 21, 2 d/
(phantom)(phantom)11

(hidden)(hidden)

a

c

bh

f d

g

e

/

/ /

(1)(1)

11 22

TheoremTheorem: For all encounters in all sub-additive TODs,: For all encounters in all sub-additive TODs,
when using a PMM over all-or-nothing deals, no agentwhen using a PMM over all-or-nothing deals, no agent
has an incentive to hide a task.has an incentive to hide a task.

Hidden

Pure L L
A/N T T/P
Mix L T/P

Phantom

Decoy TasksDecoy Tasks

Sub-AdditiveSub-Additive
Hidden

Pure L L
A/N T T/P
Mix L T/P

Phantom

L
L
L

Decoy

Decoy tasks, however, canDecoy tasks, however, can
be beneficial even withbe beneficial even with

all-or-nothing dealsall-or-nothing deals

�

� �

�

�

�

11

11

11 11

22

22
11

Figure 11: Tables Summarizing Strategies, Given Protocols

Now we can summarize what we know so far into a table, that illustrates when
lying is potentially advantageous, and when truth-telling is the best policy [see
Figure 11]. Here we have, for subadditive TODs, three possible protocols, the
original deal definition which we call Pure Deals, the new deal definition that
uses probability, Mixed Deals, and the All-or-Nothing protocol that always results
in this special kind of mixed deal where one agent does everything with some
probability. The original loop example was an instance where hiding a letter might

23

be beneficial to an agent, when a Pure Deal was being used in the protocol. So we
put an “L” there, to signify that there exist encounters where lying is beneficial.
Similarly, our second example was an instance of this other box, where a phantom
task was beneficial; it gets an “L” also. A “T” in a box means that honesty is the
best policy. An agent’s best strategy is always to tell the truth. So, for example,
when an all-or-nothing protocol is being used in a subadditive TOD, no agent has
any incentive to hide a task. The best strategy is to reveal all tasks.

The entry T/P means that although creating a phantom letter might sometimes
be beneficial, the deception might also be discovered, since the non-existent task
might have to be handed over to the other agent using these probabilistic protocols.
So with a high enough penalty mechanism, truth-telling becomes the best strategy.

Now, you’ll also notice that there’s a relationship between table entries, de-
noted by that white arrow. These are sort of implications that arise naturally from
the definitions of the columns and rows. Here, for example, the fact that all-
or-nothing deals are a subset of mixed deals, means that if truth-telling is the best
strategy in mixed deals, it is certainly also the best strategy in all-or-nothing deals,
which are a subset.

6.2 Decoy Tasks

There’s one more kind of lie that’s worth looking at, and that’s what we call decoy
tasks. A decoy task is like a phantom, it’s a fake task, but an agent can create it on
demand, if necessary. So a postman might claim he has a letter to some particular
node, and if required to hand it over when using a probabilistic deal, he quickly
jots a note down, “Dear Resident: You may have already won the sweepstakes,”
and hands it over. So a simple penalty mechanism won’t work, and in fact as
the table shows [right side of Figure 11], decoy lies in subadditive domains can
sometimes be beneficial for an agent even when all-or-nothing protocols are used.
As an example, look at this graph, where agent 1 would prefer to just deliver its
own letters and return to the Post Office. By creating this decoy letter in the middle
node, it claims that it would have to do a lot of extra work to carry out agent 2’s
delivery. So it sort of deceptively “locks itself into” its original path. Even with
an all-or-nothing deal, agent 1 benefits from the deception, so this is an example
of that table entry on the right. Again, notice the white arrows. Since lying can
be shown to be beneficial using an all-or-nothing protocol, it must be sometimes
beneficial when using mixed deals, which are a superset. The point is, having
filled out one entry in the table, other entries may be implied automatically.

24

Subadditive TODs are an important class of domains, but there are other, more
restrictive classifications that we can use to understand Task Oriented Domains.

7 Concave TODs

Concave Task Oriented Domains are a subset of subadditive TODs, where we
have the following situation. Imagine that we have two sets of tasks, X and Y ,
where X is a subset of Y , and we come along with some other set of tasks Z.
Then the cost Z adds to X , the subset, is greater than the cost Z adds to Y , the
superset: c(X [Z)� c(X) � c(Y [Z)� c(Y): If a domain is concave, then that
implies that it’s also subadditive [see Figure 12].

ConcavityConcavity

XXYY

ZZ

The cost Z adds to X is more than theThe cost Z adds to X is more than the
cost it adds to Y.cost it adds to Y.

(Z - X is a superset of Z - Y)(Z - X is a superset of Z - Y)

Concave TODsConcave TODs

The Database Domain and Fax Domain areThe Database Domain and Fax Domain are
concave (not the Postmen Domain, unlessconcave (not the Postmen Domain, unless
restricted to trees).restricted to trees).

/

/ /

/

/

/

11

11

11 11

22

22
11X

Z

This example was not concave;
Z adds 0 to X, but adds 2 to its
superset Y (all blue nodes).

Figure 12: Concave Task Oriented Domains

To see what’s going on, look at the diagram. X is a subset of Y . We come
along with some arbitrary set of tasks Z. And it seems obvious, according to the
diagram, that the cost Z adds to X will be more than the cost it adds to Y . So that
illustrates the property of a domain that’s concave.

Now, the diagram is actually a bit misleading, because it appears like such an
obvious property, that it ought to hold of all reasonable Task Oriented Domains.
But it doesn’t [see the right side of Figure 12].

Of the three TODs we introduced originally, only the Database Domain and
the Fax Domain are concave. Our trusty old friend, the general Postmen Domain,
is not concave, unless graphs are restricted to trees. To see an example of a non-
concave encounter in the general Postmen Domain, consider the example we gave
for a beneficial decoy task. Agent 1 has to travel around these left nodes, let’s call
that X , and agent 2 has to travel around the right nodes. Let’s call Y the set of all

25

dark gray nodes (i.e., excluding the middle node marked Z). So X , the left nodes,
the ones marked with a “1,” is a subset of Y , all the dark gray nodes. Agent 1 then
lies with a decoy task to the node in the middle. Let’s take that decoy task as set
Z. Now the amount of work that Z, that middle node, adds to the set X , is 0. The
agent visits Z on the way, no extra cost. But the amount of work that Z adds to
Y , a superset of X , is 2. An agent would have to make a special trip to visit all of
Y , then visit Z. So this example is not concave.

7.1 Three-Dimensional Incentive Compatible Mechanism Ta-
ble

Three-Dimensional IncentiveThree-Dimensional Incentive
Compatible Mechanism TableCompatible Mechanism Table

Sub-AdditiveSub-Additive
Hidden

Pure L L
A/N T T/P
Mix L T/P

Phantom

L
L
L

Decoy

ConcaveConcave
Hidden

Pure L L
A/N T T
Mix L T

Phantom

L
T

T

Decoy

TheoremTheorem: For all encounters: For all encounters
in all concave TODs, whenin all concave TODs, when
using a PMM over all-or-using a PMM over all-or-
nothing deals, no agent hasnothing deals, no agent has
any incentive to lie.any incentive to lie.

Figure 13: The Enlarged Strategy/Protocol Table

If we return to the table that we’ve been setting up, we can examine an en-
tire new set of possibilities [see Figure 13]. The table’s now become three-
dimensional, and you can see from the black arrows that there are also relation-
ships among Concave and Subadditive dimensions of the table. For example, if
hiding letters is sometimes beneficial in Concave Domains when a Pure Deal pro-
tocol is used, then it will also sometimes be beneficial in Subadditive Domains
when a Pure Deal is used. That’s because a Concave Domain is always also a
Subadditive Domain.

The main thing to notice here is that concave domains are considerably better
behaved with regard to lying. There are more T’s in the Concave part of the table,
and in particular, we’ve proven a theorem that says that in all Concave TODs,

26

when using all-or-nothing deals, no agent has any incentive to hide tasks, nor to
create phantom or decoy tasks. There’s absolutely no incentive to lie. Now, that
theorem is what allows us to put the middle row of T’s into the Concave part of
the table.

We can make an even more precise classification of Task Oriented Domains
with the following definition.

8 Modular TODs

A Modular Task Oriented Domain is one in which the cost of combining two sets
of tasks X and Y into one large set is exactly the sum of their separate costs minus
the cost of their intersection: c(X[Y) = c(X)+c(Y)�c(X\Y): That’s because
you don’t want to count the tasks that appear in both sets twice. And any modular
domain is also a concave domain, and in turn also a subadditive domain, of course.

ModularityModularity

cc(X (X ∪∪ Y) = Y) = cc(X) + (X) + cc(Y) – (Y) – cc(X (X ∩∩ Y) Y)

XX YY

Modular TODsModular TODs

The Fax Domain is modular (not theThe Fax Domain is modular (not the
Database Domain nor the Postmen Domain,Database Domain nor the Postmen Domain,
unless restricted to a star topology).unless restricted to a star topology).

Even in modular TODs, hiding tasks canEven in modular TODs, hiding tasks can
be beneficial in general mixed deals.be beneficial in general mixed deals.

Figure 14: Modular Task Oriented Domains

This diagram shows exactly what’s going on, and here it’s pretty clear [see
Figure 14]. The cost of the combined set of X union Y is exactly the cost of the
set X , plus the cost of the set Y , minus the cost of the intersection of X and Y , so
that middle region isn’t counted twice in the cost calculation.

Of the three original TODs that I introduced, only the Fax Domain is modular.
The Database Domain is not modular, and the general Postmen Domain is also
not modular, unless you restrict the graphs that the postmen visit to have a star
topology, with the Post Office in the middle and all the other nodes connected to
it like spokes on a wheel. Modular TODs are the most restrictive categorization
that we’ve looked at, and the best behaved with regard to lying, but even here

27

hiding tasks can sometimes be beneficial if the agents are using general mixed
deal protocols.

8.1 Three-Dimensional Incentive Compatible Mechanism Ta-
ble

Three-Dimensional IncentiveThree-Dimensional Incentive
Compatible Mechanism TableCompatible Mechanism Table

Sub-AdditiveSub-Additive

Pure

A/N

Mix

ConcaveConcave

Pure

A/N

Mix

H

L L
T T

L T

P

L
T

T

D

H

L L
T T/P
L T/P

P

L
L
L

D

ModularModular

Pure

A/N

Mix

H

L T

T T

L T

P

T

T

T

D

Figure 15: Categorizing Strategies Based on Domain and Protocol

Returning to our evolving table, we add another layer into the third dimension
[see Figure 15]. This modular layer has more T’s. You can see that in moving from
subadditive to concave to modular we’re increasing the percentage of T boxes,
where telling the truth is always the best policy for an agent, but there are still
some residual L’s lurking in the table.

Designers who came together and could determine that their domain was, for
example, a Modular Task Oriented Domain, could look at this table and decide,
perhaps, to use a protocol that has agents negotiating over all-or-nothing deals,
confident in the knowledge that none of the individual companies building the
agents will have an incentive to conceal their tasks, nor create false ones. The best
policy here is really just to tell the truth. Simple, efficient, and stable.

I have here a copy of an article that appeared in the Boston Globe a few months
ago. It’s called “A new dimension in deception” (written by Michael Schrage), and
it talks about software agents that might choose to lie in order to further the aims
of their owners. For example, a scheduling agent might falsely claim that its owner
has an appointment at a certain time in order to force a group of people to set a

28

meeting when it wants to have the meeting, and not at some other time. Now,
the article’s pretty good at laying out the scenario, but it missed the punchline,
and that punchline is what this talk has been all about: sometimes, it’s possible to
design the rules of encounter so that lying is simply not in anyone’s interest. If, for
example, we have a Concave Domain, the protocol that the agents use might be
set up to negotiate over all-or-nothing deals. And then, it’s not that we’re going to
legislate that agents won’t deceive—it just won’t be rational for them to deceive.

9 Related Work

What I’ve spoken about today is really the tip of the iceberg. First of all, Task Ori-
ented Domains themselves are only a small class of encounters between agents,
and if you remember I presented two more general classes, State Oriented Do-
mains and Worth Oriented Domains. We’ve carried out similar kinds of analysis
of protocols in these more general types of domains, and the situation becomes
more complicated. Lying, for example, is harder to prevent in those more gen-
eral encounters, but we can still analyze properties of protocols, like efficiency
and stability, and provide guidelines for how agent designers would want to build
their systems.

Other work that’s going on in this general direction within AI includes several
recent papers on coalition formation, where there are more than 2 agents, gen-
eral research into mechanism design (Ephrati, Kraus, Tennenholtz), research on
other models of negotiation among agents (Kraus, Sycara, Durfee, Lesser, Gasser,
Gmytrasiewicz), and research on other consensus mechanisms, such as voting
techniques, explored in work that I’ve carried out with Ephrati, and economic
models, such as those being examined by Wellman.

10 Conclusions

What have we been arguing? That by appropriately adjusting the “Rules of En-
counter” by which agents must interact, we can influence the private strategies
that designers will rationally build into their machines. When we can’t have di-
rect control of how multiple agents will be built, we can exert indirect influence
by careful design of the negotiation protocol.

Second, we’ve pointed out that the interaction mechanism can and should be
designed to ensure efficiency of the multi-agent system.

29

Third, to maintain efficiency over time of dynamic multi-agent systems, the
rules must also be stable. It is not enough to figure out a strategy that has good
properties, like efficiency—the agent designers have to feel that this is the strat-
egy they should stick with, they shouldn’t have any incentive to move to another
strategy. So stability is a very important part of multi-agent systems.

Finally, we’ve done our analysis through the use of formal tools. Our commit-
ment to the formal design and analysis of protocols both makes us more sensitive
to issues such as efficiency and stability, and gives us the ability to make definitive
statements about them. It’s these kinds of tools that give us the leverage we need
to design interaction environments for automated negotiation.

Other Reading

The work discussed in this talk can be found in the following articles and book:
[23, 24, 26, 25, 27, 29, 20].

Related work can be found in the following articles: [16, 14, 15, 6, 7, 8, 10, 1,
3, 4, 5, 12, 11, 28, 18, 22].

For good introductory treatments of game theory and mechanism design, refer
to the following books: [2, 17, 9, 13, 19, 21].

Acknowledgments

This research has been partially supported by the Leibniz Center for Research in
Computer Science at the Hebrew University of Jerusalem, and by the Israeli Min-
istry of Science and Technology (Grant 032-8284). The authors wish to thank
their many colleagues who have helped in the refinement of this research, includ-
ing Erik Brynjolfsson, Edmund Durfee, Eithan Ephrati, Les Gasser, Mike Gene-
sereth, Barbara Grosz, Robin Hanson, Sarit Kraus, Daniel Lehmann, Nati Linial,
Ariel Rubinstein, Moshe Tennenholtz, Mario Tokoro, and Avi Wigderson.

References

[1] M. Avouris and Les Gasser. Distributed Artificial Intelligence: Theory and
Praxis. Kluwer Academic Publishers, Boston, 1992.

30

[2] Ken Binmore. Fun and Games, A Text on Game Theory. D. C. Heath and
Company, Lexington, Massachusetts, 1992.

[3] Susan E. Conry, Robert A. Meyer, and Victor R. Lesser. Multistage ne-
gotiation in distributed planning. In Alan H. Bond and Les Gasser, edi-
tors, Readings in Distributed Artificial Intelligence, pages 367–384. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1988.

[4] Keith S. Decker and Victor R. Lesser. An approach to analyzing the need
for meta-level communication. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 360–366, Chambery,
France, August 1993.

[5] Keith S. Decker and Victor R. Lesser. A one-shot dynamic coordination
algorithm for distributed sensor networks. In Proceedings of the Eleventh
National Conference on Artificial Intelligence, pages 210–216, Washington,
DC, July 1993.

[6] E. Ephrati and J. S. Rosenschein. The Clarke Tax as a consensus mechanism
among automated agents. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 173–178, Anaheim, California, July 1991.

[7] E. Ephrati and J. S. Rosenschein. Reaching agreement through partial reve-
lation of preferences. In Proceedings of the Tenth European Conference on
Artificial Intelligence, pages 229–233, Vienna, Austria, August 1992.

[8] E. Ephrati and J. S. Rosenschein. Distributed consensus mechanisms for
self-interested heterogeneous agents. In First International Conference on
Intelligent and Cooperative Information Systems, pages 71–79, Rotterdam,
May 1993.

[9] Drew Fudenberg and Jean Tirole. Game Theory. The MIT Press, Cambridge,
Massachusetts, 1992.

[10] L. Gasser. Social conceptions of knowledge and action: DAI foundations
and open systems semantics. Artificial Intelligence, 47(1–3):107–138, 1991.

[11] Piotr J. Gmytrasiewicz, Edmund H. Durfee, and David K. Wehe. A decision-
theoretic approach to coordinating multiagent interactions. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, pages
62–68, Sydney, Australia, August 1991.

31

[12] Piotr J. Gmytrasiewicz, Edmund H. Durfee, and David K. Wehe. The utility
of comunication in coordinating intelligent agents. In Proceedings of the
National Conference on Artificial Intelligence, pages 166–172, July 1991.

[13] John C. Harsanyi. Rational Behavior and Bargaining Equilibrium in Games
and Social Situations. Cambridge University Press, Cambridge, 1977.

[14] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent negotiation under time
constraints. Computer Science Technical Report Series CS-TR-2975, Uni-
versity of Maryland, College Park, Maryland, October 1992.

[15] Sarit Kraus. Agents contracting tasks in non-collaborative environments. In
Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 243–248, 1993.

[16] Sarit Kraus and Jonathan Wilkenfeld. Negotiations over time in a multi-
agent environment: Preliminary report. In Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence, pages 56–61, Sydney,
August 1991.

[17] R. Duncan Luce and Howard Raiffa. Games and Decisions. John Wiley &
Sons, Inc., New York, 1957.

[18] Y. Moses and M. Tennenholtz. On cooperation in a multi-entity model. In
Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence, pages 918–923, Detroit, Michigan, August 1989.

[19] M. J. Osborne and A. Rubinstein. Bargaining and Markets. Academic Press
Inc., San Diego, California, 1990.

[20] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conven-
tions for Automated Negotiation Among Computers. MIT Press, Cambridge,
Massachusetts, 1994. To appear.

[21] Alvin E. Roth. Axiomatic Models of Bargaining. Springer-Verlag, Berlin,
1979.

[22] Y. Shoham and M. Tennenholtz. On the synthesis of usful social laws for
artificial agent societies. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 276–281, San Jose, California, July 1992.

32

[23] G. Zlotkin and J. S. Rosenschein. Negotiation and task sharing among au-
tonomous agents in cooperative domains. In Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelligence, pages 912–917, De-
troit, Michigan, August 1989.

[24] G. Zlotkin and J. S. Rosenschein. Negotiation and conflict resolution in
non-cooperative domains. In Proceedings of the National Conference on
Artificial Intelligence, pages 100–105, Boston, Massachusetts, August 1990.

[25] G. Zlotkin and J. S. Rosenschein. Cooperation and conflict resolution via
negotiation among autonomous agents in noncooperative domains. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1317–1324, Decem-
ber 1991.

[26] G. Zlotkin and J. S. Rosenschein. Incomplete information and deception
in multi-agent negotiation. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 225–231, Sydney, Australia, Au-
gust 1991.

[27] G. Zlotkin and J. S. Rosenschein. A domain theory for task oriented nego-
tiation. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 416–422, Chambery, France, August 1993.

[28] G. Zlotkin and J. S. Rosenschein. The extent of cooperation in state-oriented
domains: Negotiation among tidy agents. Computers and Artificial Intelli-
gence, 12(2):105–122, 1993.

[29] G. Zlotkin and J. S. Rosenschein. Negotiation with incomplete information
about worth: Strict versus tolerant mechanisms. In Proceedings of the In-
ternational Conference on Intelligent and Cooperative Information Systems,
pages 175–184, Rotterdam, May 1993.

33

