
Informed 
[Heuristic] 

Search

Heuristic: “A rule of thumb, simplification, 
or educated  guess that reduces or limits 
the search for solutions in  domains that 

are difficult and poorly understood.”

1

2



Start

G
2

G

n

Start

k

p

n

G

10

12

1

1

h = 5

f = 6

h = 2

f = 4

h = 1

f(S,n,p) = 4

f(S,k,p) = 3

h = 0

f(S,n,p,g) = 13

f(S,k,p,g) = 12

h = 5

f = 5

3

4



S (4)
4

a (2)
4

c (4)
5

k (5)
7

l (6)
9

d (3)
5

e (2)
5

f(1)
5

G (0)
5

b (3)
7

h (4)
10

G (0)
7

i (5)
13

G (0)
13

j (6)
15

2
1

2

1

1

1

1

1

2

3

2

2

1
5

5

6



S (4)
4

a (2)
4

c (4)
5

k (5)
7

l (6)
9

d (3)
5

e (2)
5

f(1)
5

G (0)
5

b (3)
7

h (4)
10

G (0)
7

i (5)
13

G (0)
13

j (6)
15

2
1

2

1

1

1

1

1

2

3

2

2

1
5

Local Search

7

8



June 20, 1994 2 Technical Report 94-12

area features) is a difficult task. Labeling quality can depend on many factors, including detailed “world

knowledge” and characteristics of human visual perception. Many of the label-placement algorithms

reported in the literature therefore incorporate sophisticated objective functions. A popular approach has

been to use a rule-based paradigm to encode the knowledge needed for the objective function (Ahn and

Freeman, 1984; Freeman and Ahn, 1987; Jones, 1989; Cook and Jones, 1990; Doerschler and Freeman,

1992). For the PFLP problem, however, a relatively simple objective function suffices. Our formulation of

the objective function is due to Yoeli (1972)1. In Yoeli’s scheme, the quality of a labeling depends on the fol-

lowing factors:

• The amount of overlap between text labels and graphical features (including other text labels);

• A priori preferences among a canonical set of potential label positions (a standard ranking is shown

in Figure 1); and

• The number of point features left unlabeled. (This criterion is pertinent only when point selection is

incorporated into the PFLP problem.)

Figure 2 provides an illustration of these factors. By specifying how to compute a numerical score for each

of the criteria above, an objective function can be defined. Such a function assigns to each labeling a number

that indicates its relative quality. We will assume that low scores correspond to better labelings, so that the

goal of the search is to minimize the objective function.

The PFLP problem is a combinatorial optimization problem defined by its search space and objective

function; a solution to the problem is comprised of a search algorithm that attempts to find a relatively good

element of the search space. A natural issue to raise, before exploring possible search algorithms, is the

intrinsic complexity of this search problem. In Section 2 we summarize some previous results that show that

the problem and many of its interesting variants are NP-hard. Thus, any complete search algorithm will be

intractable, any tractable algorithm incomplete.2

This characterization is borne out by previously published algorithms, which fall into two classes:

exhaustive search algorithms and local search algorithms. We review these algorithms in Section 3. As

expected, the exhaustive algorithms are computationally profligate, and the local search algorithms are

incomplete, in that they tend to find local, rather than global minima.

We also present two new algorithms for the PFLP problem in Section 3. The first is a local search tech-

nique based on a discrete form of gradient descent. Although it is also incomplete, its performance on prob-

lems with high label density and its efficiency make it attractive under certain circumstances. The second

1.  A recent study conducted by Wu and Buttenfield (1991) addresses the issue of placement preference for point-feature labels in

more detail.

2.  This holds, of course, only if P ≠ NP, as is commonly believed.

(a) (b)

Figure 2: Good (a) and bad (b) labelings of the same map.
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1  Introduction

Tagging graphical objects with text labels is a fundamental task in the design of many types of informational

graphics. This problem is seen in its most essential form in the field of cartography, where text labels must

be placed on maps while avoiding overlaps with cartographic symbols and other labels, though it also arises

frequently in the production of other graphics (e.g., scatterplots). Although several techniques have been

reported for automating various label-placement tasks, the positioning of labels is still performed manually

in many applications, even though it can be very tedious. (Cook and Jones (1990) report that cartographers

typically place labels at the rate of only 20 to 30 labels per hour, with map lettering contributing up to half of

the time required for producing high-quality maps.) Determining an optimal positioning of the labels is, con-

sequently, an important problem.

In cartography, three different label-placement tasks are usually identified: labeling of area features

(such as oceans or countries), line features (such as rivers or roads), and point features (such as cities or

mountain peaks) (Imhof, 1962; 1975). While it is true that determining the optimal placement of a label for

an isolated point feature is a very different task from determining the optimal placement of a label for an iso-

lated line or area feature, the three placement tasks share a common combinatorial aspect when multiple fea-

tures are present. The complexity arises because the placement of a label can have global consequences due

to label-label overlaps. This combinatorial aspect of the label-placement task is independent of the nature of

the features being labeled, and is the fundamental source of difficulty in automating label placement. We

therefore concentrate on point-feature label placement (PFLP) without loss of generality; in Section 5 of the

paper we describe how our results generalize to labeling tasks involving line and area features.

The PFLP problem can be thought of as a combinatorial optimization problem. Like all such problems,

two aspects must be defined: a search space and an objective function.

Search space. An element of the search space can be thought of as a function from point features to

label positions, which we will call a labeling. The set of potential label positions for each point feature there-

fore characterizes the PFLP search space. For most of the published algorithms, the possible label positions

are taken, following cartographic standards, to be a finite set, which is enumerated explicitly. Figure 1 shows

a typical set of eight possible label positions for a point feature. Each box corresponds to a region in which

the label may be placed. Alternatively, a continuous placement model may be used, for example by specify-

ing a circle around the point feature that the label must touch without intersecting.

In certain variants of the PFLP problem, we allow a labeling not to include labels for certain points (pre-

sumably those that are most problematic to label, or least significant to the labeling application). When this

option is included, the PFLP problem is said to include point selection.

Objective function. The function to be optimized, the objective function, should assign to each element

of the search space (a potential labeling of the points) a value that corresponds to the relative quality of that

labeling. The notion of labeling quality has been studied by cartographers, most notably by Imhof (1962;

1975). However, Imhof’s analysis is descriptive, not prescriptive; coming up with an appropriate definition

of the objective function for a general label-placement problem (that is, one that includes point, line, and

Figure 1: A set of potential label positions and their relative desirability. Lower values indicate more desirable positions.
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scale for an 11 by 8.5 inch page size.) Tests were run for n = 50, 100, 150, …, 1500. For each problem size

tested, 25 layouts were generated, a score was calculated equal to the fraction of labels placed without over-

plots, and the results were averaged to give a composite result for the algorithm at that problem size. These

tests were then repeated with point selection allowed. For most of the algorithms (greedy, gradient descent,

Zoraster, and simulated annealing) this was a natural extension. For the Hirsch algorithm, however, there

was no straightforward method of allowing points to be deleted. In order to include Hirsch’s algorithm in the

point-selection comparisons, we developed a post-pass deletion heuristic which seeks to clear the map of

overplots with the fewest number of label deletions possible. This heuristic deletes the feature whose label

has the greatest number of conflicts with other (non-deleted) labels. This process is repeated until the map is

free from overplots. Although this algorithm is clearly non-optimal (it is straightforward to show that opti-

mal PFLP is reducible to the problem of optimal label deletion and therefore NP-hard), we found it to be an

acceptable heuristic in practice. The score was again the fraction of labels placed without conflict. Figure 9

shows the results of these experiments. As these graphs show, simulated annealing performs significantly

better across the full range of problems considered. Other perspectives on these results are shown in Figures

10 and 11. Figure 10 shows a particular random map of 750 point features labeled by the six basic algo-

rithms. Figure 11 illustrates the variance across different problem instances for 25 different trials of 750

point features.

Next, cartographic data for Massachusetts were used to test the algorithms on naturally occurring point-

feature distributions obtained from the GNIS state file for Massachusetts (United States Geological Survey

1990). The algorithms were again scored based on the number of unconflicted labels, both with and without

point selection. At each problem size, 25 layouts were generated by choosing randomly from the data file.

For example at n = 350, each problem instance was generated by choosing 350 point features randomly from

the GNIS data. Tests were run for n = 50, 100, 150, …, 500. Figure 12 shows the results of these tests.

Because the ratio of average label size to available map area is significantly larger for the Massachusetts

examples, and due to clustering of the point features, the performance of the algorithms deteriorates faster in

the graphs of Figure 12 relative to Figure 9. Nonetheless, the overall rankings were preserved.

Though the simulated annealing algorithm easily dominated the competing algorithms, we noted that

the discrete gradient-descent algorithm performed surprisingly well, especially at high densities, given its

simplicity. To investigate the promise of this approach in more detail, we implemented two related algo-

rithms, “2-opt” and “3-opt” discrete gradient-descent algorithms which consider the best sequence of two

and three repositionings at each iteration.10 A practical implementation of these algorithms is moderately

10.  We use these terms because of the similarity of these methods to the k-opt methods proposed for the NP-complete Traveling

Salesman Problem (TSP). Variants of this method comprise the current best methods for the TSP (Johnson, 1990).

Figure 9: Results of empirical testing of six PFLP algorithms on randomly generated map data with point selection

prohibited and allowed.
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complicated and requires a careful strategy for selective rescoring of repositionings at each iteration, sup-

Random Placement (564) Greedy Depth-First Placement (341)

Discrete Gradient Descent (222) Hirsch’s Algorithm (222)

Zoraster’s Algorithm (219) Simulated Annealing (75)

Figure 10: A sample map of 750 point features with labels placed by the six different algorithms. Labels printed in dark grey overplot other

labels or points. Labels printed in light gray are free of overplots. Numbers in parenthesis indicate the final value of the objective function

computed as the number of labels with overplots.
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