

Using the TSP on the TaskView Project
David Webb, Ogden Air Logistics Center, Software Engineering Division

Watts Humphrey, Software Engineering Institute

This article reports the first results of using the Team Software
Process (TSP)TM on a software-intensive system project. The TSP was
developed by the Software Engineering Institute (SEI) to guide
integrated teams in producing quality systems on their planned
schedules and for their committed costs. The TaskView team at Hill
Air Force Base, Utah used the TSP to deliver the product a month
ahead of its originally committed date for nearly the planned costs.
Because the engineers' productivity was 123 percent higher than on
their prior project, they included substantially more function than
originally committed. Testing was completed in one-eighth the normal
time, and as of this writing, the customer has reported no acceptance
test defects.

HIS ARTICLE DESCRIBES the experiences of a team that used the TSP to produce a
software-intensive product for the U.S. Air Force. The Ogden Air Logistics Center,
Software Engineering Division, Hill Air Force Base, Utah, has a long history of
producing avionics and support software for the Air Force. The division had previously

been assessed at a Capability Maturity Model (CMM)® Level 3 and has just recently been
assessed at CMM Level 5. TaskView, one of the products they delivered, is a system to help
Air Force pilots produce flight plans. Flight planning is labor-intensive and time-consuming;
TaskView automates much of this work. It helps mission planners produce accurate flight plans
with less labor and in less time than previously possible. The project was completed ahead of
its original schedule and within its committed budget. The product is currently in customer
acceptance testing with no defects reported to date. This article is the first published report of
project results with the TSP.
 Following a brief TSP overview, we describe the software organization, the TaskView
project, and the team's experiences in introducing and using the TSP. Next, we cover the
engineers' reactions to using this process. We conclude with a brief summary of the key
findings from the TaskView experience. The division already had a high-maturity software
process, so it had data available from prior work. We can thus compare the performance of the
TSP team to previous projects. Although this article presents some of the data, we only show a
few of the indicators that are potentially available for TSP projects.

The TSP
Although the concepts and methods for running integrated teams are well known, the specific
steps often are not obvious to working engineers and managers. For example, to be effective,
teams need precise goals, clearly stated roles, a defined engineering process, and a detailed
plan for the work. They need a framework for periodic coordination and structured methods to
review and track project risks and issues. Team measures must be defined and recorded,
tracking mechanisms developed, and a reporting system established.

 Although none of these items is particularly complex or difficult, the specific actions often
are not obvious. Before engineers can work effectively in an integrated team environment, they
need to know precisely what to do. If they have not done such work before or do not have a
detailed process to guide them, they will generally defer the new or unfamiliar items until they
know how to handle them. They then do the tasks they fully understand. As a result, many of
the actions required for effective teaming do not get done. Teams can waste a great deal of
time trying to establish goals, resolving their working relationships, and figuring out how to do
the work.

How the TSP Works
The TSP defines the steps required to build and run software-intensive integrated product
development (IPD) teams [1]. First, the engineers are trained precisely how to do quality work,
use a defined process, and make and use process measurements. For engineers to use these
methods on the job, they must have hands-on training, explanation of the methods, and
experience using them on realistic project-like exercises. This training is provided by an
intensive 120-hour course that teaches the Personal Software Process (PSP)SM [2,3,4,5]. Figure
1 shows how the PSP training and the TSP process provide the capabilities for integrated
teamwork.

Figure 1. How PSP and TSP provide IPD capabilities.

 After acquiring basic process, planning, and quality management skills, engineers have the
prerequisites to use the TSP. Every project then starts with a three-day TSP launch workshop,
where engineers develop teamworking practices, establish goals, select roles, define processes,
and make plans. A shorter two-day relaunch workshop is then repeated at the start of every
major project phase. Because team members work directly on their project during the launch,
these three days are part of the job and are not a training exercise.
 Finally, the TSP provides the mechanisms to maintain an effective teamworking
environment. This is done with structured weekly team meetings and periodic relaunch
workshops. The team meeting is much like the football huddle: all members participate, and
they focus on precisely what to do next. If the plan is working, they follow it. If it is not, they
may decide to change it. The team meeting not only maintains effective team communication
but also facilitates precise status tracking, provides a context for team decision making, and
supports continuous risk tracking and project reporting. As in football, periodic "huddles" are
important; if teams did not huddle, they would do a lot of running around but not win many

games.
 The team relaunch is conducted at every principal project milestone. It serves to help the
team evaluate and rebalance the project plan, reassess project risks, integrate new team
members, reassign team roles, and re-emphasize the team's goals and charter. At the
conclusion of each launch or relaunch, the team reviews its status, plans with management, and
resolves any issues and problems.

What the TSP Provides
The TSP process provides a set of forms, scripts, and standards that lead the team through the
process steps. Once they are PSP trained, engineers know how to develop and follow a defined
process, and they understand how to use the process measures to consistently produce quality
products. The PSP can be viewed as a language of process. Until engineers are reasonably
fluent in this language, they generally are not able to follow the process and use its measures.
PSP training provides the engineers the process fluency they need to use the TSP.
 The TSP process also provides the guidance engineers need to work effectively in a team
context. As shown in Figure 2, this is done during the three-day team launch. By following the
launch process, the team members can quickly determine their own and everyone else's
responsibilities, and they can readily track and coordinate their work with their teammates and
other teams.

Figure 2. The TSP launch process.

 Because the TSP produces a large volume of data, managing and tracking the data can
become a burden. The SEI has developed a support tool that helps engineers record and track

TSP data. The initial tool support is in Microsoft Excel for Windows 95 and Windows NT. The
TSP teams that have used this tool report that it substantially simplifies their data-gathering
and reporting tasks. An enhanced tool is under development.

Engineering Support
During the launch and relaunch workshops, the team works as a unit to develop their process,
quality, support, and project plans. These detailed plans identify and schedule the work for the
next phase to the level of 10 task hours or fewer. Thus, the team members and their
management know what tasks are to be done and when they are to be completed. In one
example, Dave Webb, the TaskView team leader, needed to temporarily assign one engineer to
help another project with a critical problem. By reviewing the detailed task schedule with the
engineer, he precisely determined the impact of this reassignment and made workload
adjustments to ensure that the project schedule was not affected.
 The team as a unit also performs continuous risk management. In the launch and periodic
relaunches, members do a complete project risk assessment. All risks are rated for likelihood
and impact, and the more important risks are assigned to individual members for tracking. The
assigned team members then develop mitigation plans for the immediate priority risks and
monitor and report risk status in the weekly team meetings.
 The TSP process helps working groups develop into cohesive and effective engineering
teams. With defined and agreed-to goals and a process and plan to meet these goals, team
members are more likely to submerge their personal problems and strive for the common
objective. Efficiency is enhanced by the defined process, and communication is maintained by
the weekly meetings of all team members. These meetings take less than one hour for teams of
about 10 members. Team members review their role activities, planned vs. actual tasks
completed, and risk status. Each member reports personal earned-value status, any needed team
or management actions, and personal plans for the next period. These weekly meetings permit
the team as a whole to periodically rebalance the workload, resolve issues, and make decisions.

TSP Status
The TSP process is being developed by the SEI, and it is currently under test by approximately
10 engineering groups and several dozen teams. Based on the experience to date, four TSP
versions have been produced. The TSP has been used with teams as small as two engineers and
with groups as large as 17. Some teams have been composed of software professionals, and
others have also had hardware, systems, test, or other engineering participants. The project
categories include maintenance, new product development, and product enhancement. System
types have ranged from components of large commercial data-processing systems to embedded
real-time controllers. TSP projects have covered proprietary product development, industrial
software contracts, and military development and enhancement work.

Hill Air Force Base
The TaskView project was conducted by the Ogden Air Logistics Center, Technology and
Industrial Support Directorate (TI), Software Engineering Division (TIS) at Hill Air Force
Base, Utah. The TIS vision statement declares that they will provide "exceptional weapon
system software and related hardware solutions and technology adoption expertise to enhance
our nation's defense."
 TIS is a high-maturity organization with a strong history of software process improvement.
In March 1995, TIS was assessed as a CMM Level 3 organization, and the assessment
conducted in July 1998 rated them at CMM Level 5. This is the first software organization in
the Department of Defense (DoD) to receive this rating, and it is one of the few Level 5

software groups in the world.
 The software products produced by TIS include operational flight programs for the F-16
Fighting Falcon aircraft, test program sets for F-16 automated test equipment, mission-planning
software for a variety of aircraft, and avionics test-station software. TIS is also the home of the
Software Technology Support Center (STSC), which provides technology adoption expertise to
the DoD, sponsors the annual Software Technology Conference, and publishes Crosstalk.
 During the summer of 1996, TIS introduced the PSP to a small group of software engineers.
Although the training was generally well received, use of the PSP in TIS started to decline as
soon as the classes were completed. Soon, none of the engineers who had been instructed in
PSP techniques was using them on the job. When asked why, the reason was almost
unanimous: "PSP is extremely rigorous, and if no one is asking for my data, it's easier to do it
the old way."
 Although the TIS Software Engineering Process Group (SEPG) believes that PSP training
accelerated CMM improvement work, members were concerned that the PSP methods were not
being used. They therefore asked the SEI how to get engineers to consistently use PSP
practices on the job. Because the TSP was then being designed to address this exact problem,
the SEI suggested that TIS become involved in TSP pilot testing. TIS decided to do so, and this
project is the result.

The TaskView Project
TIS chose the TaskView project as the TSP pilot. TaskView is a UNIX-based tool that parses
an Air Tasking Order (ATO), which is a set of battle instructions for all aircraft involved in a
strike, including fighters, bombers, and refuelers. As shown in Figure 3, it describes the flight
plans, aircraft armament, and specific mission roles and tasks. Once the battle has been
planned, a complex set of computer programs generates an ASCII text file that contains the
ATO information. This ATO is then delivered electronically to each of the units participating
in the strike.

Figure 3. TaskView converts complex ASCII text to tree structures to map routes.

 Currently, the ATO is "broken out" manually— interpreted, sorted, and restructured—by the
participating groups, who use hard copies and highlighters to mark their specific instructions.

This is a laborious process that can take several hours. Once the information has been
identified, the data must then be manually entered into mission-planning software tools for
each unit, which provides ample opportunity for further mistakes. The TaskView tool parses
the ATO and automatically "breaks out" (sorts and structures) the needed information in a few
seconds. Additionally, TaskView can port data directly to mission-planning software tools,
which greatly reduce the defects introduced during manual entry.
 An initial prototype version of TaskView had been developed by another organization, and
the TIS contract was to produce a product from this prototype, enhance it for a new ATO
format, and port it from the UNIX environment to a PC Windows NT operating system.
 TIS chose the TaskView project as a pilot for the TSP for several reasons:

The team members were already PSP trained.
TaskView was a small (under 20,000 lines of code [LOC]), short-duration (eight months)
project from which results would be immediately apparent.
The project manager for TaskView (Dave Webb) was an SEI-certified PSP instructor.

 The TaskView project started a month before the introduction of TSP. The team had already
been through the planning process required by TIS, and a detailed plan already existed before
the first TSP launch. Since the TSP is designed to build on and augment an organization's
existing process, the TaskView project could use the TIS Standard Engineering Process and
tracking tools. When organizations do not have a fully defined process, the TSP launch process
guides the team in defining and developing the needed process elements.

Using the TSP Process
The first TSP launch for the TaskView project was held at the end of February 1998. During
the launch, we reviewed TSP concepts with the team and guided them through the project
planning and tracking steps. The team spent about two and one-half days in this launch
workshop.

Team Goals and Roles
During the project launch, the team members determined and documented the project goals.
Some were high level, such as "delight our customers" and "be an effective pilot project for
TSP in the Air Force and the DoD." More specific goals included "provide clean beta versions
of TaskView to [the customer]" and "meet or exceed our quality plan." One important goal was
to meet the customer's recent request that the TaskView project be delivered one month earlier
than the original Sept. 30, 1998 commitment date.
 Next, team members chose their personal team roles from among the TSP basic set:
Customer Interface Manager, Design Manager, Implementation Manager, Planning Manager,
Process Manager, Quality Manager, Support Manager, and Test Manager. Because of the
limited size of the team, some members received more than one job. These roles were assigned
so that when risks or issues arose, there would be a point of contact already designated and
prepared to handle them. As usual, the official team leader had already been designated by
management.

Detailed Planning
With the goals and roles determined, the team refined its existing project plan. The previously
developed TaskView plan contained about three dozen work breakdown structure elements and
tasks. During the TSP launch, the engineers produced a detailed list of more than 180 tasks.
Using standard productivity rates, the team next estimated the task hours and the size of each
task's product, usually in LOC. They also estimated each engineer's available task hours for

each week of the project.
 Task hours are hours spent working only on the tasks in the task list. Time spent in
meetings, on the telephone, using E-mail, or engaged in any other activity that is not defined in
the plan is not counted toward TSP task hours. Although these activities are necessary and are
definitely work hours, they are not tracked as part of the project earned value. Based on the
experiences of other TSP projects, the TaskView team estimated that in an engineer's standard
40-hour workweek, 20 hours would be an aggressive goal for task-related work.

The TSP Earned-Value Tool
TSP tools were then used to turn this top-down plan into an earned-value chart with a
projected completion date. On the first run, the team and management were delighted to find
that the new completion date projected by the top-down plan matched perfectly with the
customer requirement for a one-month schedule acceleration.
 Next, the software engineers were each given a copy of the task list and asked to estimate
their personal work, using their own line of code and effort data. Such data are a product of the
PSP course, which every engineer should complete before starting a TSP project. The TSP tool
was then used to combine these individual estimates into a bottom-up estimate, also with
earned value and a projected completion date. This estimate did not match the schedule
requirements or the top-down estimate completed only a few hours earlier because some
engineers were tasked more heavily than others. Because project schedules often slip if only
one engineer is overburdened, the TSP launch process includes a workload-balancing step.
 After workload balancing, the bottom-up schedule matched the top-down estimate and the
customer's need. At this point, all engineers had a personal task and earned-value plan for
which they individually had provided the estimates.

Risk Assessment and Mitigation
At the next TSP launch meeting, the TaskView team identified the risks associated with the
project. They listed these risks in a brainstorming session, prioritized risk likelihood and
impact, and assigned responsibility for mitigation and tracking. For example, the risk that
"there will be a day-for-day slip in schedule if we do not receive the necessary header files by
3 March" was given a high likelihood and impact and assigned to the official team leader.
 Fourteen risks were identified in this initial launch, of which seven were assigned to the
team leader, and the balance were handled by team members. The team leader also agreed to
share responsibility with the engineers to track and mitigate the other management-related
risks.

Management Review
The final launch activity was a management review of the team's launch results. Normally,
such meetings provide the forum to resolve serious scheduling or resource issues. For
TaskView, however, the management review reaffirmed the existing project commitments.

Tracking the Work
After the two-and-one-half-day TSP launch, the team started on the job. Using the PSP, the
engineers tracked, in minutes, the time they spent on each task and process phase, recorded the
defects found at every phase, and measured the sizes of the products they produced. The data
were stored in the engineers' data tracker and in the TSP tracking tools. Thereafter, the team
met weekly to review earned-value status, goals, risks, issues, and action items.
 Within the next few weeks, it was evident that the team had a problem. The engineers were
not achieving the 20 task hours per week they had planned. Their earned-value data, however,
showed them to be on or ahead of schedule. From the data, the team found that there were two

offsetting factors: Tasks had generally been overestimated, and it was much harder to achieve
20 task hours per week than had been expected. Even though the schedule impact to date had
been minimal, this new understanding helped the team make better plans, and it showed where
to focus to improve performance.

The Team Relaunch
In May 1998, we guided the TaskView team in assessing their progress and conducting a
relaunch. The relaunch was necessary because the project was moving into its second phase,
and the engineers felt a new plan was needed. This new plan would reflect lessons learned
from the prior phase, more realistically address task hours, and include new tasks.
 Although relaunch workshops normally take two days, this team was able to accomplish it
in only one day. During this period, they replanned the project, refined their size and time
estimates, adjusted their schedule to reflect 15 weekly task hours per engineer, and reassessed
risks. Based on the cost, schedule, risk, and quality data, the overall project was judged to be
ahead of plan. Because tasks had been generally accomplished with less effort than originally
planned, some functions were completed early, whereas one important function planned for
Phase 1 had slipped to Phase 2.
 Because of the project's progress, TaskView could either return some money to the
customer or add new functionality. The customer interface manager worked with the customer
and found that new functionality was more important than cost reduction. Management then
agreed to add more tasks and more people to the project. These new functions caused a modest
schedule delay, so the customer interface manager reviewed the new functionality and schedule
with the customer for approval. Since the planned delivery was still months away, the customer
decided to accept the small schedule change in order to get the added functions.

Project Results
To determine the benefits of the TSP, TIS compared the TaskView pilot with similar projects
that followed the organization's standard process. The project manager and the software
engineers were also asked how the TSP had helped or hindered their personal work. Because
TIS projects already routinely meet schedules, commitment performance was not an important
factor in the analysis.

Estimating Accuracy
Use of the TSP was found to substantially improve size and effort estimating accuracy. During
the first launch, TaskView was estimated to be 14,065 LOC. By the second launch, with the
new functions, the total estimated size grew to 19,105 LOC. When the TaskView project was
completed, the final new and changed LOC for the project was 26,776, an underestimate of 40
percent. When the 9,455 LOC of added function were subtracted, the team's original 14,065
LOC size estimate had an error of 23 percent.
 Table 1 shows the size estimates the engineers made during the second TSP launch. Module
7 took no new and changed code because the engineer reused an existing routine. Although
some individual estimates were reasonably close, there was considerable variation. By using a
sound statistically based method and their personal historical data, however, the engineers were
able to make balanced estimates. This meant that, on average, they were as likely to estimate
high as low. Because the errors in the individual estimates tended to compensate, the overall
estimate was much more accurate than were the individual estimates. Team members believed
that their large personal estimating errors were largely due to the lack of historical data for this
kind of project. Future project estimates will benefit from the data gathered during this project
and should be more accurate.

Module
Number

Estimated New and
Changed LOC

Actual New and
Changed LOC

Percent Error*

1 1,500 1,656 10.40%

2 1,500 1,350 -10.00%

3 500 418 -16.40%

4 3,000 4,525 50.83%

5 1,000 973 -2.70%

6 500 1,067 113.40%

7 500 0 -100.00%

8 1,100 3,377 207.00%

9 1,500 848 -43.47%

10 500 956 91.20%

11 1,500 1,494 -0.40%

12 9 4 -55.56%

13 500 653 30.60%

14 unused unused unused

15 500 965 93.00%

16 1,177 2,973 152.59%

17 819 1,131 38.10%

18 3,000 4,386 46.20%

Total 19,105 26,776 40.15%

Table 1. TaskView estimated vs. actual LOC. *Note that underestimates are positive, and
overestimates are negative.

 The TaskView effort estimates were originally made before the introduction of the TSP. At
the first launch, the effort was again estimated to determine if the costs were appropriate and if
the load was properly balanced among the engineers. By the second launch, it was obvious that
effort had been overestimated; the project was able to meet earned-value goals with fewer task
hours than had originally been expected. After including the customer-requested new
functionality, the final delivery date was only two days later than the accelerated schedule, and
the cost error was negligible.

Productivity
The TIS software process database contains the average productivity in LOC per man-hour for
this team's prior project, and the average productivity for every project that used the TIS
organizational process. Although the exact numbers are proprietary, the TaskView project
increased productivity to 16 percent above the TIS average. These particular engineers
increased their productivity to 123 percent above their previous project, or more than two
times. Data on the relative productivity in LOC per programmer-hour for TaskView, the team's
prior project, and the average of all TIS projects are shown in Figure 4. The TIS average is
shown as 100 and TaskView as 116.

Figure 4. Relative productivity.

 Productivity figures are impacted by many factors. Because TaskView and the team's prior
project involved different languages, application domains, and development environments, the
productivity improvement cannot be considered a measure of the TSP. The results do,
however, suggest that the TSP improves productivity.

Quality Improvement
As shown in Table 2, the standard TIS process includes inspections (peer reviews) of all work
products. The TSP adds a set of personal design and code reviews. One important question was
whether the time spent doing these personal reviews was worthwhile. The TIS process typically
removes about 13 defects for every thousand lines of code (KLOC) during design and code
inspections. The rest must be found in test or by the user. With TSP, the TaskView project
increased the yield of early defect removal by more than 60 percent by removing 21 defects per
KLOC in both the reviews and the inspections. The benefits of this early attention to quality are
apparent from the results of the later test phases.

Phase

Requirements Inspection
High-level design inspection
Detailed design personal review
Detailed design inspection
Personal code review
Compile
Code inspection
Functional test
Candidate evaluation (CPT&E)
System test (ERT)
Operational test and evaluation (acceptance
test)
Operational usage (external)

 TIS

X
X

X

X
X
X
X
X
X
X

 TSP

X
X
X
X
X
X
X
X
X
X
X
X

Table 2. TIS and TSP defect-removal process steps.

 Assuming the engineering process has rigorous testing criteria, an indicator of product and
process quality is the time spent running tests. Generally, the fewer defects there are to be
found, the less time is spent in test and the higher is the resulting product quality. The TIS
process has three test phases, all with rigorous criteria, that must be completed before the
product is passed to an external agency for operational testing: functional test, candidate
evaluation, and system test. These phases are then followed by the customer's operational test
and evaluation and then by operational usage. Typical TIS projects require 22 percent of the
project schedule (in days) to perform the final two TIS test phases. The TaskView project,
using TSP, sharply reduced this percentage to 2.7 percent. This is a schedule savings of nearly
20 percent. Only one high-priority defect was found in these last two test phases.
 Data from the completed TaskView project show that the defect density at the functional
testing phase was close to that normally achieved by other TIS projects only after all
engineering testing phases have been completed. In TaskView, to find only one high-priority
defect in the TaskView product during system and operational testing is unprecedented for any
TIS project.
 Because of the improved quality from the TSP process, TaskView testing time was sharply
reduced, as shown in Table 3. Here, the test data for the TaskView project are compared with
three comparable prior projects. Although one could reduce testing time by running incomplete
tests, the fact that the customer has so far reported no defects during acceptance test suggests
that this was not the case. By using the TSP, TaskView not only produced a higher-quality
product, it also took only one-eighth the testing time normally required for similar projects.

Program Size - LOC
CPT&E Test Days
ERT (System Test) Days
Total Test Days
Test Days/KLOC
System Test Defects/KLOC
Acceptance Test
Defects/KLOC

TaskView

26,776
4
2
6

0.22
0.52

0*

Project
1

67,291
22
41
63

0.94
2.21
N/A

Project
2

7,955
10
13
23

2.89
4.78
1.89

Project
3

86,543
33
59
92

1.06
2.66
0.07

Table 3. TaskView testing time. *Acceptance test is continuing but no defects have been
reported to date.

Qualitative Results
A critical question in introducing any new software engineering tool or technology is whether
the engineers will use it. If the engineers do not like a tool or method, they will probably not
use it, regardless of its effectiveness. To assess this issue, we privately asked all the TSP team
members four questions:

What do you believe are the advantages of the TSP?
What do you believe are the disadvantages of the TSP?
What about the TSP would you change?
What about TSP would you keep the same?

 Without knowing their teammates' responses, every team member said the TSP helped them
form a closer, more effective team than any they had worked on before and that they would
like to continue to use it. One team member said, "The TSP creates more group involvement.

Everyone feels like they're more part of a group instead of a cog in a wheel. It forces team
coordination to talk about and solve problems—there's no pigeonholing." Another team
member said, "This really feels like a tight team. I was on the same team for a year [while
working on another project] and didn't know the team members as well as I do now."
 Another qualitative advantage expressed by multiple team members was increased
effectiveness in project planning and tracking. "TSP gives you better insight into your current
state," said one software engineer. "It provides better focus for the software developer on tasks
to be done." Another TaskView team member summed up the planning and tracking benefits of
TSP in this way: "Measuring progress helps generate progress."
 The principal weakness the TaskView team mentioned was the need for better TSP tool
support. Several members said that the tracking and earned-value support needed to be
improved, and another suggested more automated data gathering and analysis. Work on TSP
tool improvement has already begun at the SEI, and a newer, better version of the planning and
tracking tool will soon be available.
 The lead software engineer gave perhaps the best testimonial to the qualitative results of the
TSP. When asked what he would not change about the TSP, he said, "I've seen a lot of benefits
[from the TSP]. I'd like to see us continue to use it."

Conclusions
One of the fears many have about process improvement initiatives like the TSP is that the cost
of doing extensive planning, personal reviews, and data gathering will increase the overall cost
of the project. It is evident from the TaskView data, however, that the time spent performing
these activities is more than made up by improved planning accuracy and reduced test time. As
Philip Crosby once noted, "Quality is free." [6]
 Perhaps the greatest change with the TSP is in the relationship between management and the
engineers. To be most effective, engineers must be motivated and energetic; they need to be
creative and concerned about the quality of their products, and they should enjoy their work
and be personally committed to its success. This can only be achieved if management trusts the
engineers to work effectively and the engineers trust their management to guide and support
them.
 Although trust is an essential element of effective teamwork, it must rest on more than mere
faith. The engineers must follow appropriate methods and consistently strive for quality results.
They must report on their progress and rapidly expose risks and problems. Similarly,
management must recognize that the engineers generally know more about their detailed work
than the managers, and they must rationally debate cost and schedule issues. Management also
needs to ensure that the engineers consistently follow disciplined methods and that the teams
do not develop interpersonal problems.
 The TSP is designed to address these issues and show engineers and managers how to
establish an environment in which effective teamwork is normal and natural. Because this will
often require substantial attitude changes for the engineers and the managers, to introduce the
TSP is a non-trivial step. As the TaskView data show, however, the TSP can produce
extraordinary results.

Acknowledgments
Being a leader and a coach for the TaskView team has been a rewarding experience for each
of us. It would not, however, have been as rewarding or satisfying without a dedicated and
hard-working team. For their support and cooperation, we thank Pattie Adkins, Keith
Gregersen, Neil Hilton, Craig Jeske, Ken Raisor, Mark Riter, and Capt. David Tuma. We also
enjoyed excellent support from Tresa Butler for configuration management, Pat Cosgriff for
SEPG support, and Jim Van Buren of the STSC for PSP consultation.

 For quality engineering work, consistent and informed management leadership is essential.
For their trust in us and their willingness to support us in pioneering the early use of TSP in
practice, we thank Dan Wynn, Robert Deru, Don Thomas, LaMar Nybo, and Eldon Jensen. Lt.
Col. Jacob Thorn, the TaskView program manager at Eglin Air Force Base, Fla., also
supported our process improvement initiatives. His dedication to quality and informed
oversight made the job possible.
 We also thank those who reviewed this article. Their comments and suggestions were a
great help. Our particular thanks to Rushby Craig, Walter Donohoo, Linda Gates, John
Goodenough, and Bill Peterson. Finally, the professional help and guidance of the Crosstalk
staff have, as always, been a great help.

About the Authors

David Webb has a bachelor's degree in electrical and computer
engineering from Brigham Young University. He has worked for TIS for
more than 11 years as a software engineer. Six of those years he spent as
an F-16 Operational Flight Program software test engineer and system
design engineer, three years as a member of the TIS SEPG, and two
years as a technical program manager for TIS mission-planning software.
He has participated in three CMM-Based Appraisals for Internal Process
Improvement, including TIS's 1998 Level 5 assessment. He has also been
certified by the SEI as a PSP course instructor.

OO-ALC/TISHD
6137 Wardleigh Road
Hill Air Force Base, UT 84056
Voice: 801-775-2916 DSN 775-2916
E-mail: webbda@software.hill.af.mil

Watts S. Humphrey is a fellow at the SEI at Carnegie Mellon
University, which he joined in 1986. At the SEI, he established the
Process Program, led initial development of the CMM, introduced the
concepts of Software Process Assessment and Software Capability
Evaluation, and most recently, the PSP and TSP. Prior to joining the SEI,
he spent 27 years with IBM in various technical executive positions,
including management of all IBM commercial software development and
director of programming quality and process. He has a master's degree in
physics from the Illinois Institute of Technology and in business
administration from the University of Chicago. He is the 1993 recipient

of the American Institute of Aeronautics and Astronautics Software Engineering Award and an
honorary doctorate in software engineering from Embry Riddle Aeronautical University in
1998. His most recent books include Managing the Software Process (1989), A Discipline for
Software Engineering (1995), Managing Technical People (1996), and Introduction to the
Personal Software Process (1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References

1. Humphrey, Watts S., "Three Dimensions of Process Improvement, Part III: The Team
Process," Crosstalk, Software Technology Support Center, Hill Air Force Base, Utah,
April 1998, pp. 14-17.

2. Ferguson, Pat, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, and Annette
Matvya, "Introducing the Personal Software Process: Three Industry Case Studies," IEEE
Computer, May 1997, pp. 24-31.

3. Humphrey, Watts S., A Discipline for Software Engineering, Reading, Mass., Addison-
Wesley, 1995.

4. Humphrey, Watts S., "Using a Defined and Measured Personal Software Process," IEEE
Software, May 1996.

5. Humphrey, Watts S., "Three Dimensions of Process Improvement, Part II: The Personal
Process," Crosstalk, Software Technology Support Center, Hill Air Force Base, Utah,
March 1998, pp. 13-15.

6. Crosby, Philip B., Quality Is Free: The Art of Making Quality Certain, McGraw-Hill,
New York, 1979.

The SEI's work is supported by the Department of Defense.

Personal Software Process, PSP, Team Software Process, and TSP are service marks of
Carnegie Mellon University. Capability Maturity Model and CMM are registered trademarks
of Carnegie Mellon University.

From the upper right corner, clockwise: Kevin
Tjoland (TISFD), David Haakenson (TISFB), Ken
Raisor (TISHD [TaskView TSP Project]), Mark
Peterson (TISFD), David Webb (TISHD [TaskView
TSP Project]).

