
24 Computer

C
o

m
p

u
ti

n
g

 P
ra

c
ti

c
e

s
Results of Applying
the Personal 
Software Process

In most professions, competent work requires the
disciplined use of established practices. It is not a
matter of creativity versus discipline, but one of

bringing discipline to the work so that creativity can
happen. The use of plans and procedures brings order
and efficiency to any job and allows workers to con-
centrate on producing a superior product. A disci-
plined effort, too, removes waste, error, and
inefficiency, freeing financial resources for better uses.

Sadly, software professionals today often do not
plan or track their work, and software quality is rarely
measured. This is not surprising as software engineers
are generally not taught planning, tracking, or quality
measurement. When software organizations do plan,
it is only at the project level, and few software orga-
nizations measure the quality of their work.

The Personal Software Process is a defined and mea-
sured framework that helps software engineers plan
and track their work and produce high-quality prod-
ucts. PSP shows engineers how to manage the quality
of their products and how to make commitments they
can meet. It also provides them with the data to justify
their plans. PSP can be applied to many parts of the
software development process, including small-pro-
gram development, requirements definition, document
writing, systems tests, and maintenance and enhance-
ment of large software systems.

PSP has been shown to substantially improve the
estimating and planning ability of engineers while sig-
nificantly reducing the defects in their products. PSP is
introduced with a course, and during the course pro-
ductivity improvements average around 20 percent and
product quality, as measured by defects, generally
improves by five times or more. While PSP is new, a
growing number of engineers use it and find it helpful.

PERSONAL SOFTWARE PROCESS
In his work at the Software Engineering Institute at

Carnegie Mellon University, Watts Humphrey began

developing PSP in 1989. The program came about
when groups began asking SEI how to apply its
Capability Maturity Model to small projects. CMM,
also a product of SEI, helps software organizations
improve their development and maintenance capabil-
ities by assessing their work according to five matu-
rity levels and 18 key process areas. The CMM is
widely used in both the public and private sectors to
guide the evaluation and improvement of software
organizations.1-3

CMM and PSP are thus mutually supportive, with
CMM addressing management practices and PSP defin-
ing a disciplined way for engineers to do their work.
With PSP, engineers practice 12 of CMM’s 18 key
process areas. PSP training can also help accelerate an
organization’s CMM process improvement program.

PSP is a process framework and set of methods that
help engineers be more disciplined in their work. It
shows them how to estimate and plan their projects,
measure and track their work, and improve the qual-
ity of the products they produce.

Too often, software developers follow inefficient methods and procedures.
The Personal Software Process, developed by Watts Humphrey at the
Software Engineering Institute, provides software engineers with a 
methodology for consistently and efficiently developing high-quality
products. The value of PSP has been shown in three case studies.

Pat Ferguson
Advanced 
Information
Services

Watts S.
Humphrey
Software 
Engineering
Institute

Soheil
Khajenoori
Embry-Riddle
Aeronautical
University

Susan Macke
Motorola

Annette
Matvya
Union Switch 
& Signal

0018-9162/97/$10.00 © 1997 IEEE

.



Figure 1. PSP process evolution.

May 1997 25

PSP consists of a series of scripts that define tasks,
of forms for recording data, and of standards that gov-
ern such things as coding practices, size counting, and
the assignment of defect types. When engineers fol-
low PSP, they first plan their work and document the
plan. As they do their work, they record their times
and track and report every defect they find. At the end
of the project, the engineers do a postmortem analy-
sis and complete a project plan summary report.

For larger projects, PSP’s task and schedule tem-
plates guide engineers through the steps of develop-
ing a schedule. This helps the engineers think through
in advance how they will do the work, and thus they
go down fewer blind alleys, make few mistakes, and
follow an overall strategy for attacking the work.

PSP’s quality improvements result from three key
aspects: First, by tracking all defects, engineers are
sensitized to the mistakes they personally make and
therefore become more careful in their work. Second,
when they analyze their defect data, they gain a
clearer understanding of the cost of removing defects
and thus apply the most effective ways of finding and
fixing them. And third, PSP introduces a number of
quality practices that have proven effective in pre-
venting defects and in efficiently finding and fixing
them.

Training is key
Successful application of PSP requires training. PSP

can be studied in a one-semester graduate-level uni-
versity course, which includes a PSP textbook and 10
programming and five analysis exercises.4 PSP is now
being taught at more than 20 universities in the US
and at institutions in Europe, South America, and
Australia. Some universities, too, now offer an intro-
ductory freshman course that is designed to start engi-
neers off on the right track.5 Finally, a condensed
version of the university course, also with 10 pro-
gramming and five analysis exercises, is available for
industrial software groups.

Both university and industry PSP courses work
through seven process levels while the engineers develop
10 module-sized programs. Each process level intro-
duces several elements of PSP, accompanied by applic-
able scripts, forms, and templates. New levels build on
material taught in preceding levels, allowing engineers
to practice what they learn and to see the benefits of
PSP procedures before moving on to the next level.

Seven process levels
Figure 1 shows the seven process levels. Each new

level introduces new elements and more complicated
material until the engineers reach the highest level, PSP
3. The Team Software Process (TSP), now in devel-
opment at SEI, extends the PSP approach to the soft-
ware team environment.

• PSP 0. In the first level, engineers essentially fol-
low their current practices, learning some basic
PSP techniques. This level covers how to record
development time and how to log each compile-
and-test defect. These measurements are used in
process analysis and planning and as a bench-
mark for assessing improvement.

• PSP 0.1. This level adds size measurement and
the process improvement proposal, a form that
engineers use to record the process problems they
encounter as well as their ideas for addressing
them. These problems can make processes very
inefficient, but because many amount to minor
details, engineers tend to forget them without the
use of a form. 

• PSP 1. In this level, engineers are introduced to
the PROBE method, which uses historical data
to estimate size and determine the accuracy of the
estimate. PROBE is a regression-based size-esti-
mating method developed specifically for PSP.

• PSP 1.1. This level adds resource and schedule
estimating and earned-value tracking. Engineers
often have trouble tracking their work because
they do tasks in an order different from their
plan. Earned-value tracking allows them to
weight the relative importance of each task and
to judge their progress as they finish some tasks
early and others late.

• PSP 2. This level introduces design and code
reviews, as well as quality measurement and eval-
uation. Using defect data from their earlier exer-
cises, engineers also develop personal design and
code review checklists.

PSP 1
• Size estimating
• Test report

PSP 1.1
• Task planning
• Schedule planning

PSP 0
• Current process
• Basic measures

PSP 0.1
• Coding standard
• Process improvement proposal
• Size measurement

PSP 2
• Code reviews
• Design reviews PSP 2.1

• Design templates

PSP 3
• Cyclic development

Team
Software Process

(TSP)

.



26 Computer

• PSP 2.1. In this level, engineers learn design spec-
ification techniques and ways to prevent defects. 

• PSP 3. In this highest process level, software engi-
neers become fully conversant in PSP. This level
covers design verification techniques and meth-
ods for adapting PSP to engineers’ working envi-
ronments.

By applying the techniques and procedures learned
during the course, engineers see how to apply PSP to
large-scale software development. Figure 2 shows the
spiral-like strategy of PSP level 3 for developing pro-
gram modules of up to several thousand lines of code.
This cyclic process builds on several well-known soft-
ware engineering principles: First, by using abstrac-
tion and modular design concepts, engineers are better
able to produce clean designs and to capitalize on
reusable parts. Second, this cyclic development strat-
egy follows the common practice of building large pro-
grams through a family of progressively enhanced
versions. Finally, the process incorporates the divide-
and-conquer strategy of Barry Boehm’s spiral model
for minimizing risks by attacking complex problems
a step at a time.6

SEI’s data on 104 engineers shows that, on average,
PSP training reduces size-estimating errors by 25.8 per-
cent and time-estimating errors by 40 percent. Lines
of code written per hour increases on average by 20.8
percent, and the portion of engineers’ development
time spent compiling is reduced by 81.7 percent.
Testing time is reduced by 43.3 percent, total defects by
59.8 percent, and test defects by 73.2 percent.7,8 

CASE STUDY OVERVIEW
Because PSP was only experimentally introduced in

1994 and has been undergoing further development
and introduction to the industry over the past two
years, relatively little data on its use and effectiveness
are available.4,9 This problem is compounded by the
time required to introduce PSP into a workplace and
by the length of many software development efforts.
Furthermore, pre-PSP data are often unavailable.

Nevertheless, three industrial software groups have
used PSP and have collected data to show its effec-
tiveness. They are Advanced Information Services,
Inc., Motorola Paging Products Group, and Union
Switch & Signal Inc. Each has trained several groups
of engineers and measured the results of several pro-
jects that used PSP methods. In all cases, the projects
were part of the companies’ normal operations and
not designed for this study.

The three companies offered a variety of situations
useful for demonstrating the versatility of PSP. The
projects at Motorola and US&S involved software
maintenance and enhancement, while those at AIS
involved new product development and enhance-
ment. Among the companies, application areas
included commercial data processing, internal man-
ufacturing support, communications product sup-
port, and real-time process control. Work was done
in C or C++.

Company sizes ranged from less than a hundred
employees to thousands in a large international cor-
poration. Most projects involved one to three engi-

Specifications

Requirements
and

planning

High-level
design
review

PSP
development

cycles

High-level
design

• Integration
• System test
• Use

Postmortem

Product

Figure 2. PSP 3 process.

Figure 3. AIS Project A schedule estimates.

1 2 3 4 5 6 7 8 9

30

25

20

15

10

5

0

W
ee

ks

Estimate
Actual

Component number

.



May 1997 27

neers, but one of the AIS projects used two groups—
one in the US and the other in India—of three to five
engineers. While most of the projects were for com-
mercial clients, one program was developed for an
agency of the US government.

Advanced Information Services
AIS is located in Peoria, Illinois, with a subsidiary

in Madras, India. The company offers software devel-
opment, consulting services, Internet services, and
process training. AIS engineers develop custom busi-
ness applications for clients or do contract work at
client sites.

AIS first introduced PSP with a pilot course in the
spring of 1994. The course was given outside regular
work hours with instructors who had not been trained
in PSP, so it was perhaps not surprising that only half
the engineers completed the course. As a result, AIS
sent one engineer to SEI for PSP instructor training,
put the course on company time, and tried various for-
mats to shorten course time. Since then, AIS has pre-
sented five PSP courses, and essentially all the
engineers have completed the work. The improve-
ments during the course have been similar to SEI’s gen-
eral findings.

Project A. One of AIS’s first applications of PSP was
in 1995 when engineers in Peoria (working with
another team in Madras) developed software for a
Fortune 50 client. The Peoria components of Project
A ranged from about 500 to 2,200 lines of code. By
April 1995 the engineers had completed components
1, 2, and 3, but the project was not meeting its inter-
nal target dates or its external commitments. Project
A had to be replanned and new delivery dates negoti-
ated with the client.

At this point, management decided to train the
Peoria engineers in PSP, and they subsequently used
PSP methods to plan and develop components 4
through 9. Figure 3 shows the schedule performance

for all nine components, and Figure 4 shows the
schedule estimating errors. Before PSP training, sched-
ule estimating error averaged 394 percent; afterward
the average was −10.4 percent.

Quality also improved after PSP training. Figure 5
shows that in acceptance tests, the software of the
Peoria engineers had 0.76 defects per 1,000 lines of
code before PSP training and 0.17 defects per 1,000
lines of code after training, a 78 percent improvement.
The Madras engineers, who had not received PSP
training, had 0.85 acceptance-test defects per 1,000
lines of code. PSP also improved productivity. Figure
6 shows that the PSP-trained engineers wrote 7.99
lines of code per hour before training and 8.58 lines
of code per hour after training, an improvement of 7.4
percent. The untrained Madras engineers wrote only
6.4 lines of code per hour. Since this product has not
yet been installed, there is no usage data.

Projects B, C, and D. Project B, an application
enhancement effort by three PSP-trained engineers in
1996, is similar to Projects C and D, which were com-

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
Location 1
Non-PSP

D
ef

ec
ts

 p
er

 1
,0

00
 L

O
C

Location 1
PSP

Location 2
Non-PSP

Figure 4. AIS schedule estimating error.

1 2 3 4 5 6 7 8 9

500
400
300
200
100

0
−100

Es
ti

m
at

e 
er

ro
r

p
er

ce
n

ta
g

e

Component number

Before PSP
training

After PSP training

Figure 5. AIS acceptance test quality.

9
8
7
6
5
4
3
2
1
0

Location 1
Non-PSP

LO
C

 p
er

 h
o

u
r

Location 1
PSP

Location 2
Non-PSP

Figure 6. AIS productivity.

.



28 Computer

pleted in 1995 and 1996, respectively, by AIS engi-
neers not trained in PSP. All projects were of similar
size, used the same platform, language, and database
tools, and required three engineers. Of the three pro-
jects, Project C’s engineers had the most experience.
Table 1 shows results for these projects.

In acceptance tests, Project C had 11 defects,
Project D had six, but Project B had only one. After
several months of use, customers found one defect
in Project C, 14 in Project D, but none in Project B.
Because data on lines of code are not available,
Figure 7 shows the acceptance and use defect data
for these products normalized by the number of
requirements. While the requirement count is only a
crude size measure, it is the only data available.
Project C was scheduled for two months, but took
five to reach the acceptance test stage; Project D was
scheduled for 10 months, but took 19; Project B,
however, was scheduled for seven months, but took
five.

Projects E, F, and G. AIS undertook three other proj-
ects using PSP-trained engineers. Projects E and F, with
2,255 and 1,400 lines of code, respectively, both used
one PSP-trained engineer. Project G, with 6,196 lines
of code, required three engineers, two of whom were
trained in PSP. Both Projects E and F were completed

on time, with no defects found during customer accep-
tance and after several months of use. Project G was
also completed on time, but the customer reported
three defects. Table 1 and Figure 7 show data for all
three projects.

Project E is noteworthy because it was a cost-plus
government contract (the government paid for actual
development costs plus a percentage for profit) and
was completed on schedule and substantially under
budget. During the project, the engineer provided the
client and AIS management with his weekly PSP task
and schedule planning templates, allowing them to
easily track project status. The development manager
reported that these and other PSP practices sharply
reduced the need for management supervision.

In addition to quality and productivity, PSP can help
shorten project schedules. Table 2 shows system test
time for the seven AIS projects discussed plus three
newer projects. Before PSP training, system testing
took as much as several months. For example, Project
C’s three testing cycles took several weeks. However,
after PSP training, system test time was only a few
days. The only exception was Project A2, whose sys-
tem test took 1.5 months because it had to be tested
with Project A1.

AIS plans for PSP
All engineers and managers at the AIS subsidiary in

India have now completed PSP training. In the US, 58
percent of engineers and managers have completed
training, and all should be fully trained by the end of
this year. AIS now trains all new engineers in PSP
before they are assigned a project. They expect this to
reduce the disruption of training in the middle of a
project and result in more general use of PSP.

MOTOROLA PAGING PRODUCTS GROUP
The North American Paging Subscriber Division of

the Motorola Paging Products Group, located in
Boynton Beach, Florida, develops and manufactures
one-way numeric and alphanumeric pagers. Using
simulcast broadcast techniques, these products pro-
vide digital message service. The embedded code in a
pager provides message handling, user-friendlyFigure 7. AIS project defects.

C         D
Non-PSP

G
Partial

B         E         F
PSP      PSP     PSP

0.63

0.48

0.04
0.0 0.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0D
ef

ec
ts

 p
er

 r
eq

u
ir

em
en

t
o

r 
1,

00
0 

LO
C

0.67

Table 1. Summary of AIS project data.
PSP Non-PSP Product Delivery: Planned/ Acceptance Usage

Project staff staff size actual (months) test defects defects
B 3 0 24 requirements 7/5 1 0
C 0 3 19 requirements 2/5 11 1
D 0 3 30 requirements 10/19 6 14
E 1 0 2,255 LOC 6/6 0 0
F 1 0 1,400 LOC 2/2 0 0
G 2 1 6,196 LOC 2/2 0 3

.



May 1997 29

prompts, and automatic message reception.
Three Motorola managers and two professors from

Embry-Riddle Aeronautical University introduced PSP
at the company. So far, Motorola has presented three
PSP classes, training 40 engineers and 22 managers.
The Motorola Paging Products Group has initiated a
program to make all Motorola divisions aware of and
literate in PSP.

Motorola’s management has strongly supported
PSP. The company commits eight hours per week for
training and another four hours for process improve-
ment. To build PSP team spirit, they give trained engi-
neers customized sports shirts with a PSP logo, hold
discussion lunches, and provide a graduation party
where a certificate is presented in the presence of col-
leagues and family members. Engineers who complete
the course receive financial rewards and join a user
group that meets once a month.

These efforts have resulted in a high level of partic-
ipation in PSP training and continued use of PSP meth-
ods. A Motorola post-training survey of 12 engineers
showed that most would continue using PSP. Another
survey six months after the pilot course showed that
more than 80 percent of the engineers used PSP meth-
ods in their work and that 77 percent of the engineers
used PSP methods in nonsoftware tasks. 

Motorola project results
Engineers at Motorola first used PSP in a project

that changed five lines of code in a large program sup-
porting a manufacturing area. Although coding time
was slightly more than planned, integration and test
time were reduced by 60 percent. The project took 44
percent less time than planned and was completed on
time.

One defect was found in code review (which took
two minutes to fix), but no defects were found during
system testing, and none have been found in over five
months of operation—which is unusual. This was crit-
ical for Motorola because the manufacturing station
was required to work on the software, and any test-
ing and debugging interrupts production, costing sev-
eral thousand dollars per hour in lost manufacturing
capacity. 

A second project involved adding menus to exist-
ing product-test software. This project achieved early
removal of more than 80 percent of defects. Only 20
percent of development time was spent in testing, and
56 percent of development time came before coding. 

A third project using PSP at Motorola was a crash
effort of one engineer to add 3,894 lines of code to the
9,150 lines of code in a pager-support system. By using
PSP planning and tracking methods, this engineer pre-
cisely tracked his status every day. He fell one day
behind schedule on three occasions, but was able to
quickly recover. He was able to find 80 percent of

defects before the first test, and he completed system
testing one week early. No defects have since been
found in more than four months of product use.

So far, PSP-trained engineers at Motorola have
completed 18 projects. As shown in Table 3, several of
these products have been used for many months, and
only one defect has been found in one of them.
Unfortunately, detailed usage data were not gathered
on the products labeled “NA,” but there is no record
of any defect reports for any of them. In the case of
the single defect report, Motorola was unable to deter-

Table 2. AIS system test time improvement.
Project Size System test time
Non-PSP Projects
A1 15,800 LOC 1.5 months
C 19 requirements 3 test cycles
D 30 requirements 2 months
H 30 requirements 2 months
PSP Projects
A2 11,700 LOC 1.5 months
B 24 requirements 5 days
E 2,300 LOC 2 days
F 1,400 LOC 4 days
G 6,200 LOC 4 days
I 13,300 LOC 2 days

Table 3. Motorola operational defect data for PSP projects.
Project Size Months Total Test Use
number (LOC) used defects defects defects

1 463 18 13 5 0
2 4,565 NA 69 10 0
3 1,571 NA 47 8 0
4 3,381 NA 69 22 0
5 5 9 0 0 0
6 22 5 2 0 0
7 1 18 1 0 0
8 2,081 10 34 0 1
9 114 8 15 2 0

10 364 NA 29 2 0
11 7 5 0 0 0
12 620 3 12 2 0
13 720 NA 9 2 0
14 3,894 NA 20 2 0
15 2,075 NA 79 27 0
16 1,270 NA 20 1 0
17 467 NA 17 3 0
18 3,494 8 139 50 0

Total 25,114 NA 575 136 1

.



30 Computer

mine whether this was a latent problem with the prior
code or a newly injected defect with this project.

UNION SWITCH & SIGNAL
Union Switch & Signal manufactures a wide range

of hardware products for the railroad and transit
industries. It also develops and installs software-inten-
sive process-control systems for real-time control of
railroad and transit operations. The Automation and
Information Systems business unit of the US&S
Engineering Division is located in Pittsburgh and has
approximately 100 software managers and engineers
developing software and hardware for railroad and
transit control centers.

US&S has given three PSP classes to nine managers
and 25 engineers. The managers’ class was held dur-
ing regular work hours, but managers had to com-
plete homework assignments on their own time. This
turned out to be too heavy a workload, and only
about half the managers completed all the work.
Subsequently, the engineers’ classes have been given
during work hours, and a full day is provided to com-
plete each of the 10 programming exercises. This has
proved adequate as long as the managers track the
engineers’ progress and encourage them to finish the
work. To date, 72 percent of the engineers have com-
pleted the course assignments.

At US&S, PSP-trained engineers have completed
five projects. All were maintenance and enhancement
releases for a large railroad information and control
system, and each project required only one engineer.
Using PSP techniques, the engineers completed their
projects on schedule, and no defects have been found
in any project during installation or customer use.

Data on these five projects are shown in Table 4. As
of the time of this writing, no defects have been found
in any of these products.

T he effective use of PSP depends on proper train-
ing. The three companies described here followed
course plans similar to, though shorter than, the

standard 15-week academic course, with one lecture
given each week. Since its third class, AIS has offered

a two-week course, with a lecture given in the morn-
ing and with the remainder of the day devoted to com-
pleting the exercises. The engineers use a third week
for additional work. Either strategy can be effective
as long as management uses qualified instructors, pro-
vides sufficient time for the engineers to complete the
exercises, and monitors the training.

In both courses, engineers require about 125 hours
to do the work. In the most successful classes, man-
agement has provided a full working day for each lec-
ture and assignment, and the engineers have been
willing to spend some personal time studying.
Unfortunately, it has been found that some engineers
fail to do the assignments, even when work time is
provided. Because the exercises are critical for learn-
ing PSP, it is important that managers treat PSP train-
ing as part of the engineers’ jobs and monitor their
progress.

After learning PSP, engineers require some discipline
to continue following PSP methods and procedures.
Management needs to constantly stress the importance
of quality goals, of thorough planning, and of effective
tracking. A US&S manager, for example, strongly sup-
ports PSP and holds weekly meetings with his project
team to review status, plans, and data. Another man-
ager, however, has not emphasized the importance of
PSP, and his engineers have essentially reverted to their
old practices.

With proper training and with continuing manage-
ment interest, PSP is an effective methodology for effi-
ciently developing quality software. Although
extensive data are not yet available, the case studies
here show that PSP can improve planning and sched-
uling, reduce development time, and produce better
software. Of the PSP projects reported to date, all have
been delivered on or ahead of schedule and only one
has had any customer-reported defects. PSP also has
been found to accelerate an organization’s CMM
process improvement efforts.

As the effectiveness of PSP becomes evident, inter-
est in the program is growing. SEI continues to intro-
duce PSP to the industry, offering presentations,
training, and on-site consultations. The institute has
also developed several training programs comple-
mentary to PSP. One is designed for managers who
supervise PSP-trained engineers. Another, the Team
Software Process, now in early development, extends
PSP beyond the individual engineer to the software
development team.

These efforts—for management, engineers, and
software teams—will help companies consistently and
efficiently produce high-quality products. At a time of
growing competition, when engineers are under
increasing pressure to quickly produce error-free prod-
ucts, software companies can little afford to ignore
better ways of doing their work. ❖❖

Table 4. US&S usage data.
Lines Months Defects Defects

Product of code of use in test in use
M45 193 9.0 4 0
M10 453 7.5 2 0
M77 6,133 4.0 25 0
M54 477 3.5 5 0
M53 1,160 1.0 21 0
Total 8,416 NA 57 0

.



May 1997 31

Acknowledgments
We thank the many people who have participated

in this work, as well as our associates who reviewed
and commented on this article. From AIS, we partic-
ularly thank Girish Seshagiri, Vikas Khanna, Gloria
Leman, Srikanth Nallapareddy, Bob Pauwels, and
Prasad Perini. From Motorola, we especially thank
John Wirth, John Pange, Efrain Nieto, Kamran Nili,
Jeff New, and Jed Coxon. At ERAU, Iraj Hirmanpour
was a great help. From US&S, we recognize the help
of Julia Mullaney, Nadine Bounds, Bob Elder, Linda
Falcione, Ron Morton, and John Staub. From SEI,
we thank Andy Huber, Dan Roy, and Bill Peterson.

This work was supported by the US Department of
Defense.

References
1. D.R. Goldenson and J.D. Herbsleb, After the Appraisal:

A Systematic Survey of Process Improvement, Its Bene-
fits, and Factors that Influence Success, Tech. Report
CMU/SEI-95-TR-009, Software Eng. Inst., Pittsburgh,
1995.

2. W. Hayes and D. Zubrow, Moving On Up: Data and
Experience Doing CMM-Based Process Improvement,
Tech. Report CMU/SEI-95-TR-008, Software Eng. Inst.,
Pittsburgh, 1995.

3. M.C. Paulk et al., The Capability Maturity Model:
Guidelines for Improving the Software Process, Addi-
son-Wesley, Reading, Mass., 1995.

4. W.S. Humphrey, A Discipline for Software Engineering,
Addison-Wesley, Reading, Mass., 1995.

5. W.S. Humphrey, Introduction to the Personal Software
Process, Addison-Wesley, Reading, Mass., 1997.

6. B.W. Boehm, “A Spiral Model of Software Development
and Enhancement, ” Computer, May 1988, pp. 61–72.

7. W.S. Humphrey, “A Personal Commitment to Quality,”
Am. Programmer, Apr. 1995, pp. 2–12.

8. W.S. Humphrey, “Using a Defined and Measured Personal
Software Process,” IEEE Software, May 1996, pp. 77–88.

9. W.S. Humphrey, “The Power of Personal Data,” Soft-
ware Process Improvement and Practice, Vol. 1, Issue 2,
Dec. 1995, pp. 69–81.

Pat Ferguson has worked as a software engineer, as a
project manager, and most recently as the develop-
ment manager at Advanced Information Services, Inc.
She currently serves on the steering committees of the
Chicago Software Process Improvement Network and
the Heartland SPIN. Ferguson received a BS in math-
ematics and an MS in computer science, both from
Bradley University. She is a member of the IEEE Com-
puter Society.

Watts S. Humphrey founded the Software Process
Program at the Software Engineering Institute at
Carnegie Mellon University. He is a fellow of the insti-
tute and is a research scientist on its staff. He has writ-
ten many technical papers and six books, most
recently A Discipline for Software Engineering (Addi-
son-Wesley, 1995), Managing Technical People (Addi-
son-Wesley, 1996), and Introduction to the Personal
Software Process (Addison-Wesley, 1997). He holds
five US patents. Humphrey received a BS in physics
from the University of Chicago, an MS in physics from
the Illinois Institute of Technology, and an MBA from
the University of Chicago. He is a member of ACM
and a fellow of IEEE.

Soheil Khajenoori is a professor and director of the
Master of Software Engineering Program at Embry-
Riddle Aeronautical University. He is currently work-
ing with Motorola Paging Products Group and
McDonnell Douglas Space Division on the PSP.  Kha-
jenoori currently teaches courses on PSP, software
requirements engineering, and software architecture
and design. Khajenoori’s research interests are in the
areas of software development methodologies, soft-
ware metrics, and software process engineering and
improvement. Khajenoori received a PhD in computer
engineering from the University of Central Florida.
He is a member of IEEE.

Susan Macke is a manager at Motorola, leading the
decoder and software engineering teams for the North
American Paging Subscriber Division. Macke received
a BS in computer science and operations research and
processes from Lebanon Valley College. 

Annette Matvya has 20 years of experience in soft-
ware engineering at Union Switch & Signal Inc. and
is currently a member of that company’s Software
Engineering Process Group. She has completed the
personal software process course and is currently
involved in implementing PSP at US&S. Matvya grad-
uated from the University of Pittsburgh with a BS in
computer science.

Further information on SEI’s PSP offerings and activ-
ities can be found at http://www.sei.cmu.edu/
technology/psp.

Contact Ferguson at patf@pjstar.com, Humphrey at
watts@sei.cmu.edu, Khajenoori at soheil@ db.erau.
edu, Macke at Susan_Macke-FMS010@ email.mot.
com, and Matvya at almatvya@ switch.com.

.


