
focus

0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 19

In this article, I summarize both XP
and the SW-CMM, show how XP can help
organizations realize the SW-CMM goals,
and then critique XP from a SW-CMM
perspective.

The Software CMM
The Software Engineering Institute at

Carnegie Mellon University developed the
SW-CMM as a model for building organi-
zational capability, and it has been widely
adopted in the software community and be-
yond. As Table 1 shows, the SW-CMM is a
five-level model that describes good engi-
neering and management practices and pre-
scribes improvement priorities for software
organizations.

Although the SW-CMM is described in a
book of nearly 500 pages, the requirements
for becoming a Level 5 organization are
concisely stated in 52 sentences—the 52
goals of the model’s 18 key process areas
(KPAs). The practices, subpractices, and ex-
amples that flesh out the model can guide

software professionals in making reason-
able, informed decisions about a broad
range of process implementations.

The SW-CMM informative materials fo-
cus primarily on large projects and large or-
ganizations. With minor tailoring and com-
mon sense, however, the model can be
applied in radically different environments,
ranging from two- to three-person projects
in small start-up companies to 500-person
projects building hard real-time, life-critical
systems.2,3 The SW-CMM’s rating compo-
nents are intentionally abstract, capturing
“universal truths” about high-performance
software organizations. As a glance at Table
2 shows, the KPAs are clearly important to
all types of software organizations.

With the exception of software subcon-
tract management, which applies only to
organizations that do subcontracting, the
KPAs and their goals can apply to any soft-
ware organization. Companies that focus
on innovation more than operational excel-
lence might downplay the role of consis-

Extreme Programming
from a CMM Perspective

Mark C. Paulk, Software Engineering Institute

XP has good
engineering
practices that
can work well
with the CMM
and other highly
structured
methods.
The key is
to carefully
consider XP
practices and
implement them
in the right
environment.

E
xtreme Programming is an “agile methodology” that some people
advocate for the high-speed, volatile world of Internet and Web
software development. Although XP is a disciplined process, some
have used it in arguments against rigorous software process im-

provement models such as the Software Capability Maturity Model.1

reports from the field

tency, predictability, and reliability, but per-
formance excellence is important even in
highly innovative environments.

Extreme Programming
The XP method is typically attributed to

Kent Beck, Ron Jeffries, and Ward Cun-
ningham.4,5 XP’s target is small to medium-
sized teams building software with vague or
rapidly changing requirements. XP teams
are typically colocated and have fewer than
10 members.

XP’s critical underlying assumption is that
developers can obviate the traditional high
cost of change using technologies such as ob-
jects, patterns, and relational databases, re-
sulting in a highly dynamic XP process. Beck’s
book is subtitled Embrace Change, and XP
teams typically deal with requirements
changes through an iterative life cycle with
short cycles.

The XP life cycle has four basic activities:
coding, testing, listening, and designing. Dy-
namism is demonstrated through four values:

� continual communication with the cus-
tomer and within the team;

� simplicity, achieved by a constant focus
on minimalist solutions;

� rapid feedback through mechanisms
such as unit and functional testing; and

� the courage to deal with problems
proactively.

Principles in practice
Most of XP’s principles—minimalism, sim-

plicity, an evolutionary life cycle, user involve-
ment, and so forth—are commonsense prac-
tices that are part of any disciplined process.
As Table 3 summarizes, the “extreme” in XP
comes from taking commonsense practices to
extreme levels. Although some people may in-
terpret practices such as “focusing on a mini-
malist solution” as hacking, XP is actually a
highly disciplined process. Simplicity in XP
terms means focusing on the highest-priority,
most valuable system parts that are currently
identified rather than designing solutions to
problems that are not yet relevant (and might
never be, given that requirements and operat-
ing environments change).

Although developers might use many dif-
ferent XP practices, the method typically
consists of 12 basic elements:

� Planning game: Quickly determine the
next release’s scope, combining business
priorities and technical estimates. The cus-
tomer decides scope, priority, and dates
from a business perspective, whereas tech-
nical people estimate and track progress.

� Small releases: Put a simple system into
production quickly. Release new ver-
sions on a very short (two-week) cycle.

� Metaphor: Guide all development with
a simple, shared story of how the over-
all system works.

Table 1
An overview of the Software CMM

Level Focus Key process areas

5: Optimizing Continual process improvement Defect prevention
Technology change management
Process change management

4: Managed Product and process quality Quantitative process management
Software quality management

3: Defined Engineering processes and organizational support Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

2: Repeatable Project management processes Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

1: Initial Competent people (and heroics)

2 0 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

� Simple design: Design as simply as pos-
sible at any given moment.

� Testing: Developers continually write
unit tests that must run flawlessly; cus-
tomers write tests to demonstrate that
functions are finished. “Test, then code”
means that a failed test case is an entry
criterion for writing code.

� Refactoring: Restructure the system
without changing its behavior to re-
move duplication, improve communica-
tion, simplify, or add flexibility.

� Pair programming: All production code
is written by two programmers at one
machine.

� Collective ownership: Anyone can im-

prove any system code anywhere at
any time.

� Continuous integration: Integrate and
build the system many times a day
(every time a task is finished). Continual
regression testing prevents functionality
regressions when requirements change.

� 40-hour weeks: Work no more than 40
hours per week whenever possible; never
work overtime two weeks in a row.

� On-site customer: Have an actual user on
the team full-time to answer questions.

� Coding standards: Have rules that empha-
size communication throughout the code.

These basic practices work together to cre-

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 21

Table 2
The Software CMM key process areas and their purposes

Key process area Purpose

Maturity Level 2: Repeatable

Requirements management Establish a common understanding between the customer and software project team about the customer’s
requirements.

Software project planning Establish reasonable plans for software engineering and overall project management.
Software project tracking and oversight Provide adequate visibility into actual progress so that management can act effectively when the software

project’s performance deviates significantly from the software plans.
Software subcontract management Select qualified software subcontractors and manage them effectively.
Software quality assurance Provide management with appropriate visibility into the product and the software process.
Software configuration management Establish and maintain the integrity of software products throughout the project’s software life cycle.

Maturity Level 3: Defined

Organization process focus Establish organizational responsibility for software process activities that improve the organization’s overall
software process capability.

Organization process definition Develop and maintain a usable set of software process assets that improve process performance across the
projects and provide a basis for cumulative, long-term organizational benefits.

Training program Develop individuals’ skills and knowledge so that they can perform their roles effectively and efficiently.
Integrated software management Integrate the software engineering and management activities into a coherent, defined software process

based on the organization’s standard software process and related process assets.
Software product engineering Consistently use a well-defined engineering process that integrates all the software engineering activities to

produce correct, consistent software products effectively and efficiently.
Intergroup coordination Establish a way for the software engineering group to participate actively with other engineering groups so

that the project can effectively and efficiently satisfy customer needs.
Peer reviews Remove defects from the software work products early and efficiently. An important corollary effect is to

develop a better understanding of the software products and the preventable defects.

Maturity Level 4: Managed

Quantitative process management Quantitatively control the performance of the software project’s process. Software process performance
represents the actual results achieved from following a software process.

Software quality management Quantify the quality of the project’s software products and achieve specific quality goals.

Maturity Level 5: Optimizing

Defect prevention Identify the cause of defects and prevent them from recurring.
Technology change management Identify new technologies (such as tools, methods, and processes) and introduce them into the organiza-

tion in an orderly manner.
Process change management Continually improve the organization’s software processes with the goal of improving software quality,

increasing productivity, and decreasing the product-development cycle time.

ate a coherent method. XP characterizes the
full system functionality using a pool of “sto-
ries,” or short feature descriptions. For the
planning game and small releases, the cus-
tomer must select a subset of stories that char-
acterize the most desirable work for develop-
ers to implement in the upcoming release.
Because the customer can add new stories to
the pool at any time, requirements are highly
volatile. However, volatility is managed by
implementing functionality in two-week
chunks. Having a customer onsite supports
this ongoing cycle of two-week releases.

XP developers generate a metaphor to
provide the project’s overarching vision. Al-
though you could view this as a high-level
architecture, XP emphasizes design, while at
the same time minimizing design documen-
tation. Some people have characterized XP
as not allowing documentation outside
code, but that is not quite accurate. Because
XP emphasizes continual redesign—using
refactoring whenever necessary—there is lit-
tle value to detailed design documentation
(and maintainers rarely trust anything other
than the code anyway).

XP developers typically throw away design
documentation after the code is written, al-
though they will keep it if it’s useful. They also
keep design documentation when the cus-
tomer stops coming up with new stories. At
that point, it’s time to put the system in moth-
balls and write a five- to 10-page “mothball
tour” of the system. A natural corollary of the
refactoring emphasis is to always implement
the simplest solution that satisfies the immedi-
ate need. Requirements changes are likely to
supersede “general solutions” anyway.

Pair programming is one of XP’s more
controversial practices, mainly because it
has resource consequences for the very man-
agers who decide whether or not to let a
project use XP. Although it might appear

that pair programming consumes twice the
resources, research has shown that it leads
to fewer defects and decreased cycle time.6

For a jelled team, the effort increase can be
as little as 15 percent, while cycle time is re-
duced by 40 to 50 percent. For Internet-time
environments, the increased speed to mar-
ket may be well worth the increased effort.
Also, collaboration improves problem solv-
ing, and increased quality can significantly
reduce maintenance costs. When considered
over the total life cycle, the benefits of pair
programming often more than pay for
added resource costs.

Because XP encourages collective owner-
ship, anyone can change any piece of code in
the system at any time. The XP emphasis on
continuous integration, continual regression
testing, and pair programming protects
against a potential loss of configuration con-
trol. XP’s emphasis on testing is expressed in
the phrase “test, then code.” It captures the
principle that developers should plan testing
early and develop test cases in parallel with
requirements analysis, although the tra-
ditional emphasis is on black-box testing.
Thinking about testing early in the life cycle
is standard practice for good software engi-
neering, though it is too rarely practiced.

The basic XP management tool is the
metric, and the metric’s medium is the “big
visible chart.” In the XP style, three or four
measures are typically all a team can stand
at one time, and those should be actively
used and visible. One recommended XP
metric is “project velocity”—the number of
stories of a given size that developers can
implement in an iteration.

Adoption strategies
XP is an intensely social activity, and not

everyone can learn it. There are two conflict-
ing attitudes toward XP adoption. XP is gen-

2 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Table 3
The “extreme” in Extreme Programming

Commonsense XP extreme XP implementation practice

Code reviews Review code all the time Pair programming
Testing Test all the time, even by customers Unit testing, functional testing
Design Make design part of everybody’s daily business Refactoring
Simplicity Always work with the simplest design that supports the system’s The simplest thing that could possibly work

current functionality
Architecture Everybody works to refine the architecture all the time Metaphor
Integration testing Integrate and test several times a day Continuous integration
Short iterations Make iterations extremely short—seconds, minutes, and hours Planning game

rather than weeks, months, and years

erally viewed as a system that demonstrates
emergent properties when adopted as a
whole. As the discussion thus far shows, there
are strong dependencies between many XP
practices, such as collective ownership and
continuous integration.

Nonetheless, some people recommend
adopting XP one practice at a time, focusing
on the team’s most pressing current prob-
lem. This is consistent with the attitude to-
ward change that XP is “just rules” and the
team can change the rules anytime as long
as they agree on how to assess the change’s
effects. Beck, for example, describes XP
practices as “etudes”: They help developers
master the techniques, but experienced
users can modify them as necessary.

XP and the CMM
The SW-CMM focuses on both the man-

agement issues involved in implementing ef-
fective and efficient processes and on system-
atic process improvement. XP, on the other
hand, is a specific set of practices—a “method-
ology”—that is effective in the context of
small, colocated teams with rapidly changing
requirements. Taken together, the two meth-
ods can create synergy, particularly in con-
junction with other good engineering and
management practices. I’ll now illustrate this
by discussing XP practices in relation to the
CMM KPAs and goals outlined in Table 2.

XP and Level 2 practices
XP addresses Level 2’s requirements man-

agement KPA through its use of stories, an
onsite customer, and continuous integration.
Although system requirements might evolve
dramatically over time, XP integrates feed-
back on customer expectations and needs
by emphasizing short release cycles and con-
tinual customer involvement. “Common un-
derstanding” is established and maintained
through the customer’s continual involvement
in building stories and selecting them for the
next release (in effect, prioritizing customer
requirements).

XP addresses software project planning
in the planning game and small releases.
XP’s planning strategy embodies Watts
Humphrey’s advice, “If you can’t plan well,
plan often.” The first three activities of this
KPA deal with getting the software team in-
volved in early planning. XP integrates the
software team into the commitment process

by having it estimate the effort involved to
implement customer stories; at the level of
two-week releases, such estimates are typi-
cally quite accurate. The customer maintains
control of business priorities by choosing
which stories to implement in the next release
with the given resources. By definition, the
XP life cycle is both incremental and evolu-
tionary. The project plan is not detailed for
the project’s whole life cycle, although the
system metaphor does establish a vision for
project direction. As a result, developers can
identify and manage risks efficiently.

XP addresses software project tracking
and oversight with the “big visual chart,”
project velocity, and commitments (stories)
for small releases. XP’s commitment process
sets clear expectations for both the customer
and the XP team at the tactical level and max-
imizes flexibility at the project’s strategic
level. The emphasis on 40-hour weeks is a
general human factors concern; although
CMM does not address it, having “rational
work hours” is usually considered a best
practice. XP also emphasizes open work-
spaces, a similar “people issue” that is outside
CMM’s scope. XP does not address software
subcontract management, which is unlikely to
apply in XP’s target environment.

While an independent software quality
assurance group is unlikely in an XP cul-
ture, SQA could be addressed by the pair-
programming culture. Peer pressure in an
XP environment can achieve SQA’s aim of
assuring conformance to standards, though
it does not necessarily give management vis-
ibility into nonconformance issues. Dealing
with process and product assurance using
peer pressure can be extraordinarily effec-
tive in a small team environment. However,
larger teams typically require more formal
mechanisms for objectively verifying adher-
ence to requirements, standards, and proce-
dures. Also, peer pressure might be ineffec-
tive when the entire team is being pushed,
just as a software manager might be vulner-
able to external pressure. This vulnerability
should be addressed at the organizational
level when considering SQA.

Although not completely and explicitly
addressed, software configuration manage-
ment is implied in XP’s collective ownership,
small releases, and continuous integration.
Collective ownership might be problematic
for large systems, where more formal com-

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 23

Taken together,
the two methods

can create
synergy,

particularly
in conjunction

with other good
engineering and

management
practices.

munication channels are necessary to pre-
vent configuration management failures.

XP and Level 3 practices
At Level 3, XP addresses organization

process focus at the team rather than organi-
zational level. A focus on process issues is
nonetheless implied in adopting XP one prac-
tice at a time, as well as in the “just rules” phi-
losophy. Because XP focuses on the software
engineering process rather than organiza-
tional infrastructure issues, organizations
adopting XP must address this and other or-
ganization-level processes, whether in a
CMM-based context or not.

Similarly, the various XP-related books,
articles, courses, and Web sites partially ad-
dress the organization process definition
and training program KPAs, but organiza-
tional assets are outside the scope of the XP
method itself. As a consequence, XP cannot
address integrated software management
because there may not be any organiza-
tional assets to tailor.

Several XP practices effectively address
software product engineering: metaphor,
simple design, refactoring, the “mothball”
tour, coding standards, unit testing, and
functional testing. XP’s de-emphasis of de-
sign documentation is a concern in many en-
vironments, such as hard real-time systems,

large systems, or virtual teams. In such envi-
ronments, good designs are crucial to suc-
cess, and using the refactoring strategy
would be high-risk. For example, if develop-
ers performed refactoring after a technique
such as rate-monotonic analysis proved that
a system satisfied hard real-time require-
ments, they’d have to redo the analysis. Such
an environment invalidates XP’s fundamen-
tal assumption about the low cost of change.

XP’s emphasis on communication—
through onsite customers and pair program-
ming—appears to provide as comprehensive
a solution to intergroup coordination as in-
tegrated product and process development.
In fact, XP’s method might be considered an
effective IPPD approach, although the soft-
ware-only context ignores multidiscipline
environments.

Pair programming addresses peer reviews,
and is arguably more powerful than many
peer review techniques because it adopts pre-
ventive concepts found in code reading and
literate programming. However, pair pro-
gramming’s relative lack of structure can
lessen its effectiveness. Empirical data on pair
programming is currently sparse but promis-
ing.6 To make informed trade-off decisions,
we’ll need more empirical research that con-
trasts and compares pair programming and
peer review techniques, especially more rig-
orous techniques such as inspections.

Beyond Level 3
XP addresses few of the Level 4 and 5

KPAs in a rigorous statistical sense, al-
though feedback during rapid cycles might
partially address defect prevention. Table 4
summarizes XP’s potential to satisfy CMM
KPAs, given the appropriate domain.

Many of the KPAs that XP either ignores
or only partially covers are undoubtedly ad-
dressed in real projects. XP needs manage-
ment and infrastructure support, even if it
does not specifically call for it.

Discussion
As the earlier comparison shows, XP gen-

erally focuses on technical work, whereas the
CMM generally focuses on management is-
sues. Both methods are concerned with “cul-
ture.” The element that XP lacks that is crucial
for the SW-CMM is the concept of “institu-
tionalization”—that is, establishing a culture
of “this is the way we do things around here.”

2 4 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Table 4
XP satisfaction of key process areas, given the

appropriate environment
Level Key process area Satisfaction

2 Requirements management ++
2 Software project planning ++
2 Software project tracking and oversight ++
2 Software subcontract management —
2 Software quality assurance +
2 Software configuration management +
3 Organization process focus +
3 Organization process definition +
3 Training program —
3 Integrated software management —
3 Software product engineering ++
3 Intergroup coordination ++
3 Peer reviews ++
4 Quantitative process management —
4 Software quality management —
5 Defect prevention +
5 Technology change management —
5 Process change management —

+ Partially addressed in XP
+ + Largely addressed in XP (perhaps by inference)
— Not addressed in XP

Although implicit in some practices, such as
the peer pressure arising from pair program-
ming, XP largely ignores the infrastructure
that the CMM identifies as key to institution-
alizing good engineering and management
practices. Table 5 summarizes XP’s coverage
of institutionalization in its domain.

The CMM’s KPAs share common fea-
tures that implement and institutionalize
processes. Each KPA’s institutionalization
practices map to the area’s goals; a naïve XP
implementation that ignored these infra-
structure issues would fail to satisfy any
KPA. XP ignores some of these practices,
such as policies. XP addresses others, such
as training and SQA, by inference. It ad-
dresses still others—project-specific prac-
tices such as management oversight and
measurement—to a limited degree. As an
implementation model focused on the devel-
opment process, these issues are largely out-
side XP’s focus, but they are arguably cru-
cial for its successful adoption.

Size matters
Much of the formalism that characterizes

most CMM-based process improvement is
an artifact of large projects and severe relia-
bility requirements, especially for life-critical
systems. The SW-CMM’s hierarchical struc-
ture, however, is intended to support a range
of implementations through the 18 KPAs
and 52 goals that comprise the requirements
for a fully mature software process.

As systems grow, some XP practices be-
come more difficult to implement. XP is, af-
ter all, targeted toward small teams working
on small to medium-sized projects. As proj-
ects become larger, emphasizing a good
architectural “philosophy” becomes increas-
ingly critical to project success. Major invest-
ment in product architecture design is one of
the practices that characterizes successful In-
ternet companies.7

Architecture-based design, designing for
change, refactoring, and similar design
philosophies emphasize the need to manage
change systematically. Variants of the XP
bottom-up design practices, such as architec-
ture-based design, might be more appropri-
ate in large-project contexts. In a sense, ar-
chitectural design that emphasizes flexibility
is the goal of any good object-oriented
methodology, so XP and object orientation
are well suited to one another. Finally, large

projects tend to be multidisciplinary, which
can be problematic given that XP is aimed at
software-only projects.

Why explore XP?
Modern software projects should capture

XP values, regardless of how radically their
implementation differs from XP’s. Organiza-
tions might call communication and simplic-
ity by other names, such as coordination and
elegance, but without these values, nontrivial
projects face almost insurmountable odds.

XP’s principles of communication and
simplicity are also fundamental for organi-
zations using the SW-CMM. When defining
processes, organizations should capture the
minimum essential information needed,
structure definitions using good software
design principles (such as information hid-
ing and abstraction), and emphasize useful-
ness and usability.2

For real-time process control, rapid feed-
back is crucial. Previous eras have captured
this idea in aphorisms such as “don’t throw
good money after bad”; in a quantitative
sense, we can view this as the soul of the
CMM’s Level 4. One of the consequences of
the cultural shift between Levels 1 and 2 is
the need to demonstrate the courage of our
convictions by being realistic about esti-
mates, plans, and commitments.

False opposition
The main objection to using XP for

process improvement is that it barely
touches the management and organizational
issues that the SW-CMM emphasizes. Im-
plementing the kind of highly collaborative
environment that XP assumes requires en-
lightened management and appropriate or-
ganizational infrastructure.

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 25

Table 5
XP and institutionalization practices

Common feature (in each KPA) Practice Satisfaction

Commitment to perform Policy —
Leadership and sponsorship —

Ability to perform Organizational structures +
Resources and funding +
Training +

Measurement and analysis Measurement +
Verifying implementation Senior management oversight —

Project management oversight ++
Software quality assurance +

+ Partially addressed in XP
+ + Largely addressed in XP (perhaps by inference)
— Not addressed in XP

The argument that CMM’s ideal of a rig-
orous, statistically stable process is antithet-
ical to XP is unconvincing. XP has disci-
plined processes, and the XP process itself is
clearly well defined. We can thus consider
CMM and XP complementary. The SW-
CMM tells organizations what to do in gen-
eral terms, but does not say how to do it.
XP is a set of best practices that contains
fairly specific how-to information—an im-
plementation model—for a particular type
of environment. XP practices can be com-
patible with CMM practices (goals or
KPAs), even if they do not completely ad-
dress them.

M ost of XP consists of good prac-
tices that all organizations should
consider. While we can debate the

merits of any one practice in relation to
other options, to arbitrarily reject any of
them is to blind ourselves to new and po-
tentially beneficial ideas.

To put XP practices together as a
methodology can be a paradigm shift simi-
lar to that required for concurrent engineer-
ing. Although its concepts have been around
for decades, adopting concurrent engineer-
ing practices changes your product-building
paradigm. XP provides a systems perspec-
tive on programming, just as the SW-CMM
provides a systems perspective on organiza-
tional process improvement. Organizations
that want to improve their capability should
take advantage of the good ideas in both,
and exercise common sense in selecting and
implementing those ideas.

Should organizations use XP, as pub-
lished, for life-critical or high-reliability
systems? Probably not. XP’s lack of design
documentation and de-emphasis on architec-
ture are risky. However, one of XP’s virtues is
that you can change and improve it for dif-
ferent environments. That said, when you
change XP, you risk losing the emergent
properties that provide value in the proper
context. Ultimately, when you choose and
improve software processes, your emphasis
should be to let common sense prevail—and
to use data whenever possible to offer insight
on challenging questions.

Acknowledgments
I gratefully acknowledge Kent Beck, Steve Mc-

Connell, and Laurie Williams for their comments. I
presented an earlier version of this article at XP Uni-
verse in July 2001.

References
1. M.C. Paulk et al., The Capability Maturity Model:

Guidelines for Improving the Software Process, Addi-
son-Wesley, Reading, Mass., 1995.

2. M.C. Paulk, “Using the Software CMM with Good
Judgment,” ASQ Software Quality Professional, vol. 1,
no. 3, June 1999, pp. 19–29.

3. D.L. Johnson and J.G. Brodman, “Applying CMM Pro-
ject Planning Practices to Diverse Environments,” IEEE
Software, vol. 17, no. 4, July/Aug. 2000, pp. 40–47.

4. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, Reading, Mass., 1999.

5. “eXtreme Programming Pros and Cons: What Ques-
tions Remain?” IEEE Computer Soc. Dynabook, J.
Siddiqi, ed., Nov. 2000; www.computer.org/seweb/
dynabook/index.htm (current 24 Sept. 2001).

6. L. Williams et al., “Strengthening the Case for Pair Pro-
gramming,” IEEE Software, vol. 17, no. 4, July/Aug.
2000, pp. 19–25.

7. A. MacCormack, “Product-Development Practices that
Work: How Internet Companies Build Software,” MIT
Sloan Management Rev., no. 42, vol. 2, Winter 2001,
pp. 75–84.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

2 6 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Mark C. Paulk is a senior member of the
technical staff at the Software Engineering Insti-
tute. His current interests include high-maturity
practices and statistical control for software
processes. He was “book boss” for Version 1.0 of
the Capability Maturity Model for Software and
project leader during the development of Soft-
ware CMM Version 1.1. He is also involved with
software engineering standards, including ISO

15504, ISO 12207, and ISO 15288. He received his bachelor’s degree in
mathematics and computer science from the University of Alabama in
Huntsville and his master’s degree in computer science from Vanderbilt Uni-
versity. Contact him at the Software Engineering Inst., Carnegie Mellon
Univ., Pittsburgh, PA 15213; mcp@sei.cmu.edu.

About the Author

