
F
R

O
M

 T
H

E
 T

R
E

N
C

H
E

S
:W

o
lfg

an
g

 B
.S

tr
ig

el
,e

d
it

o
r •

 w
st

ri
g

el
@

sp
c.

ca

1 0 6 I E E E S o f t w a r e J a n u a r y / F e b r u a r y 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9

n July 1997 I began a one-year internship as a programmer in the infor-
mation services department of a small but rapidly growing telecommu-
nications company. Initially I spent my time debugging, extending, and
updating the company’s in-house billing/provisioning system, and dealt

primarily with code, code-level quality, and program documentation issues. Soon,
however, opportunities arose for me to contribute ideas that ultimately affected
the entire department. These opportunities in turn provided me with valuable
lessons about essential yet often overlooked software development issues—from
programming practices to team organization.

Although many of my tasks were solo missions, I soon began helping other de-
velopers debug their programs. During one debugging session, a developer said of
the problem at hand, “I don’t know why [the program] does that.” He then shared
the practice of “waving the dead chicken,” making nearly random, pseudo-logical
code changes to “solve” the problem. I suggested looking at the manual or asking
another developer, but he continued making “guess and check” code changes.
Eventually—and by sheer luck, I’m convinced—we got the code working, but nei-
ther of us understood what was wrong or how we fixed it. The developer went hap-
pily on his way; I went to the manuals for an explanation.

I

In terns o f ten seem l i t t le more than i t inerant lab orers, but
the author ’s in ternsh ip a t a te lecommunicat ions company
prov ided opp or tuni t ies to both learn and contr ibute. The
lessons learned in jus t one year ind icate how common
cer ta in prob lems are in so f t ware deve lopment and how
imp or tant bas ic prac t i ces can b e.

Ryan Fleming

A Fresh
Perspective on
Old Problems

.

From Alchemy to
Engineering

With a different developer, I again encountered
this “process.” After a few iterations, we arrived at a
working solution. I wanted to figure out why it
worked; the developer wanted to move on. When I
protested, the developer replied, “Hey, program-
ming isn’t science. It’s more like magic or alchemy.”

Software developers have debated for at least a
decade whether programming is alchemy, craft,
science, or engineering. Peter DeGrace and Leslie
Stahl convincingly argued that programming is not
a science in Wicked Problems, Righteous Solutions.1

I believe programming is far too comprehensible
and repeatable to be considered alchemy—most
developers would agree that it is a craft, but fewer
would go so far as to say it’s engineering.

The programmer’s image may not evolve from
craftsman to engineer any time soon, but we take a
giant step if we refrain from contributing to the per-
ception of programming as alchemy. As program-
mers we sometimes run into the mysterious and
seemingly unexplainable, but it’s the failings of in-
dividuals that make programming seem mysterious.
Every time we fail to understand a problem or its so-
lution, we undermine programming as a respectable
craft or engineering field.

Focus on Process, Not
Tools and Tricks

During my internship I often observed and expe-
rienced the pull toward tools and tricks instead of
process. This tug-of-war manifests in technical staff ’s
comments about how much better, easier, or faster

they could do their job if they had a certain tool or
trick. The implication is that the staff ’s woes arise from
low product quality, difficult development, or slow
progress. Their claims may have some validity, but it’s
dangerous to view tools and tricks as panaceas. While
they may streamline the development process, try-
ing to produce a product faster by randomly applying
tools and tricks without a guiding process can actu-
ally decrease productivity and lead to chaos.

Applying an effective process to technical pro-
jects seems difficult and elusive. Although thou-
sands of books, papers, lectures, and consulting
companies address the subject, some of what I’ve
read indicates software developers are frequently
involved in poorly run projects.2 I believe process is
hard not because it’s technically demanding but be-
cause it calls for, among other things, a resolved and
disciplined staff, high accountability in areas that
seem to never be clearly defined, and effective com-
munication. Process requires an understanding of
abstract issues that change for each project under-
taken and each staff member utilized. In short, any
development process is primarily an interpersonal
undertaking, not a technical one.

Management therefore plays a crucial role. Most
facets of sound process are management’s responsi-
bility—in my experience, the preoccupation with
tools and tricks seems to begin when management
(or technical staff, or both) is unaware of, uninterested
in, or opposed to development process due to the
misguided belief that any process, particularly one
involving documentation, will hinder productivity.
The heavy focus on doing rather than planning
makes new tools seem like “silver bullets”3—ideal so-
lutions that will solve their most pressing woes.

Modern development tools don’t help matters.

J a n u a r y / F e b r u a r y 1 9 9 9 I E E E S o f t w a r e 1 0 7

Do you ever feel trapped in tunnel vision? Do you ever want to hit your personal “Reset Button”to rid your-
self of preconceived ideas? This is how I felt when I read Ryan Fleming’s article. It felt like I was peeling away
layers of perception that had accumulated over years of working and consulting in the software industry.

This article describes a student’s observations during a one-year internship in an Information Services
department. His comments address many of the key issues in our industry. Fleming questions some of
the ingrained practices and attitudes that we probably should revisit periodically to determine their use-
fulness. The article also made me reflect on the state of our corporate practices. If a student (albeit a very
perceptive one) can identify so many of our problems in a year, why do we still have these problems?
Should you determine that many of his observations are symptomatic of your own organization, it may
be time to hit another reset button and make some changes.

—Wolfgang Strigel, From the Trenches editor

.

New tools offer all sorts of bells and whistles, and
many practically write programs for you to propagate
the illusion of higher productivity. Often, after throw-
ing money into new tools, the staff realizes that they

still suffer the same development woes. Unfortunately,
the perceived solution—to buy more and better
tools—instigates a costly cycle of capital investment
that yields little change in productivity or quality.

Process will probably fail before it succeeds
The company’s rapid growth had created a large,

sudden influx of new employees. Since the com-
pany’s IS department lacked organization and stan-
dards, new IS personnel were often used poorly, re-
sulting in occasional chaos. Realizing that the old
ways were no longer good ways, the IS director set
out to reorganize the department. Because most se-
nior staff seemed to have little time to contribute or
interest in the reorganization efforts, I decided to
feed the IS director any information I could find
about department reorganization, software devel-
opment process, and standard development prac-
tices. This information—mostly from books—was
very well received, and the IS director soon sought
my opinions on a wide variety of issues. As you may
imagine, this was a rare opportunity for an intern.

The IS director’s efforts to introduce a more for-
mal development process faced a major obstacle:
people are usually apprehensive of changes in the
workplace, and may even be openly hostile. Staff
might seek to undermine the new process by ag-
gressively pointing out its flaws, suggesting that
minor changes to the old way would be enough,
and even covertly subvert the new process to try to
illustrate its inadequacies.

Along with the challenges of gaining staff buy-
in, the first attempt at a new process won’t gener-
ally result in a good process. Process strives to free
technical staff from having to think too much about
the everyday activities involved in intra- and inter-
departmental communication. Since communica-
tion involves more than one person, simple, effec-
tive solutions don’t usually originate from one
person (that is, management) on the first attempt.
Good solutions evolve over time, and many people
contribute to them.

Given these obstacles, a new development
process seems more likely to fail than to succeed. I
would go so far as to offer that a draft process must
fail before it succeeds: process failure is the best way

of discovering which process
paths need to be better defined.
Also, a failure in process can often
be attributed to the company’s
changing needs, and most of us
would agree that companies

must evolve to remain successful.

All processes are not created equal
When a process fails, this may indicate that it ad-

dressed the wrong issues or the wrong environment,
or was presented in the wrong format. The success
of a process depends heavily on how well it fits the
environment it is released into.

This became clear to me as I learned about the
programming an IS department does versus that
which software engineering strives for. Most IS pro-
gramming tasks are short, with very restrictive dead-
lines. Applying a “real”software engineering process
to an IS department would introduce so much doc-
umentation, design, and development overhead
that it would cripple the technical staff ’s ability to
respond adequately to information requests.

However, many “real” software engineering
process concepts could prove useful, even desirable,
to IS development. The trick is to mold concepts from
software engineering, management, and/or techni-
cal communication into effective, efficient, and (hope-
fully) well-received solutions. Applying staff-gener-
ated ideas and solutions, along with a good dose of
documented process analysis from books and arti-
cles on how others solved similar problems, can yield
good process solutions for most companies.

Avoid “automation mania”
The company’s IS department faced many prob-

lems that stemmed from never saying “no” to a re-
quest. Although this created the perception of a
“can-do,” miracle-working IS department, many re-
quests did not appropriately use IS personnel. High-
tech environments seem to spawn the temptation
to automate everything. Too often technical staff run
around determining whether they can do some-
thing without asking whether they should do it.
Creating elaborate solutions can be fun but diverts
focus from more essential questions such as, Is the
task worth automating? Can the automation be cost
justified? Who will be responsible for the task after

1 0 8 I E E E S o f t w a r e J a n u a r y / F e b r u a r y 1 9 9 9

Process failure is the best way of discovering
which process paths need to be better defined.

.

automation? If the automation frees up company
resources, where will they be redirected? By exam-
ining the effects of a suggested automation relative
to use of company resources, we can prevent au-
tomation of activities that don’t need it.

What does the customer really want?
One of the first things I was supposed to do when

I got a new assignment was meet with the staff
member who requested service. I often felt frus-
trated communicating with nontechnical staff mem-
bers. It’s a common misconception that customers
have no idea about what they really want in a soft-
ware product—in fact, users often know what they
want a software product to do but have no idea how
to communicate their desires to help developers de-
liver a solution. Developers must extract the tech-
nical content from nontechnical communication so
that they can create some specification on which to
build the product. This complex communication
process is what makes the identification of product
specifications so hard.

Look for simple solutions
One subsystem in the company’s software sys-

tem proved particularly complex, and none of the
developers wanted anything to do with it. At one
point, a senior developer mentioned that it was
needlessly complex and should have been scrapped
and rewritten a long time ago.

I’ve heard of the gift of genius being attributed
to people who present the simplest solution to a
complex problem. Genius or not,
there is much to be said about
simple solutions: they usually
yield less code to maintain, are
easier to understand, are simpler
to document, are quicker to im-
plement, and have low technical overhead (no spe-
cial tools or languages, for instance).

The Quest for Productivity

During my internship, IS staff felt they could dig
out of our backlog if the team could simply produce
more. Productivity is an elusive, misunderstood
beast—both management and technical staff strive
to produce more faster, and many people mistake
high productivity for good productivity. Well, I don’t
believe it, and I’m not alone. Authors from Frederick
P. Brooks to Steve McConnell have written about

productivity,2,3 and emphasize that good (quality)
does not stem from more and faster. Further, they
imply that more and faster actually oppose good
when pursued individually.

In fact, many software professionals believe that
the pursuit of quality is the key to higher produc-
tivity. Yet some still try to improve productivity by
shortchanging quality assurance activities. They
mistakenly believe that QA activities such as speci-
fication, architecture, design documents, and re-
views of those documents unnecessarily waste time
and don’t contribute to producing the “real” soft-
ware product. To the contrary, QA activities clarify
and solidify the work to be performed by the tech-
nical staff. This minimizes the need for rework; less
rework means less overall time spent on any single
project, which means higher productivity.

Suggesting means volunteering
Once I started contributing to reorganization ef-

forts, I ended up volunteering to implement my sug-
gestions every time someone wanted to pursue
them. This is reasonable since the person who made
the suggestion best knows its intent. On the other
hand, staff may not feel compelled to contribute
good ideas because they don’t want the responsi-
bility of implementing their suggestions.

It’s obviously unfortunate if technical staff feel
penalized for contributing ideas. To remedy this or-
ganizational practice, perhaps the group leader
might assign the person with the suggestion to a
group of staff members with the skills necessary to

effectively analyze and act on the idea. Perhaps the
group could be composed of staff who have a direct
interest in the suggested changes. In any case, the
last thing a company should want to do is discour-
age the presentation of new ideas.

Maintenance: tag, you're it
Very soon after I made my first correction to a

piece of the company’s software system, I found my-
self correcting more new errors in the same piece of
software. The new corrections weren’t needed to fix
errors created by my previous alterations; they were
necessary because of entirely different bugs. After
several iterations of this cycle over a few months with

J a n u a r y / F e b r u a r y 1 9 9 9 I E E E S o f t w a r e 1 0 9

Quality assurance minimizes the need for
rework, which means higher productivity.

.

the same piece of software, I wanted someone else
to work on it—since when did I become the resident
expert on this piece of code? The person who wrote
it is still on staff—why doesn’t he fix these errors?

The answer to my queries was, “Hey, you touched
it last.” “Touching” software means altering it. Since
all source code at the company was stored in a code
management system, each revision is tagged with
the name of the person who last checked it in, which
makes it simple to determine who touched a pro-
gram last. Before long I realized that this practice
was more like a department policy: most of the se-
nior development staff had large portions of the
company’s software system that they “touched”
often, and as a result, they’d been responsible for
making corrections to these systems for so long that
the systems were like permanent chains of torment
attached to them for eternity.

My experiences at the company provided little
support for this method’s effectiveness. Granted, the
last person who touched a program probably has
the freshest perspective on the code, which will
allow the developer to make new changes more
rapidly. But this depends heavily on how well the
developer really tried to understand the program
he corrected. Another lure of this software mainte-
nance technique is that work assignments are easy
to hand out since the same person usually gets all
the problems for the same systems.

This method’s shortcomings outweigh its bene-
fits. First, there’s no distribution of intelligence
through the department concerning the software
systems maintained—only one person, or a small
group of people, really has a reasonable grasp of any
single program. Further, because developers are
stuck with maintaining the same pieces of software
over time, and since they have such “specialized”and
“valuable” knowledge, they have limited opportu-
nity to be involved in new development due to the
time needed to maintain “their” systems. The ulti-
mate blow comes when a senior developer leaves
the company, taking his “specialized”and “valuable”
knowledge with him.

Finally, such a method may make developers un-
willing to work on different software systems be-
cause each one they touch becomes a new link in

their chain of torment. Obviously, senior develop-
ers catch the brunt of the torment. They are re-
sponsible for corrections to the largest portions of
the software system, they have limited opportunity

for involvement in new develop-
ment projects, and they also lose
their intra-department mobility.
They cannot effectively change
positions or responsibilities since
the chains of previous software

involvement hold them fast as resident “experts”
with “their” software systems.

Any solution to such problems will be difficult to
implement, but certain department practices could
alleviate the burden of developers’“software system
chains.” First, a team approach to software system
maintenance would help disseminate system
knowledge. A maintenance team could consist of a
pair of staff members who work together to resolve
maintenance issues. Teams would not be fixed but
would pair people based on availability or random
rotation—pairs could be senior–junior, senior–se-
nior, or junior–junior as the maintenance activities
allow. The point is that the problem, analysis, and
solution knowledge are shared. The maintenance
task may be prolonged somewhat due to commu-
nication efforts between the staff members, but the
result would be a higher level of cross-training be-
tween software systems, and increased develop-
ment staff mobility.

The other practice is, of course, documentation.
Senior staff or maintenance teams should take time
to compose system documentation for the benefit
of other developers and themselves—this could re-
move a link from their software maintenance chain.

Communication: keep it clear
Good communication skills are essential in a

technical environment, and most of my successes
stemmed from good communication. Certain prac-
tices seemed most useful:

♦ Mentally plan what you’re going to say. Though
impromptu speech often prevails in casual conver-
sations and even meetings, it can really hurt com-
munication when complex ideas come out confused.

♦ Avoid technical jargon where possible, but if
you must use technical terms, be sure everyone in-
volved shares similar interpretations.

♦ The phrase “a picture is worth a thousand
words” particularly applies in a technical environ-
ment—one good diagram can save much verbal
and documentation energy.

1 1 0 I E E E S o f t w a r e J a n u a r y / F e b r u a r y 1 9 9 9

Coworkers appreciate effective communication
skills more than many other technical skills.

.

♦ Actively listen. Work to grasp the speaker’s un-
derstanding of the topic. Ask questions to clarify
what you don’t understand. I’ve often left a conver-
sation believing I understood a problem only to find
it was still unclear when the time came to imple-
ment a solution.

♦ Finally, don’t interrupt—it confuses the issue,
locks people out of the conversation, and is simply
rude.

Coworkers appreciate effective communication
more than many other technical skills. Improving
your communication skills will greatly benefit you
and those you work with.

Fight for what you believe in
As an active contributor to department reorga-

nization efforts, I constantly had to defend my ideas.
I quickly learned that fighting for something in a cor-
porate environment can be exhausting, so pick your
battles carefully—the only ones you stand a chance
of winning are those sparked by a violation of your
personal, professional, or technical beliefs. Leave
fighting for what’s “right”to philosophers, lobbyists,
and upper management.

A corollary to this lesson: continually examine
what you believe. Be ready to compromise, and know
ahead of time what compromise means to you.
When necessary, admit when
your perspective is wrong, gra-
ciously accept defeat, and agree
to disagree with your opponents.
Give your opponents every
chance to present their point of
view, and strive to examine beliefs that differ from
yours. Professional and technical issues are complex;
what’s “right” is a matter of perspective. Your repu-
tation will be based on your demonstrated beliefs.

A Healthier Small IS
Department

One of the IS director’s primary concerns was es-
tablishing a foundation for continued department
health. During my year at the company, I formulated
some ideas about the characteristics of healthy
small departments.

Bolster weakness with process
Human beings make mistakes, procrastinate,

avoid responsibility, engage in petty bickering, gos-
sip, and participate in many other nonconstructive

activities. We’re not entirely corrupt; we just need di-
rection, constraints, and focus. Enter process.

A well-defined process for completing work as-
signments provides direction, constraints, and focus
for a group of professionals working toward com-
mon goals. The primary goal of process is to free in-
dividuals from organization-related decision mak-
ing so they can direct energy to solving the
problems at hand.

Once a work process is established, it must re-
main flexible to remain effective. As situations arise
that require changes, a procedure should be avail-
able to submit, evaluate, and implement alterations
to the work process. When a work process change is
submitted, the group and management should eval-
uate the suggestion and, if they accept it, make staff
assignments to begin implementing the change.
Once the new process item is in place, allow some
time to go by and then evaluate its effectiveness.

A common mistake I witnessed was that the
group and management failed to actively develop,
specify, and evaluate a work process’standards, con-
ventions, procedures, policies, and implementation
on an ongoing basis. This stems from a mistaken be-
lief that a work process can remain unaltered over
time and still be effective. Teams should periodically
review all aspects of the work process, even if the

meeting’s content is limited to “Everything is going
well; let’s go back to work.”The meeting should stress
the importance of following the stated work process
and address suggested changes, recent work process
problems, project problems, and other group con-
cerns. Group members should be encouraged to
contribute their input, and rewarded for finding so-
lutions to process-related problems. In any event, the
primary accomplishment of a defined work process
is minimizing the chances that individuals will be-
come victims of their innate human weaknesses.

Strengthen the team by sharing knowledge
A group guided by common principles under a

defined work process benefits even more by limiting
specialization of its members’ knowledge. Topic
familiarity, job title, and work responsibilities require
some specialization, but generally, no group mem-
ber should have significantly more knowledge

J a n u a r y / F e b r u a r y 1 9 9 9 I E E E S o f t w a r e 1 1 1

Once a work process is established, it must
remain flexible to remain effective.

.

about any item within the working environment
than another member with an equivalent back-
ground, position, and responsibility. Group mem-
bers need not have equivalent knowledge bases,
simply comparable ones.

Several ways exist to distribute knowledge, such
as pairing (assigning two or more people to a task),
presentations, educational documents, and, of

course, system documentation. Group members and
management should actively seek opportunities to
share knowledge with others—from simple word
processor tricks to complex system architectures.

Increase your value by learning and
improving

Most computer professionals are aware of the in-
tense need to refine their practices and remain
abreast of new methods and technologies, but
many do not act on it. It’s very easy to fall off the
technology wagon, especially as technical profes-
sionals advance toward and into management po-
sitions—unfortunately, many never recover after
they fall off, in part due to the rapid pace of tech-
nology evolution. Without knowledge of current
methods and tools, computer professionals quickly
drift toward obsolescence, thereby limiting their op-
tions for advancement and employment. I’ve quickly
realized that there are few if any free rides in com-
puter-related professions.

Not only does the failure to stay current affect pro-
fessional and personal growth, it also affects a com-
pany’s growth. Companies that lack current profes-
sionals cannot take advantage of new technologies
to increase productivity, reduce operating costs, and
move into new markets. Although this may or may
not threaten a company’s market position, it can cer-
tainly affect profit margins since older technologies
frequently incur larger costs due to the lack of avail-
able knowledgeable staff and supporting tools.

To solve this problem, management must increase
efforts to expand staff ’s training and education op-
portunities. It can do this by openly offering oppor-
tunities to learn new methods and technologies from
seminars, educational institutions, and literature. The
company should also aggressively pursue inhouse

education and training, perhaps asking more knowl-
edgeable staff members to conduct presentations or
training seminars in their areas of expertise.

Education really shouldn’t be optional—employ-
ees should be required to demonstrate some new
technically relevant (though not necessarily job-re-
lated) knowledge they’ve acquired through semi-
nars, classes, or literature at least once a year. This

“demonstration”could be accom-
plished by the completion of a
document, presentation, or pro-
ject that applies the new method
or technology. Since group mem-
bers ideally share knowledge, the
entire staff stands to benefit

when one person acquires new knowledge. Any staff
of reasonable size has immense learning opportu-
nities—just imagine how much information is float-
ing around among your technical staff right now,
knowledge currently unshared.

The two sides of job-related experience
The single greatest lesson I learned concerns a

trait that management seems most to desire: expe-
rience. Although perhaps not the industry norm,
some of my dealings with “experienced” profes-
sionals have been disappointing—sometimes ex-
perience can be a dangerous thing. The commonly
held belief that “experience is the best teacher”takes
on new meaning when you consider that the
lessons being taught might be bad ones.

Additionally, experience-based lessons tend to
stick better than those from readings, examples,
instructions, and seminars. A highly experienced
professional could easily impart many “sticky” bad
habits, erroneous information, and warped per-
spectives to novices. I’ve encountered experienced
professionals who can’t (or won’t) see past their
experience to notice that the world around them
has changed, or that an idea that runs against their
experience might actually be a good one.

Of course, experience has much potential value.
Experienced developers seem sensitive to what
might violate basic good architecture, design, and
programming practices. I’ve seen experienced de-
velopers raise warnings over issues I saw as mun-
dane only to find that the direction I was headed
would have led me into some serious problems.
Experience also imparts strong problem-solving
skills. Exposure to many different problems over
time gives developers a large toolbox of techniques
for decomposing and solving all sorts of problems.

1 1 2 I E E E S o f t w a r e J a n u a r y / F e b r u a r y 1 9 9 9

Without knowledge of current methods and
tools, computer professionals quickly drift

toward obsolescence, limiting their options.

.

Although I occasionally tried to “empty” some ex-
perienced developers’ toolboxes, I never did hit
anything that remotely resembled a “bottom.”
Experienced developers usually have better com-
munication and organization skills, too, delivering
their points efficiently and clearly. This makes them
better able to obtain agreement and rally peers
around an idea.

Finally, experienced developers seem to suffer
less than novices from functional fixedness, that is,
the inability to recognize a use for an item or con-
cept other than that originally presented. This char-
acteristic seems to afford them much creativity and
the ability to connect seemingly disjoint concepts.

Overall, though, I’m still suspicious of experi-
ence—it could be restrictive if stringently adhered
to. If seasoned developers commonly use their “ex-
perience”to reject new, different methods, perhaps
we should reconsider the importance we place on
this concept, sometimes to the detriment of inno-
vation and fresh perspectives.

I learned a lot during my year in the software in-
dustry—some good, some perhaps not so good.

As I gain more experience, I’ll be interested to see
how my conclusions hold up. At the very least, I hope
this article reminds some professionals of a few
things they may have been overlooking since their
rise in the industry’s ranks. ❖

REFERENCES
1. P. DeGrace and L. Stahl, Wicked Problems, Righteous Solutions: A

Catalogue of Modern Software Engineering Paradigms, Yourdon
Press, Englewood Cliffs, N.J., 1990.

2. S. McConnell, Rapid Development, Microsoft Press, Redmond,
Wash., 1997.

3. F.P. Brooks, The Mythical Man-Month, Addison Wesley
Longman, Reading, Mass., 1995.

1 1 3

Ryan Fleming is a senior in the Software
Engineering Technology program at the
Oregon Institute of Technology, and ex-
pects to earn a BSc in June 1999. In 1997,
after completing his junior year, Fleming
took a one-year internship as a program-
mer with a telecommunications
company. His interests span a wide

range of software engineering techniques and technologies,
particularly software project management, object-oriented
analysis and design, and programming languages.

About the Author

Readers may contact Fleming at 1331 Avalon St., Apt 17,
Klamath Falls, Oregon 97603; e-mail flemingr@internetcds.
com or flemingr@oit.edu.

E X E C U T I V E C O M M I T T E E
President: LEONARD L. TRIPP
Boeing Commercial Airplane Group
P.O. Box 3707
M/S 19-RF
Seattle, WA 98124
President-Elect:
GUYLAINE M. POLLOCK *
Past President:
DORIS CARVER *
VP, Press Activities:
CARL K. CHANG †

VP, Educational Activities:
JAMES H. CROSS †

VP, Conferences and Tutorials:
WILLIS KING (2ND VP) *
VP, Chapter Activities:
FRANCIS LAU*
VP, Publications:
BENJAMIN W. WAH (1ST VP)*

P U R P O SE The IEEE
Computer Society is the
world’s largest association of
computing professionals, and
is the leading provider of
technical information in the
field.

M E M B E R S H I P Members receive the monthly maga-
zine COMPUTER, discounts, and opportunities to serve (all activ-
ities are led by volunteer members). Membership is open to
all IEEE members, affiliate society members, and others
interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 1999: Steven L. Diamond, Richard A. Eckhouse,
Gene F. Hoffnagle, Tadao Ichikawa, James D. Isaak, Karl Reed,
Deborah K. Scherrer
Term Expiring 2000: Fiorenza C. Albert-Howard, Paul L.
Borrill, Carl K. Chang, Deborah M. Cooper, James H. Cross, III, Ming
T. Liu, Christina M. Schober
Term Expiring 2001: Kenneth R. Anderson, Wolfgang K. Giloi,
Haruhisa Ichikawa, David G. McKendry, Anneliese von Mayrhauser,
Thomas W. Williams

Next Board Meeting: 19 Feb. 1999, Houston, Texas

I E E E O F F I C E R S
President: KENNETH R. LAKER
President-Elect: BRUCE A. EISENSTEIN
Executive Director: DANIEL J. SENESE
Secretary: MAURICE PAPO
Treasurer: DAVID CONNOR
VP, Educational Activities: ARTHUR W. WINSTON
VP, Publications: LLOYD “PETE” MORLEY
VP, Regional Activities: DANIEL R. BENIGNI
VP, Standards Activities: DONALD LOUGHRY
VP, Technical Activities: MICHAEL S. ADLER
President, IEEE-USA: PAUL KOSTEK

C O M P U T E R S O C I E T Y O F F I C E S
Headquarters Office
1730 Massachusetts Ave. NW,
Washington, DC 20036-1992
Phone: (202) 371-0101
Fax: (202) 728-9614
E-mail: hq.ofc@computer.org
Publications Office
10662 Los Vaqueros Cir.,
PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone: (714) 821-8380
membership@computer.org
Membership and
Publication Orders: (800) 272-6657
Fax: (714) 821-4641
E-mail: cs.books@computer.org

*voting member of the Board of Governors †nonvoting member of the Board of Governors

VP, Standards Activities:
STEVEN L. DIAMOND *
VP, Technical Activities:
JAMES D. ISAAK *
Secretary:
DEBORAH K. SCHERRER*
Treasurer:
MICHEL ISRAEL*
IEEE Division V Director:
MARIO R. BARBACCI †

IEEE Division VIII Director:
BARRY JOHNSON†

Executive Director:
T. MICHAEL ELLIOTT †

European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: 32 (2) 770-21-98
Fax: 32 (2) 770-85-05
E-mail: euro.ofc@computer.org
Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,
Minato-ku, Tokyo 107-0062,
Japan
Phone: 81 (3) 3408-3118
Fax: 81 (3) 3408-3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Executive Director:
T. MICHAEL ELLIOTT

Publisher:
MATTHEW S. LOEB

Director, Volunteer Services:
ANNE MARIE KELLY

Director, Finance & Administration:
VIOLET S. DOAN
Director, Information
Technology & Services:
ROBERT G. CARE
Manager, Research &
Planning:
JOHN C. KEATON

.

