See syllabus for due date—An Adventure Game 1

Programming Paradigms
See syllabus for due date

An Adventure Game

This programming assignment explores two ideas: the simulation of a world in which objects are
characterized by collections of state variables, and the use of object-oriented programming as a technique
for modularizing worlds in which objects interact. These ideas are presented in the context of a simple
simulation game like the ones available on many computers. Such games have provided an interesting
waste of time for many computer lovers.

This problem set begins by describing the overall structure of the simulation. The tutorial exercises in
Part 2 will help you to master the ideas involved. You must turn these in for credit. Part 3 contains
the main part of the assignment. Part 4 contains some extra-credit problems, for those who have been
asking for them. Please turn in ALL of the excersises that you do!!

This assigment has a much larger amount of code than any previous assignment. Part of what you
should be learning in this course are the ideas of procedural and data abstraction, which means (when
used properly) that you don't have to understand all of the most minor details of a computer system in
order to use, modify, and even extend it. This problem set will give you an opportunity to acquire a key
professional skill: mastering the code organization well enough to know what you need to understand
and what you don't need to understand.

Part 1: The SICP Adventure Game

The basic idea of simulation games is that the user plays a character in an imaginary world inhabited
by other characters. The user plays the game by issuing commands to the computer that have the
effect of moving the character about and performing acts in the imaginary world, such as picking up
objects. The computer simulates the legal moves and rejects illegal ones. For example, it is illegal to
move between places that are not connected (unless you have special powers). If a move is legal, the
computer updates its model of the world and allows the next move to be considered.

Our game takes place in a strange, imaginary world called UDel, with imaginary places such as a
computer lab, Smith Hall, and Trabant Center. In order to get going, we need to establish the structure
of this imaginary world: the objects that exist and the ways in which they relate to each other.

Initially, there are three procedures for creating objects:

(make-thing name)

(make-place name)

(make-person name birthplace restlessness)
In addition, there are procedures that make people and things and procedures that install them in
the simulated world. The reason that we need to be able to create people and things separately from
installing them will be discussed in one of the exercises later. For now, we note the existence of the
procedures

See syllabus for due date—An Adventure Game 2

(make&install-thing name birthplace)

(make&install-person name birthplace restlessness)
Each time we make or make and install a person or a thing, we give it a name. People and things also
are created at some initial place. In addition, a person has a restlessness factor that determines how
often the person moves. For example, the procedure make&install-person may be used to create
the two imaginary characters, errol and keith , and put them in their places, as it were.

(define errol-office (make-place ’errol-office))
(define keith-office (make-place ’keith-office))

(define errol (make&install-person ’errol errol-office 3))
(define keith (make&install-person ’keith keith-office 2))

All objects in the system are implemented as message-accepting procedures.

Once you load the system into DrScheme, you will be able to control errol and keith by sending
them appropriate messages. As you enter each command, the computer reports what happens and
where it is happening. For instance, imagine we had interconnected a few places so that the following
scenario is feasible:

(ask errol ’'look-around)
At errol-office : errol says -- | see nothing

(ask (ask errol 'place) ’'exits)
;Value: (east)

(ask errol 'go ’east)
errol moves from errol-office to Smith-Hall
:Value: #t

(ask errol 'go 'east)
errol moves from Smith-Hall to Greenhouse
:Value: #t

(ask errol ’'look-around)
at Greenhouse : errol says -- | see nothing
;Value: #f

(ask errol 'go 'up)

errol moves from Greenhouse to keith-office
At keith-office : errol says -- hi keith
:Value: #t

(ask (ask keith ’place) 'exits)
;Value: (down)

(ask keith ’look-around)

at keith-office : keith says -- | see errol

;Value: (errol)
In principle, you could run the system by issuing specific commands to each of the creatures in the
world, but this defeats the intent of the game since that would give you explicit control over all the

See syllabus for due date—An Adventure Game 3

characters. Instead, we will structure our system so that any character can be manipulated automatically
in some fashion by the computer. We do this by creating a list of all the characters to be moved by
the computer and by simulating the passage of time by a special procedure, clock , that sends a move
message to each creature in the list. A move message does not automatically imply that the creature
receiving it will perform an action. Rather, like all of us, a creature hangs about idly until he or she
(or it) gets bored enough to do something. To account for this, the third argument to make-person
specifies the average number of clock intervals that the person will wait before doing something (the
restlessness factor).

Before we trigger the clock to simulate a game, let’s explore the properties of our world a bit more.

First, let’s create a computer-manual and place it in the keith-office (where errol and keith
now are).

(define computer-manual (make&install-thing 'computer-manual keith-office))

Next, we'll have errol look around. He sees the manual and keith . The manual looks useful, so we
have errol take it and leave.

(ask errol 'look-around)
At keith-office : errol says -- | see computer-manual keith
;Value: (computer-manual keith)

(ask errol 'take computer-manual)
At keith-office : errol says -- | take computer-manual
Value: #t

(ask errol 'go 'down)
errol moves from keith-office to Greenhouse
:Value: #t

Keith had also noticed the manual; he follows errol ~ and snatches the manual away. Angrily, errol
sulks off to the Trabant Center:

(ask keith 'go 'down)

keith moves from keith-office to Greenhouse

At Greenhouse : keith says -- Hi errol
:Value: #t

(ask keith 'take computer-manual)

At Greenhouse : errol says -- | lose computer-manual
At Greenhouse : errol says -- yaaaah! | am upset!
At Greenhouse : keith says -- | take computer-manual
:Value: #t

(ask errol 'go 'west)
errol moves from Greenhouse to Smith-Hall
:Value: #t

(ask errol 'go ’'north)
errol moves from Smith-Hall to Trabant-Center
:Value: #t

See syllabus for due date—An Adventure Game 4

Unfortunately for errol , beneath the Trabant-Center is an inaccessible dungeon, inhabited by a troll
named grendel . A troll is a kind of person; it can move around, take things, and so on. When a troll
gets a act message from the clock, it acts just like an ordinary person—unless someone else is in the
room. When grendel decides to act , it’s game over for errol

(ask grendel 'move)
grendel moves from dungeon to Trabant-Center

After a few more moves, grendel acts again:

(ask grendel 'move)
At Trabant-Center : grendel says -- Growl.... I'm going to eat you, errol
At Trabant-Center : errol says --

Dulce et decorum est

pro computatore mori!
errol moves from Trabant-Center to heaven
At Trabant-Center : grendel says -- Chomp chomp. errol tastes yummy!
;Value: *burp*

Implementation The simulator for the world is contained in $CLASSHOME/hw7/game.scm, includ-
ing the basic object system, procedures to create people, places, things and trolls, together with various
other useful procedures. The final part of the file contains code that initializes our particular imaginary
world and installs errol , keith , and grendel

Part 2: Tutorial exercises

You must turn in these excercises for full credit.

Tutorial exercise 1: (a) Define a procedure flip (with no parameters) that returns 1 the first time
it is called, O the second time it is called, 1 the third time, O the fourth time, and so on. (b) Now
define a procedure make-flip that can be used to generate flip procedures. Make sure that each
flip procedure that is generated works independently of the others. That is, we should be able to
redefine the flip procedure you just wrote as simply: (define flip (make-flip)) . (c) Draw an
environment diagram to illustrate the result of evaluating the following sequence of expressions:

(define (make-flip) ...)
(define flipl (make-flip))
(define flip2 (make-flip))

(flip1) --> value?
(flip2) --> value?

Tutorial exercise 2: Assume that the following definitions are evaluated, using the procedure make-flip
from the previous exercise:

See syllabus for due date—An Adventure Game 5

(define flip (make-flip))
(define flapl (flip))
(define (flap2) (flip))
(define flap3 flip)
(define (flap4) flip)

What is the value of each of the following expressions (evaluated in the order shown)?
flapl

flap2
flap3
flap4
(flap1)
(flap2)
(flap3)
(flap4)
flapl
(flap3)
(flap2)
Tutorial exercise 3: Draw a simple inheritance diagram showing all the kinds of objects (classes)

defined in the adventure game system, the inheritance relations between them, and the names of the
messages for which methods are defined in each class.

Tutorial exercise 4. Draw a simple map showing all the places created by evaluating the last part of
game.scm, and how they interconnect. You will probably find this map useful in dealing with the rest
of the problem set.

Tutorial exercise 5: Suppose we evaluate the following expressions:
(define ice-cream (make-thing ’ice-cream dormitory))
(ask ice-cream ’set-owner keith)

At some point in the evaluation of the second expression, the expression

(set! owner new-owner)

will be evaluated in some environment. Draw an environment diagram, showing the full structure
of ice-cream at the point where this expression is evaluated. Dont show the details of keith or
dormitory —just assume that keith and dormitory are names defined in the global environment
that point off to some objects that you draw as blobs.

See syllabus for due date—An Adventure Game 6

Tutorial exercise 6: Suppose that, in addition to ice-cream in exercise 5, we define

(define rum-and-raisin (make-thing ’ice-cream dormitory))

Are ice-cream and rum-and-raisin the same object (i.e., are they eq?)? If keith wanders to a
place where they both are and looks around, what message will he print?

Exercises

The first exercise here illustrates a bug that is easy to fall into when working with the adventure game.

Exercise 1. Note how install isimplemented as a method defined as part of both mobile-object
and person . Notice that the person version puts the person on the clock list (this makes them
“animated”) then invokes the mobile-object ~ version on self , which makes the birthplace ~ where
self is being installed aware that self thinks it is in that place. That is, it makes the self and
birthplace consistent in their belief of where self is. The relevant details of this situation are
outlined in the code excerpts below:

(define (make-person name birthplace threshold)
(let ((mobile-obj (make-mobile-object name birthplace))
)
(lambda (message)
(cond ...

((eq? message 'install)
(lambda (self)
(add-to-clock-list self)
((get-method mobile-obj 'install) self))) ; x*

)

(define (make-mobile-object name place)
(let ((named-obj (make-named-object name)))
(lambda (message)
(cond ...

((eg? message ’install)
(lambda (self)
(ask place 'add-thing self)))
D))
Louis Reasoner suggests that it would be simpler if we change the last line of the make-person version
of theinstall method to read:

(ask mobile-obj ‘install))) ; **

See syllabus for due date—An Adventure Game 7

Alyssa P. Hacker points out that this would be a bug. “If you did that,” she says, “then when you
make&install-person keith and keith moves to a new place, he’ll thereafter be in two places at
once! The new place will claim that keith is there, and keith s place of birth will also claim that
keith is there.”

What does Alyssa mean? Specifically, what goes wrong? You will likely need to draw an appropriate
environment diagram to explain carefully.

Other Required Exercises

To save you from retyping the same scenarios repeatedly—for example, when debugging you may want
to create a new character, move it to some interesting place, then ask it to act—we suggest you define
little test “script” procedures at the end of game.scm which you can invoke to act out the scenarios
when testing your code. See the comments at the bottom of game.scm for details.

Exercise 2: After loading the system, make errol and keith move around by repeatedly calling
clock (with no arguments). (a) Which person is more restless? (b) How often do both of them move
at the same time?

Exercise 3: Make and install a new character, yourself, with a high enough threshold (say, 100) so
that you have “free will” and are not likely to be moved by the clock. Place yourself initially in the
dormitory . Also make and install a thing called late-homework , so that it starts in the dormitory
Pick up the late-homework , find out where keith is, go there, and try to get keith to take the
homework even though he is notoriously adamant in his stand against accepting tardy problem sets.
Can you find a way to do this that does not leave you upset? Turn in a list of your definitions and
actions. If you wish, you can intersperse your moves with calls to the clock to make things more
interesting. (Watch out for grendel !)

Student Inflexible Cards

The UD Office against Student Affairs has asked us for help in expanding the features offered by the
UD “Student Inflexible Card” system. Luckily, our object-oriented simulation is just what’s needed
for trying out new ideas.

To model a student inflexible card, we can make a new kind of object, called an sd-card , which is a
special kind of thing. Besides inheriting the standard properties of a thing, each sd-card has some local
state: an id , which identifies the person to whom the card was issued. An sd-card supports a message
sd-card? , indicating that it is an sd-card. The card also accepts a message that returns the id .

The procedure make&install-sd-card (shown below) can be used to make a card and install it. It
uses the procedure make-sd-card to actually create the card. Note that both procedures take a name,
an initial place and an id (which should be a symbol).

See syllabus for due date—An Adventure Game 8

(define (makeg&install-sd-card name birthplace id)
(let ((card (make-sd-card name birthplace id)))
(ask card 'install)
card))

(define (make-sd-card name birthplace idnumber)
(let ((id idnumber)
(thing (make-thing name birthplace)))
(lambda (message)
(cond ((eq? message 'sd-card?) (lambda (self) true))
((eq? message ’'id) (lambda (self) id))
(else (get-method thing message))))))

Note the presence of the sd-card? method, which identifies the object as an sd-card. In general, our
system is structured so that a recognizable foo must have a foo? method that answers true . Objects
that aren't foo s don't have a foo? method. We've supplied a procedure called is-a that can be used
to test whether an object is of some particular type. Is-a works like ask except that if the message
doesn't correspond to a method it returns false rather than causing an error. For example, you can
test whether an object is an sd-card by evaluating (is-a object ’sd-card?)

Exercise 4: A person may move to a new place only if the place returns true in response to the
message accept-person? , for example

(ask keith-office 'accept-person? keith) => #T

This is trivially true of ordinary places. Make a new kind of place that will accept a person only if they
are carrying an sd-card by completing the procedure below:

(define (make-card-locked-place name)
(let ((place (make-place name)))
(lambda (message)
(cond ((eq? message 'accept-person?)
)

(éise (get-method place message))))))

Change some of the places on campus to be card-locked-place s, and make some sd-card S.
Demonstrate that a person may enter a card-locked-place only if they are carrying a card.

Turn in a listing of your make-card-locked-place definition and a transcript of your demonstra-
tion.

EXTRA CREDIT

The following excercises count as extra credit.

See syllabus for due date—An Adventure Game 9

Extra Exercise 1: The Director of Housing has ordered that student residences can be entered only
by students living at that residence. He has decided to enforce his policy by securing each student
residence with a card lock that opens only for cards with a registered id.

Create a new class of place, a student-residence , which implements this policy. A student-residence
should keep a list of card id-numbers (not the cards themselves in case a student loses their card and
has to get a replacement). In addition to the accept-person? ~ method we need a register-card
method which adds the card’s id to the list. Register-card ~ should register the card only if the card is
already inside the residence. This way we can create cards with the residence as their *birth place’ and
register those cards. Only those cards will let us back in.

Turn in a listing of your procedure(s). To demonstrate that your implementation works, create two
student residences and an sd-card for your character. Start at your residence, register your card, go to
the other residence, try to get in, and return home.

Extra Exercise 2: There has been a spate of card thefts on campus recently. Obviously these criminals
need to be sorted out. Create a new kind of person called an ogre , which is like a troll but only eats
people who are carrying a card which has been reported stolen. You can use grendel as an example of
a being that does special things when asked to act. To make the ogres especially effective they should
have a low restlessness factor.

Write a procedure (report-stolen-card id) which creates and dispatches a new ogre to hunt
down the felon. Naturally, the ogre should start its hunt from the dungeon.

Extra Exercise 3: Ace hackers Ben Bitdiddle and Alyssa P. Hacker find the new card locks on the
student residences a nuisance. It is difficult to get together to do problem sets and their friends who
used to drop by to chat never do so anymore because they can't get in without a valid card. Luckily,
the cards are easy to duplicate and distribute to friends.

To discourage the use of duplicate cards the Director of Housing has decided to monitor the use of
cards. If a card is used in two places at the same time then one of the copies must be forged.

Implement a new object, big-brother , which accepts a message inform which takes a card-id and
a place. Big-brother should monitor all the information to detect forged cards and report them by
calling report-stolen-card . The time is available from the procedure (current-time) . Modify
the code for the card-locked-places and student-residences so that they inform big-brother ~ when
someone gains access with a card.

Turn in a listing of your new and modified code, with a transcript showing it in action.

Extra Exercise 4. Now you have the elements of a simple game that you play by interspersing your
own moves with calls to the clock. Your goal is to leave your residence, gain access to all the other
residences, and return, without being eaten.

To make the game more interesting, you should also create some student(s) besides yourself and set
up the student act method so that a student will try to move around campus, collecting sd-cards and

See syllabus for due date—An Adventure Game 10

other interesting things that they find and occasionally leaving some of their possessions behind when
they move on. Be sure to leave a few forged cards around just for fun.

Turn in your new student act method and a demonstration that it works.

Extra Exercise 5. Design and implement some other new student behaviors. Turn in a description
(in English) of your ideas, the code you wrote to implement them, and a demonstration scenario.

This problem is not meant to be a major project. Don't feel that you have to do something elaborate.

Extra Exercise 6: When our characters go to heaven, they make a brief proclamation. Who is the
source of these (misquoted) last words, what is the actual quotation, and what is the English transla-
tion?

