
Under consideration for publication in J. Functional Programming 1

EDUCATIONAL PEARL

The Structure and Interpretation of the

Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA

Robert Bruce Findler, University of Chicago, Chicago, IL, USA

Matthew Flatt, University of Utah, Salt Lake City, UT, USA

Shriram Krishnamurthi, Brown University, Providence, RI, USA

Email: {matthias,robby,mflatt,shriram}@plt-scheme.org

Abstract

Twenty years ago Abelson and Sussman’s Structure and Interpretation of Computer Pro-

grams radically changed the intellectual landscape of introductory computing courses. In-
stead of teaching some currently fashionable programming language, it employed Scheme
and functional programming to teach important ideas. Introductory courses based on the
book showed up around the world and made Scheme and functional programming popular.
Unfortunately, these courses quickly disappeared again due to shortcomings of the book
and the whimsies of Scheme. Worse, the experiment left people with a bad impression of
Scheme and functional programming in general.

In this pearl, we propose an alternative role for functional programming in the first-year
curriculum. Specifically, we present a framework for discussing the first-year curriculum
and, based on it, the design rationale for our book and course, dubbed How to Design

Programs. The approach emphasizes the systematic design of programs. Experience shows
that it works extremely well as a preparation for a course on object-oriented programming.

1 History and critique

The publication of Abelson and Sussman’s Structure and Interpretation of Com-

puter Programs (sicp) (Abelson et al., 1985) revolutionized the landscape of the

introductory computing curriculum in the 1980s. Most importantly, the book lib-

erated the introductory course from the tyranny of syntax. Instead of arranging a

course around the syntax of a currently fashionable programming language, sicp

focused the first course on the study of important ideas in computing: functional ab-

straction, data abstraction, streams, data-directed programming, implementation

of message-passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched

their first course to sicp and Scheme. The book became a major bestseller for MIT

Press.1 Along with sicp, the Scheme programming language (Sussman & Steele Jr.,

1 According to Bob Prior (editor at MIT Press), sicp sold 45,000 copies in its first five years
[personal communication, 9 June 2003].



2 Felleisen et al.

1975; Steele Jr. & Sussman, 1978; Clinger, 1985; Clinger & Rees, 1991; Kelsey et al.,

1998) became widely used. It was no longer the subject of a few individual courses

at Indiana University, MIT, and Yale, but the language of choice in introductory

courses all over the world.

Unfortunately, the use of Scheme and sicp quickly dwindled again in the early

1990s. After working with sicp and Scheme for a while, instructors started to

complain. Some said that sicp’s content was too difficult for students outside of

MIT. Others blamed Scheme directly, claiming that functional programming in

Scheme was too different from programming in other languages. Even the functional

programming community criticized the sicp approach; around this time, Wadler

wrote his Critique of sicp and Scheme (Wadler, 1987).

Nowadays the critics even include professors at MIT, where the book and the

course have become legends. Jackson and Chapin, who both have significant expe-

rience teaching sicp at MIT, recently wrote that

[f]rom an educational point of view, our experience suggests that undergraduate com-
puter science courses should emphasize basic notions of modularity, specification, and data
abstraction, and should not let these be displaced by more advanced topics, such as design
patterns, object-oriented methods, concurrency, functional languages, and so on (Jackson
& Chapin, 2000).

In short, sicp, Scheme, and functional programming don’t prepare students prop-

erly for other programming courses and thus fail to meet a basic need.

Advocates of Scheme and functional programming alike must be concerned about

these reactions. To address them and to overcome the problems of the sicp ap-

proach, we present this pearl. It consists of three pieces: a structural framework for

analyzing the first-year computing curriculum; an interpretation of sicp with re-

spect to this framework;2 and our alternative to the sicp approach that overcomes

sicp’s problems while retaining the essence of Scheme and functional programming.

2 Structure

2.1 Solving constraints

The primary goal of a computing curriculum is to produce programmers and soft-

ware engineers. After all, most of its graduates accept industry positions and pro-

duce software. Many will stay involved with software production for a long times,

even if only as managers, and therefore also need to learn to adapt to the ever-

evolving nature of the field.

Translating the primary goal into a set of goals for the introductory curriculum

is a difficult task because various groups impose a range of unrelated constraints.

Faculty colleagues (inside and outside of computer science) often have an emotional

preference for a specific language in the introductory course. To some, the first

2 We chose sicp as our yardstick because it is the most widely used and known text that uses
functional programming and because we believe that all other texts—of almost equal age (Bird
& Wadler, 1988) or of recent vintage (Hudak, 2000)—on functional programming suffer from
similar flaws.



Structure and Interpretation 3

language is the one that they know and work(ed) with. To others, it is the currently

fashionable industry language, e.g., C++ and Java over the past ten years.

Some computer science faculty demand that the first course teach languages that

are used in upstream courses. Sometimes they believe that the instructor of the

second course should not have to start from scratch and that the simplest solution

is to use a single programming language. Sometimes they wish to expose students

to languages that are used in popular upstream courses such as operating systems.

First-year students also come with strong, preconceived notions about program-

ming and computing. Some students (or their parents) have read about the latest

industry trends in popular magazines, such as (in the US) Time, Newsweek and

US News and World Report, and expect to see some of these things in a freshman

course. Some base their understanding on prior experiences in high schools. The

latter group is used to sophisticated development environments (IDEs) that include

mechanical support for syntactic conventions, GUI development, etc.

The state of the first-year students’ education adds another set of constraints

to the mix. Some understand calculus; for others, even rudimentary algebra is a

minefield.

Finally, students also have a wide range of expectations. Some students wish

to learn what computer science is about; others have three years of programming

experience. Some wish to know why things work; others want to learn how to

construct games. Almost everyone expects that the college training will help them

find internships and professional positions.

Satisfying the primary goal of producing software professionals subject to these

constraints poses a complex problem. On one hand, learning to program well re-

quires a lot of practice and in particular a lot of hands-on practice. Hence, early

courses must introduce programming and must choose a specific programming lan-

guage. On the other hand, choosing one language over another must disappoint

some constituents, and we must therefore convey to them our choices with good

reasons. After all, education is as much about satisfying human needs as it is about

technical correctness.

We propose to solve this constraint problem with a second look at the primary

goal and the timing constraints. Clearly, a computer science curriculum must not,

and doesn’t have to, become a vocational training ground for the latest industrial

programming language and programming tools. Superficial aspects of industrial

practice change as fast as fashion trends. No academic department can switch its

course content fast enough and maintain a curriculum that passes on tested wisdom.

Still, when students cross over from academia into industry, they must be prepared

to program and ideally to program well. From this perspective, two points in the

curriculum take on special meaning: the first summer, when students work in in-

ternship positions, and the last year, when students interview for their first full-time

positions.

Following this reasoning, we believe it is natural to concentrate on principles for

most of the time and to accommodate industrial needs during the second semester of

the first year and the last year of a college program. Considering that college is the

only time in a programmer’s life when he is exposed to principled ideas on a regular



4 Felleisen et al.

and rigorous basis, the idea of emphasizing principles in college is obvious. Once a

programmer has a full-time position, there are too many constraints and distraction

for principled additional education. At the same time, however, a curriculum must

also teach how these principles apply to the real world. Nobody can expect students

to take this step on their own. In short, teach good habits early; otherwise bad habits

become ingrained and require costly fixes—just like bugs in programs.

Applied to the first-year courses, these suggestions say that the year should start

with a heavy emphasis on principles and should add some industrially relevant com-

ponents during the second semester. Even more precisely, the first semester should

emphasize programming principles and habits; the second part should illustrate the

use of these principles in currently fashionable programming languages. Of course,

the “principled” semester may integrate fashionable parts where they aren’t an ob-

stacle, and, more importantly, the “fashionable” part of the first year must continue

to practice good design habits.

2.2 Principles of programming

The first challenge is thus to identify technical principles for the first-year program-

ming courses. Clearly, we should teach good program design habits (not just syntax

and programming style). Based on our experience, we have identified the following

set of program design ideas that a first course should translate into habits:

1. Students must learn to read problem statements carefully, extract informa-

tion, and rewrite it into useful pieces:

(a) a concise purpose statement for the program and each of its major pieces;

(b) a description of the classes of data that play a role;

(c) a collection of examples that illustrate both the classes as well as the

purpose statements.

Ideally the latter should (eventually) make up a rigorous test suite for the

program and its functions.

2. Students must learn to organize programs so that they match the class de-

scriptions of item 1b. For example, a functional programmer must define

datatypes and functions on these types whose structure matches the type;

an object-oriented programmer must define class hierarchies and appropri-

ately distributed methods.

If students learn to organize programs in this manner, they quickly learn

that small changes to the problem statement translate into small changes in

the program’s code. Considering the rapid changes in the requirements for

real-world software, we consider this principle central to our effort.

3. Students must learn to use the examples developed in item 1c above. They

must learn to calculate through examples before they code. They must learn

to translate the examples into automatic test suites, so that they can test

programs as they create them and as the programs evolve later.

More concisely, students must learn that programming requires far more than writ-

ing down code and running it on some haphazardly chosen examples afterwards.



Structure and Interpretation 5

The last point in particular suggests that functional languages with their nat-

ural model-view separation are superior choices for this first year. When students

write automatic test suites, they must to split a program into a part that deals

with computation proper (the “model”) and another part that interacts with the

user (the “view”). They then use the model in two distinct contexts: with a test

suite and with the view. In order to re-use the model in a test suite context, they

don’t want to print results but hand them over directly to a comparison function.

Put differently, teaching good software architecture principles to beginners requires

function composition and discourages a programming style that is primarily about

reading and printing values.

2.3 Principles of teaching

The second challenge for a first-year instructor is to understand the teaching prior-

ities concerning the first language and the first course. Currently, most instructors

teach programming with examples. In a typical week, they introduce a new (con-

trol) construct, explain with a few examples how to use it, and then assign some

exercises from a text book. Students copy the examples and modify them to fit

the homework exercises. Since these exercises tend to change the context for the

new construct, students also begin to appreciate its general powers and pitfalls.

Put differently, the teaching of (control) constructs is explicit while the teaching of

design principles remains implicit ; instructors leave it to the students to discover

how to go from a blank screen to a full-fledged program.3

We believe that the conventional approach to teaching programming reverses the

natural roles of data and control. Recall Brooks slogan page 102

Show me your [code] and conceal your [data structures], and I shall continue to be
mystified. Show me your [data structures], and I won’t usually need your [code]; it’ll be
obvious.

as paraphrased by Raymond (Raymond, 1998). When we reason about a program,

we want to know the format of the data that it uses, and we can almost imagine

how it works. In analogy, when we teach how to program, we should let data drive

the syllabus. First we show how to design a program that works on simple data and

what kind of (control) constructs this requires. Then we increase the complexity

of the data and show how to design programs for these classes of data. Such a

step may, or may not, require new constructs, but in the end it forces students to

understand how to go from data to design explicitly, and they will pick up language

constructs implicitly.

Since most students are active learners, it is important to retain the example-

driven strategy that is currently used. The examples must, however, focus on the

3 Challenging instructors throw in ideas from data structures and algorithms or, worse, pose
problems that require significant domain knowledge, that is, knowledge about non-computing
topics. The problem is then that students tend to confuse algorithms and application domain
knowledge with program construction, and neither helps students come up with good program
organizations on their own when they are left to their own devices.



6 Felleisen et al.

use of program design principles in new situations instead of the use of language

constructs.

In summary, the first course should introduce the principles of program design,

state them explicitly as habits, and have students practice them with numerous ex-

amples. To avoid any confusion, the course should not pose problems from complex

application domains and it should not use a complex language that distracts from

the design principles.

3 Interpretation: functional versus object-oriented programming

Now that we have discussed the structure of the first-year curriculum and its teach-

ing methods, we can turn to the choice of programming language. If we accept the

premise that first-year students should learn to use two programming languages,

we now face the question which (kind of) languages we should choose. If we also

accept the premise that the first language should facilitate the teaching of design

principles, choosing a simple functional language for the first course is natural.

The second course can then use a (subset of a) complex, industrially fashionable

language, such as C# or Java, and show how the design principles apply there.

We justify this suggestion in more detail in the first subsection and explain our

concrete choice in the second one.

3.1 Functional and object-oriented programming

Functional and object-oriented programming share the desired curricular focus on

data as the starting point for program design. A functional programmer begins

with the definition of types and then defines functions on these types. An object-

oriented programmer defines classes and adds methods to these classes. Once the

vocabulary of data and operations are defined, programs are usually just a function

or a method call.

Functional programming and object-oriented programming differ with respect to

the syntax and semantics of the underlying languages. The core of a functional lan-

guage is small. All a beginning programmer needs are function definition, function

application, variables, constants, a conditional form, and possibly a construct for

defining algebraic types. In contrast, using an object-oriented language for the same

purposes requires classes, fields, methods, inheritance in addition to everything that

a functional language needs. Furthermore, the computational model of a functional

language is a minor extension of that of secondary school algebra. The model of

object-oriented computation requires far more sophistication, especially its focus

on method dispatch (instead of conditional reasoning) and early state modification.

Using a functional language followed by object-oriented language is thus the

natural choice. The functional language allows students to gain confidence with

program design principles. They learn to think about values and operations on

values. They can easily comprehend how the functions and operations work with

values. Better still, they can use the same rules to figure out why a program pro-

duces the wrong values, which it often will. Teaching an object-oriented language



Structure and Interpretation 7

in the second course is then a small shift of focus. It requires instructors to spend

more time on the syntactic complexities of the language, yet they can still rely on,

and reinforce, the design principles of the first course. In particular, the switch is

of a mostly syntactic nature, because the focus on designing classes of data and

operations on these classes remains the same.

3.2 The role of Scheme

Given this context, we picked Scheme as the most suitable starting point for the

first language. The arguments in its favor have been told time and again. We have

already argued elsewhere that plain Scheme is a weak language for the first course

and that it requires more support (Findler et al., 2002). We briefly summarize these

arguments here:

Scheme’s syntax is simple. Indeed, it is too simple because almost every paren-

thesized expression is a syntactically valid program. When a student misplaces

a parenthesis, the program may produce an indecipherable error message or a

meaningless value. Our fix is to define a series of teaching subsets of Scheme and

to implement each of them in our DrScheme programming environment. Imple-

menting each subset enables us to produce error messages on the appropriate

knowledge level for beginners.4

Scheme’s semantics is easy to understand. sicp can quickly move from syn-

tax to computer science concepts because it uses a language subset with a

straightforward substitution semantics. Semantically speaking, the language is

a generalization of high school algebra. If a Scheme implementation comes with

an algebraic stepper that illustrates this concept (Clements et al., 2001), stu-

dents can easily explore a program’s evaluation without thinking about registers,

stacks, memory cells, and other low-level concepts.5

Scheme is safe. More precisely, Scheme’s standard (Kelsey et al., 1998) allows a

Scheme implementation to be safe. DrScheme, for example, implements a safe

language with fully predictable behavior. When a computational operation vio-

lates its stated invariants, the implementation raises an exception and high-lights

the offending expression. For beginners, detecting and pinpointing the source of

run-time exceptions are critical elements of the language.6

Scheme is dynamically typed. The lack of a type system means that we don’t

have to spend energy on finding and explaining type errors with the same care

with which we explain syntax errors. Better yet, when we use Scheme to teach

design principles we can informally superimpose a type system and use the types

4 In the 1970s, instructors who taught PL/1 faced a similar challenge and came up with a similar
solution, though without the full compiler support for error messages that we provide (Holt
et al., 1977).

5 It may still be valuable to teach some of these concepts later in the course, when students have
absorbed the basic ideas of program construction.

6 This partly explains why C++ is such a failure. Its lack of safety does not even guarantee
that when a program prints a number, it is actually interpreting bits that represent a number.
Similarly, core dumps and bus errors are much worse than exceptions, because they typically
happen long after the first violation occurred.



8 Felleisen et al.

for program design. In particular, it is easy to define and use sets and subsets

of Scheme values. This comes close to students’ intuitions about classes and

subclasses in object-oriented programs and thus provides a good transition for

the second course.

3.3 Programming environments

The choice of language for a first-year course isn’t just about the linguistics; it

must also take into account the programming environment. After all, developing

and running a program means more than just writing correct code. It requires

support for editing; compiling and running programs; understanding how a program

is evaluated; and so on.

Like the language, we believe that the programming environment for the first

course should be a lightweight, easy-to-use tool. That is, it should provide just

enough to edit and execute functions and programs, plus some tools for under-

standing fundamental concepts, e.g., lexical scope and program reduction. Every-

thing else should be hidden from the student.

We believe that the lack of such a programming environment hurt the SICP

approach of teaching and the functional community in general. For that reason, we

have produced a programming environment that supports teaching program design

principles with Scheme (Findler et al., 2002). Others have had similar insights and

have produced alternative environments independently (Schemer’s Inc., 1991).

4 Interpretation: teaching design principles

4.1 Structure and Interpretation of Computer Programs

sicp covers many important program design ideas. The course starts with an

overview of Scheme and recursive programming. In parallel, the course explains

how to evaluate variable expressions and function applications; that is, it intro-

duces a symbolic model of computation so that students understand the actions

that a program performs. The book then covers topics such as higher-order proce-

dural abstraction; data abstraction; mutable data objects; a message passing model

of objects; streams; modularity; meta-linguistic abstraction; and compilation.

Although this collection of topics is impressive at first glance, a second look shows

that sicp suffers from a serious flaw. While the course briefly explains programming

as the definition of some recursive procedures, it does not discuss how programmers

determine which procedures are needed or how to organize these procedures. While

it explains that programs benefit from functions as first-class values, it does not

show how programmers discover the need for this power. While SICP introduces

the idea that programs should use abstraction layers, it never mentions how or when

programmers should introduce such layers of abstraction. Finally, while the book

discusses the pros and cons of stateful modularity versus stream-based modularity,

it does so without explaining how to recognize situations in which one is more useful

than the other.



Structure and Interpretation 9

More generally, sicp doesn’t state how to program and how to manage the design

of a program. It leaves these things implicit and implies that students can discover a

discipline of design and programming on their own. The course presents the various

uses and roles of programming ideas with a series of examples. Some exercises then

ask students to modify this code basis, requiring students to read and study code;

others ask them to solve similar problems, which means they have to study the

construction and to change it to the best of their abilities. In short, sicp students

learn by copying and modifying code, which is barely an improvement over typical

programming text books.

sicp’s second major problem concerns its selection of examples and exercises. All

of these use complex domain knowledge. Consider the left column in figure 1. It

presents the choice of major examples that are used in the first few chapters of sicp.

Some early sections and the last two chapters cover topics from computer science:

see lower half of the left column in figure 1.

While these topics are interesting to students who use computing in electrical

engineering and to those who already have significant experience of programming

and computing, they assume too much understanding from students who haven’t

understood programming yet and they assume too much domain knowledge from

any beginning student who needs to acquire program design skills. On the average,

beginners are not interested in mathematics and electrical engineering, and they do

not have ready access to the domain knowledge necessary for solving the domain

problems. As a result, sicp students must spend a considerable effort on the do-

main knowledge and often end up confusing domain knowledge and program design

knowledge. They may even come to the conclusion that programming is a shallow

activity and that what truly matters is an understanding of domain knowledge.7

Similarly, many students lack an understanding of the role of compilers, logical

models of program execution, and so on. While first-semester students should defi-

nitely find out about these ideas, they should do so in a context that reaffirms the

program design lessons.

In summary, while sicp does an excellent job shifting the focus of the first course

to challenging computer science topics, it fails to recognize the role of the first

course in the overall curriculum. In particular, sicp’s implicit approach to program

design ideas and its emphasis on complex domains obscures the goal of the first

course as seen from the perspective of a typical four-year curriculum.

4.2 How to Design Programs

Over the past few years, we have developed an alternative approach to teaching the

first course. We have translated the approach into a new text book, and we believe

that it addresses sicp’s failings along four dimensions. First, the book discusses

7 Some faculty members argue that a course on introductory programming is a good place for
teaching students mathematical problem solving. While we partly agree with the idea that
programming can teach domain knowledge, we also believe that a course on programming should
teach knowledge about program design. We therefore ignore this line of argument here.



10 Felleisen et al.

sicp:
primality
interval arithmetic
symbolic differentiation
representing sets
huffman encoding trees
symbolic algebra
digital circuits

normal/applicative order
strictness/laziness
non-determinism
logic programming
register machines
compilers

htdp:
moving circles
hangman
moving shapes
moving pictures
rearranging words
binary search trees
evaluating scheme
more on web pages
evaluating scheme again
moving pictures, again
mathematical examples
Gaussian elimination
checking (on) queens
accumulators on trees
missionaries and cannibals
board solitaire
exploring places
moving pictures, a last time

Fig. 1. sicp and htdp exercises

explicitly how programs should be constructed. Second, to tame the complexity of

programming, it defines a series of teaching languages based on Scheme that rep-

resent five distinct knowledge levels through which students pass during their first

course. The levels correspond to the complexity of data definitions that the program

design guidelines use. Third, the book uses exercises to reinforce the explicit guide-

lines on program design; few, if any, exercises are designed for the sake of domain

knowledge. Finally, the book uses more accessible forms of domain knowledge than

sicp. Because of this shift in emphasis, we gave our book the title How to Design

Programs (htdp).

A cursory look at htdp’s table of contents reveals the new emphasis. Every chap-

ter comes with at least one section on the design of a particular class of functions.

At the same time, no section title concerns domain knowledge, except for those

labeled “extended exercise.”

htdp’s explicit design knowledge is encapsulated in design recipes. Every design

recipe enforces basic design habits:8

1. analyze the problem and describe the classes of problem data;

2. formulate a concise purpose statement (and a type signature);

3. illustrate the data definitions and the purpose statement with examples;

4. create a function layout based on steps 1 through 3;

5. write code; and

8 Glaser et al.’s notion of “programming by numbers” (Glaser et al., 2000) is a simple version of
our notion of a design recipe. It uses a version of step 4 in our design recipes for functions on
algebraic datatypes without going through the preparatory steps.



Structure and Interpretation 11

6. turn the examples into (automatic) test cases.

The book contains a series of approximately 10 design recipes. The first half of the

series shows how the description of the classes of data suggest a natural organization

of the functions that process them. These recipes addresses the design of functions

for classes of atomic data (numbers, booleans, characters), intervals and unions,

composites, self-referential definitions, groups of mutually referential definitions,

and so on. The second half of the series cover other important topics: abstracting

over similar functions and data definitions, generative recursion, accumulator-style

programming, and programming with mutation. In these cases, the design recipes

especially address the topic of when to use a technique or mode of an existing

recipe; no technique is introduced as just another trick for the toolbox.

The recipes also introduce a new distinction into program design: structural ver-

sus generative recursion. The structural design recipes in the first half of the book

match the structure of a function to the structure of a data definition. When the

data definition happens to be self-referential, the function is recursive; when there

is a group of definitions with mutual cross-references, there is a group of function

definitions with mutual references among the functions. In contrast, generative re-

cursion concerns the generation of new problem data in the middle of the problem

solving process and the re-use of the problem solving method.

Compare insort and kwik , two standard sort functions:

;; (listof X ) → (listof X )

(define (insort l)

(cond

[(empty? l) empty]

[else

(place

(first l)

(insort (rest l)))]))

;; (listof X ) → (listof X )

(define (kwik l)

(cond

[(empty? l) empty]

[else

(append (kwik (larger (first l) l))

(first l)

(kwik (smaller (first l) l)))]))

The first function, insort , recurs on a structural portion of the given datum, namely,

(rest l). The second function, kwik , recurs on data that are generated by some other

functions. To design a structurally recursive function is usually a straightforward

process. To design a generative recursive function, however, almost always requires

some ad hoc insight into the process. Often this insight is derived from some mathe-

matical idea. In addition, while structurally recursive functions naturally terminate

for all inputs, a generative recursive function may diverge. htdp therefore suggests

that students add a discussion about termination to the definition of generative

recursive functions.

Distinguishing the two forms of recursion and focusing on the structural case

makes our approach scalable to the object-oriented (OO) world. In an OO world,

the structural recipes naturally suggest class hierarchies and recursive methods that

call directly along containment (“has a”) relationships. Indeed, an OO purist might

argue that OO programming languages arise from implementing structural recipes

as a linguistic construct.



12 Felleisen et al.

Contrast this with sicp’s treatment of recursion. The two notions are not dis-

tinguished and, worse, the book’s first recursive procedure (sqrt-iter page 23) uses

generative recursion. The structural aspect of recursion is almost ignored and cer-

tainly never presented as the bridge to object-oriented programming. More gener-

ally, because sicp misses structural recursion and structural reasoning, it confuses

implementing objects with object-oriented programming. The book never actually

discusses reasoning about, and programming with, classes of data, which is the

essence of modern OO programming.

htdp introduces the idea of iterative refinement for both programs and data

separately. As students learn to cope with increasingly complex forms of data, the

book shows how a programmer can design programs with a series of correspondingly

more precise data representations. As the representations become more precise,

the program implements more of the desired functionalities. Combining the design

recipes with the idea of refinement then helps students produce complex programs

systematically.

htdp and sicp also vastly differ with regard to the treatment of language syntax.

htdp uses an analog of Quine’s approach to studying set theory and its logic (van

Orman Quine, 1963). Each language level is tuned to a particular stage in the

exploration of design. htdp shows what kinds of programs are natural to write

and explains during the next stage why a construct should be added. Thus, for

example, htdp students work with classes of data and hierarchies of classes long

before they encounter an assignment statement and before DrScheme interprets set!

for them. This represents our insight that it is critically important for students to

organize programs according to measurable criteria and for teachers to be able to

tell students when working programs are justifiably bad.

Finally, htdp uses domain knowledge differently from sicp. Figure 1 juxtaposes

the section titles in sicp and htdp that are concerned with exercises. Even a short

glance shows that htdp uses domain knowledge that is within reach of most stu-

dents. It does offer some exercise sets that introduce mathematics that may be new

to some students (such as Gaussian elimination and adaptive integration), but such

exercises are never on the critical path.

5 Experience and outlook

The htdp approach has been implemented at about a dozen colleges and, to some

extent, at several dozen high schools. At the college level, the change has always

shown strong results. For example, at Rice University and at Northeastern Univer-

sity, students can/could enter the second course (using Java) from either an htdp

course (taught in computer science) or a C++ course (taught in computer engi-

neering). At both universities, independent instructors confirmed that the htdp

students are better prepared to program in an OO world than the C++ students

and that they have much better programming habits. The Northeastern htdp stu-



Structure and Interpretation 13

dents received five times as many A’s (best grade) as the C++ students; at the

other grade levels, the numbers are approximately the same.9

High school teachers who implement htdp report similar success stories as col-

leges but in a less measurable manner. Still, the htdp curriculum has had an inter-

esting measurable effect concerning female students. Several instructors reported

that female students like the HtDP curriculum exceptionally well. In a controlled

experiment, an htdp-trained instructor taught a conventional AP curriculum and

the Scheme curriculum to the same three classes of students. Together the three

classes consisted of over 70 students. While all students preferred our approach

to programming, the preference among females was a stunning factor of four. An

independent evaluator is now investigating this aspect of the project in more depth.

In general, we believe that the htdp project has validated the usefulness of func-

tional programming and functional programming languages in the first program-

ming course. We have found that teaching Scheme for Scheme’s sake (or Haskell

for Haskell’s sake) won’t work. Combining sicp with a GUI-based development

environment for Scheme won’t work better than plain sicp. The two keys to our

success were to tame Scheme into teaching languages that beginners can handle

and to distill well-known functional principles of programming into generally ap-

plicable design recipes. Then we could show our colleagues that a combination of

functional programming as a preparation for a course on object-oriented program-

ming is an effective and indeed superior alternative to a year on just C++, Java,

or a combination.

We are hoping that other functional communities can replicate our success in

different contexts. We suggest, however, that using plain Erlang, Haskell, or ML

and that teaching programming in these languages implicitly will not do. We all

need to understand the role of functional programming in our curricula and the

needs of our students. Fortunately, Chakravarty and Keller’s recent educational

pearl (Chakravarty & Keller, 2004) shows that we are not the only ones who have

recognized the deficiencies of conventional approaches.

Note: DrScheme and How to Design Programs are freely available on the Web at

http://www.teach-scheme.org/.

References

Abelson, Harold, Sussman, Gerald Jay, & Sussman, Julie. (1985). Structure and interpre-

tation of computer programs. MIT Press.

Bird, R., & Wadler, P. (1988). Introduction to functional programming. Prentice Hall
International, New York.

Chakravarty, Manuel M. T., & Keller, Gabriele. (2004). The risks and benefits of teaching
purely functional programming in first year. Journal of Functional Programming, to

appear, ??–??

9 The numbers are normalized. The sample is approximately 150 students with approximately 40
students from C++ and the rest from an HtDP course.



14 Felleisen et al.

Clements, John, Flatt, Matthew, & Felleisen, Matthias. (2001). Modeling an algebraic
stepper. European symposium on programming.

Clinger, William. (1985). The revised revised report on the algorithmic language Scheme.
Joint technical report. Indiana University and MIT.

Clinger, William, & Rees, Jonathan. (1991). The revised4 report on the algorithmic
language Scheme. ACM Lisp pointers, 4(3).

Findler, Robert Bruce, Clements, John, Flanagan, Cormac, Flatt, Matthew, Krishna-
murthi, Shriram, Steckler, Paul, & Felleisen, Matthias. (2002). DrScheme: A program-
ming environment for Scheme. Journal of functional programming, 12(2), 159–182. A
preliminary version of this paper appeared in PLILP 1997, LNCS volume 1292, pages
369–388.

Glaser, H., Hartel, P. H., & Garratt, P. W. (2000). Programming by numbers – a pro-
gramming method for complete novices. Computer journal, 43(4), 252–265.

Holt, R.C., Wortman, D.B., Barnard, D.T., & Cordy, J.R. (1977). Sp/k: A system for
teaching computer programming. Communications of the acm, 20(5), 301–309.

Hudak, Paul. (2000). The Haskell school of expression. Cambridge University Press.

Jackson, Daniel, & Chapin, John. (2000). Redesigning air traffic control: An exercise in
software design. Ieee software, 17(3).

Kelsey, Richard, Clinger, William, & Rees (Editors), Jonathan. (1998). Revised5 report
of the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9), 26–76.

Raymond, Eric S. (1998). The cathedral and the bazaar. First monday, 3(3).

Schemer’s Inc. (1991). EdScheme: A modern Lisp.

Steele Jr., Guy Lewis, & Sussman, Gerald L. (1978). The revised report on scheme, a

dialect of lisp. Tech. rept. 452. MIT Artificial Intelligence Laboratory.

Sussman, Gerald L., & Steele Jr., Guy Lewis. (1975). Scheme: An interpreter for extended

lambda calculus. Tech. rept. 349. MIT Artificial Intelligence Laboratory.

van Orman Quine, Willard. (1963). Set theorey and its logic. Harvard Press.

Wadler, Philip. (1987). A critique of Abelson and Sussman, or, why calculating is better
than scheming. SIGPLAN Notices, 22(3).


