
Revenge of the Nerds

 Paul Graham, May 2002

"We were after the C++ programmers. We managed to drag a lot of them
about halfway to Lisp."
- Guy Steele, co-author of the Java spec

In the software business there is an ongoing
struggle between the pointy-
headed academics, and another
equally formidable force, the
pointy-haired bosses. Everyone
knows who the pointy-haired boss
is, right? I think most people in
the technology world not only
recognize this cartoon character,

but know the actual person in their company that
he is modeled upon.

The pointy-haired boss miraculously combines two
qualities that are common by themselves, but
rarely seen together: (a) he knows nothing what-
soever about technology, and (b) he has very
strong opinions about it.

Suppose, for example, you need to write a piece
of software. The pointy-haired boss has no idea
how this software has to work, and can't tell one
programming language from another, and yet he
knows what language you should write it in. Ex-
actly. He thinks you should write it in Java.

Why does he think this? Let's take a look inside
the brain of the pointy-haired boss. What he's
thinking is something like this. Java is a standard.
I know it must be, because I read about it in the
press all the time. Since it is a standard, I won't
get in trouble for using it. And that also means
there will always be lots of Java programmers, so
if the programmers working for me now quit, as

programmers working for me mysteriously always
do, I can easily replace them.

Well, this doesn't sound that unreasonable. But
it's all based on one unspoken assumption, and
that assumption turns out to be false. The pointy-
haired boss believes that all programming lan-
guages are pretty much equivalent. If that were
true, he would be right on target. If languages are
all equivalent, sure, use whatever language eve-
ryone else is using.

But all languages are not equivalent, and I think I
can prove this to you without even getting into the
differences between them. If you asked the
pointy-haired boss in 1992 what language soft-
ware should be written in, he would have an-
swered with as little hesitation as he does today.
Software should be written in C++. But if lan-
guages are all equivalent, why should the pointy-
haired boss's opinion ever change? In fact, why
should the developers of Java have even bothered
to create a new language?

Presumably, if you create a new language, it's be-
cause you think it's better in some way than what
people already had. And in fact, Gosling makes it
clear in the first Java white paper that Java was
designed to fix some problems with C++. So there
you have it: languages are not all equivalent. If
you follow the trail through the pointy-haired
boss's brain to Java and then back through Java's
history to its origins, you end up holding an idea
that contradicts the assumption you started with.

1

So, who's right? James Gosling,
or the pointy-haired boss? Not
surprisingly, Gosling is right.
Some languages are better, for
certain problems, than others.
And you know, that raises some
interesting questions. Java was
designed to be better, for certain

problems, than C++. What problems? When is
Java better and when is C++? Are there situations
where other languages are better than either of
them?

Once you start considering this question, you have
opened a real can of worms. If the pointy-haired
boss had to think about the problem in its full
complexity, it would make his brain explode. As
long as he considers all languages equivalent, all
he has to do is choose the one that seems to have
the most momentum, and since that is more a
question of fashion than technology, even he can
probably get the right answer. But if languages
vary, he suddenly has to solve two simultaneous
equations, trying to find an optimal balance be-
tween two things he knows nothing about: the
relative suitability of the twenty or so leading lan-
guages for the problem he needs to solve, and the
odds of finding programmers, libraries, etc. for
each. If that's what's on the other side of the door,
it is no surprise that the pointy-haired boss
doesn't want to open it.

The disadvantage of believing that all program-
ming languages are equivalent is that it's not true.
But the advantage is that it makes your life a lot
simpler. And I think that's the main reason the
idea is so widespread. It is a comfortable idea.

We know that Java must be pretty good, because
it is the cool, new programming language. Or is it?
If you look at the world of programming lan-
guages from a distance, it looks like Java is the
latest thing. (From far enough away, all you can
see is the large, flashing billboard paid for by
Sun.) But if you look at this world up close, you
find that there are degrees of coolness. Within the
hacker subculture, there is another language
called Perl that is considered a lot cooler than
Java. Slashdot, for example, is generated by Perl.
I don't think you would find those guys using Java
Server Pages. But there is another, newer lan-
guage, called Python, whose users tend to look
down on Perl, and more waiting in the wings.

If you look at these languages in order, Java, Perl,
Python, you notice an interesting pattern. At least,
you notice this pattern if you are a Lisp hacker.
Each one is progressively more like Lisp. Python
copies even features that many Lisp hackers con-
sider to be mistakes. You could translate simple
Lisp programs into Python line for line. It's 2002,
and programming languages have almost caught
up with 1958.

Catching Up with Math

What I mean is that Lisp was
first discovered by John McCar-
thy in 1958, and popular pro-
gramming languages are only
now catching up with the ideas
he developed then.

Now, how could that be true?
Isn't computer technology
something that changes very
rapidly? I mean, in 1958, com-

puters were refrigerator-sized behemoths with the
processing power of a wristwatch. How could any
technology that old even be relevant, let alone
superior to the latest developments?

I'll tell you how. It's because Lisp was not really
designed to be a programming language, at least
not in the sense we mean today. What we mean
by a programming language is something we use
to tell a computer what to do. McCarthy did even-
tually intend to develop a programming language
in this sense, but the Lisp that we actually ended
up with was based on something separate that he
did as a theoretical exercise-- an effort to define a
more convenient alternative to the Turing Ma-
chine. As McCarthy said later,

“Another way to show that Lisp was neater than
Turing machines was to write a universal Lisp func-
tion and show that it is briefer and more compre-
hensible than the description of a universal Turing
machine. This was the Lisp function eval..., which
computes the value of a Lisp expression.... Writing
eval required inventing a notation representing Lisp
functions as Lisp data, and such a notation was de-
vised for the purposes of the paper with no thought
that it would be used to express Lisp programs in
practice.”

2

http://www.paulgraham.com/accgen.html
http://www.paulgraham.com/accgen.html
http://www.paulgraham.com/rootsoflisp.html
http://www.paulgraham.com/rootsoflisp.html

What happened next was that, some time in late
1958, Steve Russell, one of McCarthy's grad stu-
dents, looked at this definition of eval and realized
that if he translated it into machine language, the
result would be a Lisp interpreter.

This was a big surprise at the time. Here is what
McCarthy said about it later in an interview:

Steve Russell said, look, why don't I program this
eval..., and I said to him, ho, ho, you're confusing
theory with practice, this eval is intended for reading,
not for computing. But he went ahead and did it. That
is, he compiled the eval in my paper into [IBM] 704
machine code, fixing bugs, and then advertised this
as a Lisp interpreter, which it certainly was. So at that
point Lisp had essentially the form that it has today....

Suddenly, in a matter of weeks I think, McCarthy
found his theoretical exercise transformed into an
actual programming language-- and a more pow-
erful one than he had intended.

So the short explanation of why this 1950s lan-
guage is not obsolete is that it was not technology
but math, and math doesn't get stale. The right
thing to compare Lisp to is not 1950s hardware,
but, say, the Quicksort algorithm, which was dis-
covered in 1960 and is still the fastest general-
purpose sort.

There is one other language still surviving from
the 1950s, Fortran, and it represents the opposite
approach to language design. Lisp was a piece of
theory that unexpectedly got turned into a pro-
gramming language. Fortran was developed inten-
tionally as a programming language, but what we
would now consider a very low-level one.

Fortran I, the language that was developed in
1956, was a very different animal from present-
day Fortran. Fortran I was pretty much assembly
language with math. In some ways it was less
powerful than more recent assembly languages;
there were no subroutines, for example, only
branches. Present-day Fortran is now arguably
closer to Lisp than to Fortran I.

Lisp and Fortran were the trunks of two separate
evolutionary trees, one rooted in math and one
rooted in machine architecture. These two trees
have been converging ever since. Lisp started out
powerful, and over the next twenty years got fast.
So-called mainstream languages started out fast,
and over the next forty years gradually got more
powerful, until now the most advanced of them

are fairly close to Lisp. Close, but they are still
missing a few things....

What Made Lisp Different

When it was first developed,
Lisp embodied nine new
ideas. Some of these we now
take for granted, others are
only seen in more advanced
languages, and two are still
unique to Lisp. The nine
ideas are, in order of their
adoption by the mainstream:

 1. Conditionals. A conditional is an if-then-
else construct. We take these for granted
now, but Fortran I didn't have them. It had
only a conditional goto closely based on
the underlying machine instruction.

 2. A function type. In Lisp, functions are a
data type just like integers or strings. They
have a literal representation, can be stored
in variables, can be passed as arguments,
and so on.

 3. Recursion. Lisp was the first programming
language to support it.

 4. Dynamic typing. In Lisp, all variables are
effectively pointers. Values are what have
types, not variables, and assigning or bind-
ing variables means copying pointers, not
what they point to.

 5. Garbage-collection.

 6. Programs composed of expressions.
Lisp programs are trees of expressions,
each of which returns a value. This is in
contrast to Fortran and most succeeding
languages, which distinguish between ex-
pressions and statements.

It was natural to have this distinction in
Fortran I because you could not nest
statements. And so while you needed ex-
pressions for math to work, there was no
point in making anything else return a
value, because there could not be anything
waiting for it.

This limitation went away with the arrival
of block-structured languages, but by then

3

http://www.paulgraham.com/history.html
http://www.paulgraham.com/history.html

it was too late. The distinction between ex-
pressions and statements was entrenched.
It spread from Fortran into Algol and then
to both their descendants.

 7. A symbol type. Symbols are effectively
pointers to strings stored in a hash table.
So you can test equality by comparing a
pointer, instead of comparing each charac-
ter.

 8. A notation for code using trees of
symbols and constants.

 9. The whole language there all the time.
There is no real distinction between read-
time, compile-time, and runtime. You can
compile or run code while reading, read or
run code while compiling, and read or
compile code at runtime.

Running code at read-time lets users re-
program Lisp's syntax; running code at
compile-time is the basis of macros; com-
piling at runtime is the basis of Lisp's use
as an extension language in programs like
Emacs; and reading at runtime enables
programs to communicate using s-
expressions, an idea recently reinvented as
XML.

When Lisp first appeared, these ideas were far
removed from ordinary programming practice,
which was dictated largely by the hardware avail-
able in the late 1950s. Over time, the default lan-
guage, embodied in a succession of popular lan-
guages, has gradually evolved toward Lisp. Ideas
1-5 are now widespread. Number 6 is starting to
appear in the mainstream. Python has a form of
7, though there doesn't seem to be any syntax for
it.

As for number 8, this may be the most interesting
of the lot. Ideas 8 and 9 only became part of Lisp
by accident, because Steve Russell implemented
something McCarthy had never intended to be im-
plemented. And yet these ideas turn out to be re-
sponsible for both Lisp's strange appearance and
its most distinctive features. Lisp looks strange
not so much because it has a strange syntax as
because it has no syntax; you express programs
directly in the parse trees that get built behind the
scenes when other languages are parsed, and
these trees are made of lists, which are Lisp data
structures.

Expressing the language in its own data structures
turns out to be a very powerful feature. Ideas 8
and 9 together mean that you can write programs
that write programs. That may sound like a bi-
zarre idea, but it's an everyday thing in Lisp. The
most common way to do it is with something
called a macro.

The term "macro" does not mean in Lisp what it
means in other languages. A Lisp macro can be
anything from an abbreviation to a compiler for a
new language. If you want to really understand
Lisp, or just expand your programming horizons, I
would learn more about macros.

Macros (in the Lisp sense) are still, as far as I
know, unique to Lisp. This is partly because in or-
der to have macros you probably have to make
your language look as strange as Lisp. It may also
be because if you do add that final increment of
power, you can no longer claim to have invented a
new language, but only a new dialect of Lisp.

I mention this mostly as a joke, but it is quite
true. If you define a language that has car, cdr,
cons, quote, cond, atom, eq, and a notation for
functions expressed as lists, then you can build all
the rest of Lisp out of it. That is in fact the defin-
ing quality of Lisp: it was in order to make this so
that McCarthy gave Lisp the shape it has.

Where Languages Matter

So suppose
Lisp does
represent a

kind of limit
that mainstream languages are approaching as-
ymptotically-- does that mean you should actually
use it to write software? How much do you lose by
using a less powerful language? Isn't it wiser,
sometimes, not to be at the very edge of innova-
tion? And isn't popularity to some extent its own
justification? Isn't the pointy-haired boss right, for
example, to want to use a language for which he
can easily hire programmers?

There are, of course, projects where the choice of
programming language doesn't matter much. As a
rule, the more demanding the application, the
more leverage you get from using a powerful lan-
guage. But plenty of projects are not demanding
at all. Most programming probably consists of

4

http://www.paulgraham.com/onlisp.html
http://www.paulgraham.com/onlisp.html

writing little glue programs, and for little glue pro-
grams you can use any language that you're al-
ready familiar with and that has good libraries for
whatever you need to do. If you just need to feed
data from one Windows app to another, sure, use
Visual Basic.

You can write little glue programs in Lisp too (I
use it as a desktop calculator), but the biggest win
for languages like Lisp is at the other end of the
spectrum, where you need to write sophisticated
programs to solve hard problems in the face of
fierce competition. A good example is the airline
fare search program that ITA Software licenses to
Orbitz. These guys entered a market already
dominated by two big, entrenched competitors,
Travelocity and Expedia, and seem to have just
humiliated them technologically.

The core of ITA's application is a 200,000 line
Common Lisp program that searches many orders
of magnitude more possibilities than their com-
petitors, who apparently are still using mainframe-
era programming techniques. (Though ITA is also
in a sense using a mainframe-era programming
language.) I have never seen any of ITA's code,
but according to one of their top hackers they use
a lot of macros, and I am not surprised to hear it.

Centripetal Forces

I'm not saying there is
no cost to using uncom-
mon technologies. The
pointy-haired boss is not
completely mistaken to
worry about this. But
because he doesn't un-
derstand the risks, he
tends to magnify them.

I can think of three problems that could arise from
using less common languages. Your programs
might not work well with programs written in
other languages. You might have fewer libraries at
your disposal. And you might have trouble hiring
programmers.

How much of a problem is each of these? The im-
portance of the first varies depending on whether
you have control over the whole system. If you're
writing software that has to run on a remote
user's machine on top of a buggy, closed operat-

ing system (I mention no names), there may be
advantages to writing your application in the same
language as the OS. But if you control the whole
system and have the source code of all the parts,
as ITA presumably does, you can use whatever
languages you want. If any incompatibility arises,
you can fix it yourself.

In server-based applications you can get away
with using the most advanced technologies, and I
think this is the main cause of what Jonathan Er-
ickson calls the "programming language renais-
sance." This is why we even hear about new lan-
guages like Perl and Python. We're not hearing
about these languages because people are using
them to write Windows apps, but because people
are using them on servers. And as software shifts
off the desktop and onto servers (a future even
Microsoft seems resigned to), there will be less
and less pressure to use middle-of-the-road tech-
nologies.

As for libraries, their importance also depends on
the application. For less demanding problems, the
availability of libraries can outweigh the intrinsic
power of the language. Where is the breakeven
point? Hard to say exactly, but wherever it is, it is
short of anything you'd be likely to call an applica-
tion. If a company considers itself to be in the
software business, and they're writing an applica-
tion that will be one of their products, then it will
probably involve several hackers and take at least
six months to write. In a project of that size, pow-
erful languages probably start to outweigh the
convenience of pre-existing libraries.

The third worry of the pointy-haired boss, the dif-
ficulty of hiring programmers, I think is a red her-
ring. How many hackers do you need to hire, after
all? Surely by now we all know that software is
best developed by teams of less than ten people.
And you shouldn't have trouble hiring hackers on
that scale for any language anyone has ever heard
of. If you can't find ten Lisp hackers, then your
company is probably based in the wrong city for
developing software.

In fact, choosing a more powerful language
probably decreases the size of the team you need,
because (a) if you use a more powerful language
you probably won't need as many hackers, and
(b) hackers who work in more advanced lan-
guages are likely to be smarter.

5

http://www.paulgraham.com/carl.html
http://www.paulgraham.com/carl.html
http://www.paulgraham.com/carl.html
http://www.paulgraham.com/carl.html
http://www.byte.com/documents/s=1821/byt20011214s0003/
http://www.byte.com/documents/s=1821/byt20011214s0003/
http://www.byte.com/documents/s=1821/byt20011214s0003/
http://www.byte.com/documents/s=1821/byt20011214s0003/
http://www.paulgraham.com/road.html
http://www.paulgraham.com/road.html

I'm not saying that you won't get a lot of pressure
to use what are perceived as "standard" technolo-
gies. At Viaweb (now Yahoo Store), we raised
some eyebrows among VCs and potential acquir-
ers by using Lisp. But we also raised eyebrows by
using generic Intel boxes as servers instead of
"industrial strength" servers like Suns, for using a
then-obscure open-source Unix variant called
FreeBSD instead of a real commercial OS like
Windows NT, for ignoring a supposed e-commerce
standard called SET that no one now even re-
members, and so on.

You can't let the suits make technical decisions for
you. Did it alarm some potential acquirers that we
used Lisp? Some, slightly, but if we hadn't used
Lisp, we wouldn't have been able to write the
software that made them want to buy us. What
seemed like an anomaly to them was in fact cause
and effect.

If you start a startup, don't design your product to
please VCs or potential acquirers. Design your
product to please the users. If you win the users,
everything else will follow. And if you don't, no
one will care how comfortingly orthodox your
technology choices were.

The Cost of Being Average

How much do you lose by
using a less powerful lan-
guage? There is actually
some data out there about
that.

The most convenient meas-
ure of power is probably
code size. The point of high-
level languages is to give
you bigger abstractions--
bigger bricks, as it were, so
you don't need as many to

build a wall of a given size. So the more powerful
the language, the shorter the program (not simply
in characters, of course, but in distinct elements).

How does a more powerful language enable you to
write shorter programs? One technique you can
use, if the language will let you, is something
called bottom-up programming. Instead of simply

writing your application in the base language, you
build on top of the base language a language for
writing programs like yours, then write your pro-
gram in it. The combined code can be much
shorter than if you had written your whole pro-
gram in the base language-- indeed, this is how
most compression algorithms work. A bottom-up
program should be easier to modify as well, be-
cause in many cases the language layer won't
have to change at all.

Code size is important, because the time it takes
to write a program depends mostly on its length.
If your program would be three times as long in
another language, it will take three times as long
to write-- and you can't get around this by hiring
more people, because beyond a certain size new
hires are actually a net lose. Fred Brooks de-
scribed this phenomenon in his famous book The
Mythical Man-Month, and everything I've seen has
tended to confirm what he said.

So how much shorter are your programs if you
write them in Lisp? Most of the numbers I've
heard for Lisp versus C, for example, have been
around 7-10x. But a recent article about ITA in
New Architect magazine said that "one line of Lisp
can replace 20 lines of C," and since this article
was full of quotes from ITA's president, I assume
they got this number from ITA. If so then we can
put some faith in it; ITA's software includes a lot
of C and C++ as well as Lisp, so they are speak-
ing from experience.

My guess is that these multiples aren't even con-
stant. I think they increase when you face harder
problems and also when you have smarter pro-
grammers. A really good hacker can squeeze
more out of better tools.

As one data point on the curve, at any rate, if you
were to compete with ITA and chose to write your
software in C, they would be able to develop soft-
ware twenty times faster than you. If you spent a
year on a new feature, they'd be able to duplicate
it in less than three weeks. Whereas if they spent
just three months developing something new, it
would be five years before you had it too.

And you know what? That's the best-case sce-
nario. When you talk about code-size ratios,
you're implicitly assuming that you can actually
write the program in the weaker language. But in

6

http://news.com.com/2100-1017-225723.html
http://news.com.com/2100-1017-225723.html
http://www.paulgraham.com/power.html
http://www.paulgraham.com/power.html
http://www.paulgraham.com/progbot.html
http://www.paulgraham.com/progbot.html
http://www.newarchitectmag.com/documents/s=2286/new1015626014044/
http://www.newarchitectmag.com/documents/s=2286/new1015626014044/

fact there are limits on what programmers can do.
If you're trying to solve a hard problem with a
language that's too low-level, you reach a point
where there is just too much to keep in your head
at once.

So when I say it would take ITA's imaginary com-
petitor five years to duplicate something ITA could
write in Lisp in three months, I mean five years if
nothing goes wrong. In fact, the way things work
in most companies, any development project that
would take five years is likely never to get finished
at all.

I admit this is an extreme case. ITA's hackers
seem to be unusually smart, and C is a pretty low-
level language. But in a competitive market, even
a differential of two or three to one would be
enough to guarantee that you'd always be behind.

A Recipe

This is the kind of possibility that
the pointy-haired boss doesn't
even want to think about. And so
most of them don't. Because,
you know, when it comes down
to it, the pointy-haired boss
doesn't mind if his company gets
their ass kicked, so long as no
one can prove it's his fault. The
safest plan for him personally is

to stick close to the center of the herd.

Within large organizations, the phrase used to de-
scribe this approach is "industry best practice." Its
purpose is to shield the pointy-haired boss from
responsibility: if he chooses something that is "in-
dustry best practice," and the company loses, he
can't be blamed. He didn't choose, the industry
did.

I believe this term was originally used to describe
accounting methods and so on. What it means,
roughly, is don't do anything weird. And in ac-
counting that's probably a good idea. The terms
"cutting-edge" and "accounting" do not sound
good together. But when you import this criterion
into decisions about technology, you start to get
the wrong answers.

Technology often should be cutting-edge. In pro-
gramming languages, as Erann Gat has pointed
out, what "industry best practice" actually gets
you is not the best, but merely the average. When
a decision causes you to develop software at a
fraction of the rate of more aggressive competi-
tors, "best practice" is a misnomer.

So here we have two pieces of information that I
think are very valuable. In fact, I know it from my
own experience. Number 1, languages vary in
power. Number 2, most managers deliberately ig-
nore this. Between them, these two facts are lit-
erally a recipe for making money. ITA is an exam-
ple of this recipe in action. If you want to win in a
software business, just take on the hardest prob-
lem you can find, use the most powerful language
you can get, and wait for your competitors'
pointy-haired bosses to revert to the mean.

Appendix: Power

As an illustration of what I mean about the rela-
tive power of programming languages, consider
the following problem. We want to write a function
that generates accumulators-- a function that
takes a number n, and returns a function that
takes another number i and returns n incremented
by i.

(That's incremented by, not plus. An accumulator
has to accumulate.)

In Common Lisp this would be

(defun foo (n)
 (lambda (i) (incf n i)))

and in Perl 5,

sub foo {
 my ($n) = @_;
 sub {$n += shift}
}

which has more elements than the Lisp version
because you have to extract parameters manually
in Perl.

In Smalltalk the code is slightly longer than in Lisp

foo: n
 |s|
 s := n.
 ^[:i| s := s+i.]

7

because although in general lexical variables
work, you can't do an assignment to a parameter,
so you have to create a new variable s.

In Javascript the example is, again, slightly longer,
because Javascript retains the distinction between
statements and expressions, so you need explicit
return statements to return values:

function foo(n) {
 return function (i) {
 return n += i } }

(To be fair, Perl also retains this distinction, but
deals with it in typical Perl fashion by letting you
omit returns.)

If you try to translate the Lisp/Perl/Smalltalk/
Javascript code into Python you run into some
limitations. Because Python doesn't fully support
lexical variables, you have to create a data struc-
ture to hold the value of n. And although Python
does have a function data type, there is no literal
representation for one (unless the body is only a
single expression) so you need to create a named
function to return. This is what you end up with:

def foo(n):
 s = [n]
 def bar(i):
 s[0] += i
 return s[0]
 return bar

Python users might legitimately ask why they
can't just write

def foo(n):
 return lambda i: return n += i

or even

def foo(n):
 lambda i: n += i

and my guess is that they probably will, one day.
(But if they don't want to wait for Python to evolve
the rest of the way into Lisp, they could always
just...)

In OO languages, you can, to a limited extent,
simulate a closure (a function that refers to vari-
ables defined in enclosing scopes) by defining a
class with one method and a field to replace each
variable from an enclosing scope. This makes the
programmer do the kind of code analysis that
would be done by the compiler in a language with
full support for lexical scope, and it won't work if

more than one function refers to the same vari-
able, but it is enough in simple cases like this.

Python experts seem to agree that this is the pre-
ferred way to solve the problem in Python, writing
either

def foo(n):
 class acc:
 def __init__(self, s):
 self.s = s
 def inc(self, i):
 self.s += i
 return self.s
 return acc(n).inc

or

class foo:
 def __init__(self, n):
 self.n = n
 def __call__(self, i):
 self.n += i
 return self.n

I include these because I wouldn't want Python
advocates to say I was misrepresenting the lan-
guage, but both seem to me more complex than
the first version. You're doing the same thing, set-
ting up a separate place to hold the accumulator;
it's just a field in an object instead of the head of
a list. And the use of these special, reserved field
names, especially __call__, seems a bit of a hack.

In the rivalry between Perl and Python, the claim
of the Python hackers seems to be that that Py-
thon is a more elegant alternative to Perl, but
what this case shows is that power is the ultimate
elegance: the Perl program is simpler (has fewer
elements), even if the syntax is a bit uglier.

How about other languages? In the other lan-
guages mentioned in this talk-- Fortran, C, C++,
Java, and Visual Basic-- it is not clear whether you
can actually solve this problem. Ken Anderson
says that the following code is about as close as
you can get in Java:

public interface Inttoint {
 public int call(int i);
}

public static Inttoint foo(final int n) {
 return new Inttoint() {
 int s = n;
 public int call(int i) {
 s = s + i;
 return s;
 }};
}

8

This falls short of the spec because it only works
for integers. After many email exchanges with
Java hackers, I would say that writing a properly
polymorphic version that behaves like the preced-
ing examples is somewhere between damned
awkward and impossible. If anyone wants to write
one I'd be very curious to see it, but I personally
have timed out.

It's not literally true that you can't solve this prob-
lem in other languages, of course. The fact that all
these languages are Turing-equivalent means
that, strictly speaking, you can write any program
in any of them. So how would you do it? In the
limit case, by writing a Lisp interpreter in the less
powerful language.

That sounds like a joke, but it happens so often to
varying degrees in large programming projects
that there is a name for the phenomenon,
Greenspun's Tenth Rule:

“Any sufficiently complicated C or Fortran
program contains an ad hoc informally-
specified bug-ridden slow implementation
of half of Common Lisp.”

If you try to solve a hard problem, the question is
not whether you will use a powerful enough lan-
guage, but whether you will (a) use a powerful
language, (b) write a de facto interpreter for one,
or (c) yourself become a human compiler for one.
We see this already beginning to happen in the
Python example, where we are in effect simulating
the code that a compiler would generate to im-
plement a lexical variable.

This practice is not only common, but institution-
alized. For example, in the OO world you hear a
good deal about "patterns". I wonder if these pat-
terns are not sometimes evidence of case (c), the
human compiler, at work. When I see patterns in
my programs, I consider it a sign of trouble. The
shape of a program should reflect only the prob-
lem it needs to solve. Any other regularity in the
code is a sign, to me at least, that I'm using ab-
stractions that aren't powerful enough-- often that
I'm generating by hand the expansions of some
macro that I need to write.

Notes

 • The IBM 704 CPU was about the size of a
refrigerator, but a lot heavier. The CPU
weighed 3150 pounds, and the 4K of RAM
was in a separate box weighing another
4000 pounds. The Sub-Zero 690, one of

the largest household refrigerators, weighs
656 pounds.

 • Steve Russell also wrote the first (digital)
computer game, Spacewar, in 1962.

 • If you want to trick a pointy-haired boss
into letting you write software in Lisp, you
could try telling him it's XML.

 • Here is the accumulator generator in other
Lisp dialects:

 Scheme:
 (define (foo n)
 (lambda (i) (set! n (+ n i))
 n))

 Goo:
 (df foo (n) (op incf n _)))

 Arc:
 (def foo (n) [++ n _])

 • Erann Gat's sad tale about "industry best
practice" at JPL inspired me to address this
generally misapplied phrase.

 • Peter Norvig found that 16 of the 23 pat-
terns in Design Patterns were "invisible or
simpler" in Lisp.

9

http://www.norvig.com/design-patterns/
http://www.norvig.com/design-patterns/
http://www.norvig.com/design-patterns/
http://www.norvig.com/design-patterns/

