
Can Your Programming
Language Do This?
This item ran on the Joel on Software homepage on Tuesday, August 01,
2006
One day, you're browsing through your code,
and you notice two big blocks that look almost
exactly the same. In fact, they're exactly the
same, except that one block refers to "Spaghetti"
and one block refers to "Chocolate Moose."

 // A trivial example:

 alert("I'd like some Spaghetti!");
 alert("I'd like some Chocolate Moose!");
These examples happen to be in JavaScript, but
even if you don't know JavaScript, you should
be able to follow along.

The repeated code looks wrong, of course, so
you create a function:

 function SwedishChef(food)
 {
 alert("I'd like some " + food + "!");
 }

 SwedishChef("Spaghetti");
 SwedishChef("Chocolate Moose");

OK, it's a trivial example, but you can imagine a
more substantial example. This is better code
for many reasons, all of which you've heard a
million times. Maintainability, Readability, Ab-
straction = Good!

Now you notice two other blocks of code which
look almost the same, except that one of them
keeps calling this function called BoomBoom
and the other one keeps calling this function
called PutInPot. Other than that, the code is
pretty much the same.

 alert("get the lobster");
 PutInPot("lobster");
 PutInPot("water");

 alert("get the chicken");
 BoomBoom("chicken");
 BoomBoom("coconut");

Now you need a way to pass an argument to the
function which itself is a function. This is an
important capability, because it increases the
chances that you'll be able to find common code
that can be stashed away in a function.

 function Cook(i1, i2, f)
 {
 alert("get the " + i1);
 f(i1);
 f(i2);
 }

 Cook("lobster", "water", PutInPot);
 Cook("chicken", "coconut", BoomBoom);

Look! We're passing in a function as an argu-
ment.

Can your language do this?

Wait... suppose you haven't already defined the
functions PutInPot or BoomBoom. Wouldn't it
be nice if you could just write them inline in-
stead of declaring them elsewhere?

 Cook("lobster",
 "water",
 function(x) { alert("pot " + x); });
 Cook("chicken",
 "coconut",
 function(x) { alert("boom " + x); });

Jeez, that is handy. Notice that I'm creating a
function there on the fly, not even bothering to
name it, just picking it up by its ears and tossing
it into a function.

As soon as you start thinking in terms of
anonymous functions as arguments, you might
notice code all over the place that, say, does
something to every element of an array.

 var a = [1,2,3];

 for (i=0; i<a.length; i++)
 {
 a[i] = a[i] * 2;
 }

 for (i=0; i<a.length; i++)
 {
 alert(a[i]);
 }
Doing something to every element of an array is
pretty common, and you can write a function
that does it for you:

 function map(fn, a)
 {
 for (i = 0; i < a.length; i++)
 {
 a[i] = fn(a[i]);
 }
 }
Now you can rewrite the code above as:

 map(function(x){return x*2;}, a);
 map(alert, a);

Another common thing with arrays is to com-
bine all the values of the array in some way.

 function sum(a)
 {
 var s = 0;
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
 }

 function join(a)
 {
 var s = "";
 for (i = 0; i < a.length; i++)
 s += a[i];
 return s;
 }

 alert(sum([1,2,3]));
 alert(join(["a","b","c"]));

sum and join look so similar, you might want
to abstract out their essence into a generic func-

tion that combines elements of an array into a
single value:

 function reduce(fn, a, init)
 {
 var s = init;
 for (i = 0; i < a.length; i++)
 s = fn(s, a[i]);
 return s;
 }

 function sum(a)
 {
 return reduce(function(a, b)
 { return a + b; },
 a, 0);
 }

 function join(a)
 {
 return reduce(function(a, b)
 { return a + b; },
 a, "");
 }

Many older languages simply had no way to do
this kind of stuff. Other languages let you do it,
but it's hard (for example, C has function point-
ers, but you have to declare and define the func-
tion somewhere else). Object-oriented pro-
gramming languages aren't completely con-
vinced that you should be allowed to do any-
thing with functions.

Java required you to create a whole object with
a single method called a functor if you wanted to
treat a function like a first class object. Combine
that with the fact that many OO languages want
you to create a whole file for each class, and it
gets really klunky fast. If your programming
language requires you to use functors, you're
not getting all the benefits of a modern pro-
gramming environment. See if you can get some
of your money back.

How much benefit do you really get out of writ-
ting itty bitty functions that do nothing more
than iterate through an array doing something
to each element?

Well, let's go back to that map function. When
you need to do something to every element in an
array in turn, the truth is, it probably doesn't

matter what order you do them in. You can run
through the array forward or backwards and get
the same result, right? In fact, if you have two
CPUs handy, maybe you could write some code
to have each CPU do half of the elements, and
suddenly map is twice as fast.

Or maybe, just hypothetically, you have hun-
dreds of thousands of servers in several data
centers around the world, and you have a really
big array, containing, let's say, again, just hypo-
thetically, the entire contents of the internet.
Now you can run map on thousands of com-
puters, each of which will attack a tiny part of
the problem.

So now, for example, writing some really fast
code to search the entire contents of the internet
is as simple as calling the map function with a
basic string searcher as an argument.

The really interesting thing I want you to notice,
here, is that as soon as you think of map and
reduce as functions that everybody can use,
and they use them, you only have to get one su-
pergenius to write the hard code to run map
and reduce on a global massively parallel array
of computers, and all the old code that used to
work fine when you just ran a loop still works
only it's a zillion times faster which means it can
be used to tackle huge problems in an instant.

Lemme repeat that. By abstracting away the
very concept of looping, you can implement
looping any way you want, including imple-
menting it in a way that scales nicely with extra
hardware.
And now you understand something I wrote a
while ago where I complained about CS stu-
dents who are never taught anything but Java:

Without understanding functional program-
ming, you can't invent MapReduce, the algo-
rithm that makes Google so massively scalable.
The terms Map and Reduce come from Lisp and
functional programming. MapReduce is, in ret-
rospect, obvious to anyone who remembers
from their 6.001-equivalent programming class

that purely functional programs have no side
effects and are thus trivially parallelizable. The
very fact that Google invented MapReduce, and
Microsoft didn't, says something about why Mi-
crosoft is still playing catch up trying to get ba-
sic search features to work, while Google has
moved on to the next problem: building Sky-
net^H^H^H^H^H^H the world's largest mas-
sively parallel supercomputer. I don't think Mi-
crosoft completely understands just how far be-
hind they are on that wave.

Ok. I hope you're convinced, by now, that pro-
gramming languages with first-class functions
let you find more opportunities for abstraction,
which means your code is smaller, tighter, more
reusable, and more scalable. Lots of Google ap-
plications use MapReduce and they all benefit
whenever someone optimizes it or fixes bugs.

And now I'm going to get a little bit mushy, and
argue that the most productive programming
environments are the ones that let you work at
different levels of abstraction. Crappy old FOR-
TRAN really didn't even let you write functions.
C had function pointers, but they were
ugleeeeee and not anonymous and had to be
implemented somewhere else than where you
were using them. Java made you use functors,
which is even uglier. As Steve Yegge points out,
Java is the Kingdom of Nouns.

Correction: The last time I used FORTRAN was 27 years
ago. Apparently it got functions. I must have been
thinking about GW-BASIC.

About the Author: I'm your host, Joel Spol-
sky, a software developer in New York City.
Since 2000, I've been writing about software
development, management, business, and the
Internet on this site. For my day job, I run Fog
Creek Software, makers of FogBugz - the smart
bug tracking software with the stupid name, and
Fog Creek Copilot - the easiest way to provide
remote tech support over the Internet, with
nothing to install or configure.

http://www.joelonsoftware.com/printerFriendly/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/printerFriendly/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/printerFriendly/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/printerFriendly/articles/ThePerilsofJavaSchools.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.fogcreek.com/
http://www.fogcreek.com/
http://www.fogcreek.com/
http://www.fogcreek.com/
http://www.fogcreek.com/FogBugz
http://www.fogcreek.com/FogBugz
https://www.copilot.com/
https://www.copilot.com/

