
Commercial Users of Functional Programming

(CUFP) 2006

A Report by John Hughes and Kathleen Fisher

21st September, 2006

The Commercial Users of Functional Programming workshop, held in asso-
ciation with ICFP, attracted a record turn-out this year: 57 attendees came
to listen to 9 speakers talk about commercial uses of Scheme, Erlang, Reflect,
O’Caml, and Haskell. There was a general sense of optimism at the meeting,
reflected in the number of attendees and the announcements by several of the
speakers that their companies were actively recruiting. One interesting devel-
opment was the emergence of functional programming in the financial sector.
Concerns for the future included the need to overcome conservatism on the part
of companies reluctant to use non-mainstream technologies and to raise the pro-
file of functional programming with students (and their parents)! In the rest
of this report, we describe the various talks, with emphasis on the impact of
functional programming in the “real world.”

Clifford Beshers described the adoption of Haskell at Linspire. Linspire aims
to build a Linux version suitable for the consumer market, by automating the
job of the system manager. Linspire switched recently from O’Caml to Haskell,
citing readability, classes, the IO monad, and more complete libraries as rea-
sons. So far CGI scripts and a package autobuilder have been implemented
in Haskell. Static typing, and the use of purely functional data-structures on
disk, have helped make for reliable code. Performance has been generally good,
although Parsec parsers proved to be slow on 20MB files–a problem that was
solved using Data.ByteString. Space leaks have not been a problem, perhaps
because frequent IO keeps programs strict. Belying the myth that functional
programmers are hard to recruit, Linspire’s announcement that they were adopt-
ing Haskell generated 5-10 resumes, despite explicitly stating that they were not
recruiting. Quotable quote: “When we code in Haskell, we go home on time”.

Steve Sims talked about how Reactive Systems, Inc. uses SML, both in im-
plementing their Reactis product and also in their internal business processes,
including the company website, intranet, and regression infrastructure. Reactis
is a testing and validation package for models of embedded systems developed
using Mathworks. A typical example would be a cruise control system on a car.
Reactive Systems, which was founded in 1999, has roughly 35 customers from
more than ten countries: 29 from the automotive industry, five from aerospace,

1



and one from heavy equipment. One of the reasons SML has worked well for
Reactive Systems is that Reactis requires interpreting both Mathworks Simulink
and Stateflow languages as well as C, and SML’s support for recursive datatypes
and pattern matching facilitates this task. Steve commented that exceptions
were useful because customer bug reports almost always contained some infor-
mation. Steve also cited SML’s strong type checking, garbage collection, and
module system as relevant to their success, as well as the ability to use im-
perative features when necessary. Based on comparisons with a similar system
developed at Mathworks in C++, Steve estimated SML provided a 5-10 times
productivity benefit. He concluded with the observation that SML has been
a key factor in recruiting and retaining highly productive employees. No pro-
grammer has left the company despite the fact that all have had offers to do so;
all of them cited programming in SML as one of their reasons for staying.

Richard Cleis from the Starfire Optical Range, an Air Force Research Labo-
ratory, described how he and others have used Scheme to control the telescope
systems at the facility. Such control involves complex calculations to compen-
sate for atmospheric distortions. Originally, the systems were controlled using
C code. However, a disappointing 12-hour effort to program the telescopes to
track the space shuttle Columbia’s landing yielded a single picture. This fail-
ure led them to consider alternative languages because they just couldn’t write
C code fast enough. They now use DrScheme and MzScheme to control the
telescopes, interfacing with legacy C code. They have convinced others to use
S-expressions to represent data. The fact that Scheme supports hot-code mod-
ification is an advantage. Garbage collection times of 10ms can be a problem,
but memory requirements are not. To date, they have not been able to persuade
management to hire Scheme programmers.

Yaron Minsky from Jane Street Capital talked about the company’s use
of O’Caml. Jane Street Capital is a small, proprietary trading firm based in
New York. They don’t have customers; instead, they make money by trading.
Originally, they used a combination of Excel and Visual Basic to implement their
analyses. Because of the importance of the analyses to their business, they really
care about reliability. Excel is a great tool in terms of rapid deployment and it
interoperates with VB very well. Unfortunately, on the spreadsheet side, it is
easy to see the data but not the logic, while the code shows the logic but not
the data, making it difficult to reason about the system. They tried to rewrite
the system in C#, but they found the language too verbose and complex, and
the non-technical people really complained about inheritance. Yaron had used
O’Caml during his Ph.D. studies at Cornell, and had been using it as “throw-
away” code at Jane Street. In 2005, the company made a management decision
to switch to O’Caml. This switch has been a success: within six months, they
had rewritten many of the key systems, obtaining better performance in the
process. The code is much shorter and more readable, which is important as
the partners in the company review the code personally. Because they can
understand the code more easily, they can now use more complex algorithms.
They use functional programming as a recruitment tool, observing that it is hard
to hire good Java programmers, but easy to hire good functional programmers.

2



They are currently hiring.
Howard Mansell talked about Haskell programming at Credit Suisse in New

York. This group’s business is derivative trading for clients (a stock option is
a simple case of a derivative). Valuing complex derivatives is computationally
costly, requiring nightly runs on thousands of CPUs. There is a real competitive
advantage in being able to build models quickly, since some exotic derivatives
may only be traded 10-100 times in total. Previously models were built using
Excel, with heavy computations delegated to C++ plug-ins. Most of the Excel
code has now been replaced by Haskell, with Excel just providing the user
interface (which in turn is generated by DSELs). The work has been done by
Lennart Augustsson and Gabriele Keller, but Credit Suisse need more Haskell
programmers–they’re hiring.

Roope Kaivola described how Intel uses an internally developed lazy func-
tional language called reFlect to formally verify chip designs. He explained how
Moore’s law has led to larger structures on chips with greatly increased com-
plexity. A typical CPU design has more than 500 design engineers and requires
roughly two years from design start to the first silicon fabrication. A full chip
specification is one to ten million lines of code and costs roughly five billion
dollars from R&D to fabrication, so Intel needs to have high volume sales to
recover the initial investment. However, high volume increases the financial risk
from errors. Testing is not enough to mitigate against this risk, because the
size of the state space means that exhaustive testing is impossible. As a result,
most CPU designs have a formal verification team. Such verification has been a
huge success, proving designs correct with respect to models such as the IEEE
floating point standard and finding many high quality bugs in the process. En-
gineers at Intel use the reFlect language to carry out this verification. ReFlect
is an interpreted “ML-like” lazy functional language that supports scripting,
rapid prototyping, and the development of libraries and formal tools. Engineers
write system specifications, verification strategies, and analysis code in reFlect.
The language is customized for formal verification, including support for binary
decision diagrams (BDDs) and symbolic simulation/trajectory evaluation. It
supports reflection to interface with a theorem prover to reason about the code
itself. The language has made the group that uses it one of the most effec-
tive formal verification groups at Intel. They report that the laziness of the
language is essential in avoiding unnecessary computations but that it confuses
novice users.

Rishiyur Nikhil talked about Bluespec Inc, which offers System Verilog tools
implemented in about 90KLOC of Haskell. Bluespec’s tools are based on MIT
research in the 90s into generating hardware from term rewriting systems; using
Bluespec’s “rules” complex hardware can be described at a high level, improving
productivity and reducing errors. However, it is not easy to explain briefly why
Bluespec’s tool is better than the competition: many vendors claim to improve
productivity. Selling the tool requires short, punchy examples to convince old
hands that there is a better way than writing RTL by hand. Bluespec have
made four sales, and many more trials are under way.

Garret Morris talked about Haskell applications at Aetion, which is a defence

3



contractor offering AI applications based on Bayesian nets. Rapidly changing
priorities (as a result, for example, of the invasion of Iraq) make it important
to minimize the code impact of changes, which suits Haskell well. Aetion have
developed three main projects in Haskell, all successful. Haskell’s concise code
was perhaps most important for rewriting: it made it practicable to throw away
old code occasionally. DSELs allowed the AI to be specified very declaratively.
Less successful was the decision to link Haskell to a GUI in Java: the need
to serialize data made it impossible to use functions as representations, which
was unfortunate. Problems include getting libraries to work together, patchy
Windows support, and a need for more debugging tools.

Erik Stenman described how the Swedish company Kreditor used Erlang
to build a system to serve as a mediator between on-line businesses and their
customers. The system allows customers to obtain merchandise before paying
for it and allows businesses to outsource invoicing and other standard business
practices. Of course, for such a system to be successful, it must be secure,
robust, error-free, and have high availability. Erik discussed how Erlang allowed
Kreditor to build such a system quickly and economically, requiring less than
four months and a hundred thousand dollar investment to get the initial system
working. Their main competitor went bankrupt after burning through ninety
million Swedish Kroner building a similar system with .net and PHP.

Finally, there was a discussion on “Making the case for new technology.”
Telling customers “we’re smart, and our functional language is great” is not a
successful approach! We tend to show customers the things that impress us,
which is a mistake. It is important to show humility, and to explain benefits in
the customer’s terms. What can be done to help individuals persuade managers
to let them use functional languages? Better and more libraries perhaps? Ex-
plaining that a system being built in a functional language is “just a prototype”
may allow a project to go forward. If it succeeds, it can become the deployed
system. Interoperability is important: if others can call our code from their
favourite language, then our work will be more valued. If companies using func-
tional languages could release components that are not core IP as open source,
that will help everyone solve the library-creation problem.

The next CUFP will take place on October 4th, 2007 in Freiburg, Germany,
again co-located with ICFP.

4


