
CISC-280 Sample—Midterm II 1

Programming Paradigms
CISC-280 Sample

Midterm II

NAME:

There are 100 points on 7 pages.

10 points

What could occur in the place of the “X” in the following Scheme evaluations?

(car (X (cdr ’(a (b c) d)))) −→ B

(car (cdr (X (cdr ’(1 (5 7) 8))))) −→ 7

(X ’(whiskey vodka) ’(lager cider)) −→ ((whiskey vodka) lager cider)

(X ’((bill 10) (jill 14)) ’((tracy 12) (jack 9)))
−→ ((bill 10) (jill 14) (tracy 12) (jack 9))

(X (= 13 0) (/ 26 13)) −→ #f ;hint think “Special Forms”

6 points

Assume that the procedure (enumerate-interval a b) returns a list of integers starting at
a and ending at b. Assume (prime? x) is a predicate that tests if x is a prime number. Assume
(square x) returns x2. Now, using the sequence operators map, filter, and accumulate,
define a procedure named foo that finds the sum of the squares of all the primes from 1 to n.



CISC-280 Sample—Midterm II 2

10 points

The procedure square-list takes a list of numbers as arguments and returns a list of the squares of
those numbers.

(square-list ’(1 2 3 4)) −→ (1 4 9 16)

Here are two different definitions of square-list. Complete both of them by filling in the missing
expressions:

(define (square-list items)
(if (null? items)

nil
(cons 〈 ?? 〉 〈 ?? 〉)))

(define (square-list items)
(map 〈 ?? 〉 〈 ?? 〉))

7 points

The procedure scale-tree scaled every element of a tree by some factor. It was defined as:

(define (scale-tree tree factor)
(map (lambda (sub-tree)

(if (pair? sub-tree)
(scale-tree sub-tree factor)
(* sub-tree factor)))

tree))

Using that code as a guide, create a new procedure tree-map, that takes a procedure and a tree
as arguments, and outputs a tree where every element has been replaced by the value of calling the
procedure on the element. For example, we could now write square-tree as:

(define (square-tree tree) (tree-map square tree))
(square-tree ’(1 (2 (3 4) 5) (6 7)) −→ (1 (4 (9 16) 25) (36 49))

(define (tree-map proc tree)



CISC-280 Sample—Midterm II 3

8 points

Define a procedure make-list, which takes a non-negative integer n and an object and returns a
new list, of length n, where each element is the object.

(make-list 7 ’()) −→ (() () () () () () ())

5 points

Define a procedure remove that removes all occurances of its first argument from the second
argument (a list). Use equal? as a test.

(remove ’dog ’(the brown dog bit the small dog))
−→ (the brown bit the small)



CISC-280 Sample—Midterm II 4

3 points

Show the set [3 5 7 13 9 10] as a balanced binary tree (Draw the picture).

3 points

Assuming that we represent/implement a node in a balanced binary tree in Scheme as a list of
(node-value left-subtree right-subtree), write down the Scheme representation of the tree you drew
above. It would be helpful if you indented it nicely.

4 points

What advantages does the balanced binary tree set representation have over the ordered list repre-
sentation? What advantages does the ordered list representation have over the balanced binary tree
representation?



CISC-280 Sample—Midterm II 5

12 points

Define a generic predicate =zero? that tests if its argument is zero. Define and install data-
directed implementations for rational numbers (type ’rational; selectors numerator and
denomenator), and complex numbers type ’complex; selectors real-part, imag-part,
magnitude, and angle). Don’t forget the external interface.



CISC-280 Sample—Midterm II 6

12 points

Draw the environment diagram (all frames and user-defined procedure definitions) that results from
executing the following three lines of Scheme code:

(define (damp f) (lambda (x) (/ (+ x (f x)) 2)))
(define damped-sqrt (damp sqrt))
(damped-sqrt 4)



CISC-280 Sample—Midterm II 7

10 points

Assume I have already defined the procedure symbol-append which takes two symbols and
creates a single symbol with the two stuck together like this:

(symbol-append ’apple 35) −→ apple35

A useful thing in writing large simulations is to have a unique name for every object in the simula-
tion. To do this, we need to generate a unique symbol for the name. Define a procedure gensym
that takes one argument name, and that generates a procedure that creates a new, unique symbol
beginning with name each time it is called. Hint: use a counter and set!. Example:

(define gentrains (gensym ’train))
(gentrains) −→ train1
(gentrains) −→ train2
(gentrains) −→ train3

10 points

(define (make-withdraw balance)
(lambda (amount)
(if (>= balance amount)

(begin (set! balance (- balance amount))
balance)

‘‘Insufficient funds’’)))

Modify make-withdraw so that is creates a password-protected account. Make-withdraw will thus
take two args, the initial balance and the real password. The resulting function should also take
TWO arguments, the amount to withdraw and a password. It should only allow the withdrawal if
the passwords match. Otherwise it should return “Incorrect password”.


