Programming Paradigms
CISC-280

Example Midterm I

NAME:

There are 100 points on 7 pages.

10 points

Write the value of each of the following lisp expressions. If the expression is an ill formed lisp expression, write "error".

```
_- (- (/ (* 5 4) 2) 4)
__ (/ (* 4 2) (+ 2 2) )
_ (/ (* (+ (2 3) 3 1) ))
    (define a 4)
    (define b (+ a 1))
    ( \(=\mathrm{a}\) b)
    (if (and (> a b) (< b (* a b))) b a)
```


9 points

Here is a simplified version of the second order procedure for summation that we studied.

```
(define (sum term a b)
    (if (> a b)
        0
            (+ (term a) (sum term (+ a 1) b)) ))
```

\qquad What is the value of (sum square 3 5), if square is defined by (define (square x) (* x x))?
\qquad What is the value of (sum (lambda (i) 2) 1 50)?
\qquad What is the value of (sum 2 1 50)?

9 points

For each of the following procedures, indicate whether it is (i) tree recursive, (ii) linear recursive, or (iii) tail recursive (iterative process).

A: (define (gcd a b)
(if (zero? b)
a
(gcd b (remainder a b))))
B: (define (pt a b)
(if $(\operatorname{or}(=a \operatorname{l})(=a \quad b))$
1
$(+(p t(-a 1)(-b 1))(p t(-a 1) b)))$
C: (define (fibonacci-modified a b k n)
(if ($=\mathrm{k} \mathrm{n}$)
b (fibonacci-modified b (+ a b) (+ k 1) n)))

12 points

Evaluate the following, which use the procedures defined in the previous question.

A: (gcd 6040$)$ \qquad
B: (pt 3 1) \qquad
C: (fib-modified 0113$)$ \qquad
D: The n-th fibonacci number can be computed by midtermfib if we define it as:
(define (midtermfib n) (fib-modified 111 n))
In the textbook, we computed the n-th fibonacci number by using the function $f i b$, which is tree-recursive:

```
(define (fib n)
    (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1))
            (fib (- n 2))))))
```

How does the running time of our new definition midtermfib compare with the running time of the tree-recursive definition fib from the text? (Don't worry-you do not have to give a precise answer!)

9 points

Test your Scoping knowledge! first, assume we make these definitions

```
(define x 3)
(define y (* x 2))
(define z (+ x y))
(define (foo x y)
    (+ x y z))
(define (foobar a b)
    (let ((x (+ a b))
        (y (+ x b)))
        (+ x y z)))
```

Now, Evaluate the following Scheme expressions:
\qquad (foo 5 3)
___ (foo x y)
\qquad (foobar 4 3)

18 points ($8+8+2$)

PART A. Write a procedure called dots that takes one argument, n, and displays n dots on the screen. The procedure dots can return any value you want. Hint: remember that you can do more than one thing in a COND clause.

PART B. Write a procedure called plot that takes three arguments: a function f to plot, a start point a, and an end point b. You may assume that the start and end points are integers. The plot procedure should plot the number of dots equal to the value of f at the integers starting at a and going through b, inclusive. Of course, you should use your dots procedure from Part A. Print each line of dots on a line by itself. For example, if the function f is square, and a is 5 , then the first line of dots will have 25 dots on it.

PART C. Write how you would call your plot procedure in order to plot the function $f(x)=$ $x^{2}+7 x$ from 1 to 10 . Do this in one line, using lambda to define the function.

9 points (7+2)

Procedures that return Procedures. We can "smooth" a continuous function by changing the value of the function at each point to be the average of nearby points. Assume we have a function $f(x)$, and a "nearby" distance d Then

$$
\operatorname{smooth}(x)=\frac{f(x-d)+f(x)+f(x+d)}{3}
$$

Part A. Write smooth in Scheme. The inputs are a function of one argument, and a distance d. The output should be a new function of one argument, as defined above. Hint, use lambda. I'll start you off:

```
(define (smooth f d)
```

Part B. Show what you would type in the Scheme interpreter to find the smoothed value of sin (x) at $x=2$, for distance $=0.01$. You don't have to show what DrScheme's result would be, of course!!

24 points

Part A:

6 pts. Give the combinations of cars and cdrs that will pick out the number " 7 " from each of the following (a different answer for each one, of course!):

- (1 (5 7) 8)
- ((7))
- (1 (2 (7)))

Part B:

8 pts. I'm writing a parts database. Each part has a unique ID number, a price, and a location bin number. All three values are numbers: the ID and bin number are integers, and the price is a real number. Design an abstract data type for a "part" by defining the appropriate constructor and selectors. Use a list as your implementation.

Part C:

10 pts. Draw the box and pointer diagram resulting from the following definitions. Please indicate what x and y are pointing to as well.

```
(define x (list (cons 20 null) 4 10))
(define y (cons 12 (append (quote (dog cat)) x)))
```

