Lab 2

This lab will practice higher order procedures, especially procedures that return
other procedures.

1. Procedures returning numbers.

(a) Write a procedure named double

parameter: a number
result: the argument multiplied by 2.
(double 4) --> 8

Write a procedure named triple
parameter: a number

result: the argument multiplied by 3.
(triple 4) --> 12

Write a procedure named mul

parameters: two numbers

result: multiplies the first argument by the second.
(mul 4 2) --> 8

(mul 4 3) --> 12

2. Procedures returning procedures.

(a)

Write a procedure make-double

No parameters.

Result: a procedure of one parameter, that multiplies its argument
by 2.

((make-double) 4) --> 8

(define double (make-double))

(double 4) --> 8

Write a procedure make-triple

No parameters.

Result: a procedure of one parameter, that multiplies its argument
by 3.

((make-triple) 4) --> 12

(define triple (make-triple))

(triple 4) --> 12

Write a procedure make-mul, generalizing make-double and make-triple
One parameter, a number.

Result: a procedure of one parameter, that multiplies its argument

by the given number.

(define double (make-mul 2))

(double 4) --> 8

((make-mul 3) 4) --> 12



3. Define a procedure doublefn that takes a procedure of one argument as
an argument and returns a procedure that applies the original procedure
twice. That is, if passed the function f, the (doublefn f) returns a
procedure that computes f(f(x)).

For example, if inc is a procedure that adds one to its single argument,
then (double inc) should itself be a procedure that adds 2.

(a) Define doublefn.

(b) What is the value returned by
((doublefn (doublefn (doublefn inc))) 5)

(¢) What is the value returned by
(((doublefn (doublefn doublefn)) inc) 5)
Make sure you understand why (i.e. you could do this on a test
without the scheme interpreter at your side)

Submit all 3 parts and well-chosen test cases on paper to the TA (or by the
start of class Tuesday) to receive full credit.



