
Lab 2

This lab will practice higher order procedures, especially procedures that return
other procedures.

1. Procedures returning numbers.

(a) Write a procedure named double
parameter: a number
result: the argument multiplied by 2.
(double 4) --> 8

(b) Write a procedure named triple
parameter: a number
result: the argument multiplied by 3.
(triple 4) --> 12

(c) Write a procedure named mul
parameters: two numbers
result: multiplies the first argument by the second.
(mul 4 2) --> 8
(mul 4 3) --> 12

2. Procedures returning procedures.

(a) Write a procedure make-double
No parameters.
Result: a procedure of one parameter, that multiplies its argument
by 2.
((make-double) 4) --> 8
(define double (make-double))
(double 4) --> 8

(b) Write a procedure make-triple
No parameters.
Result: a procedure of one parameter, that multiplies its argument
by 3.
((make-triple) 4) --> 12
(define triple (make-triple))
(triple 4) --> 12

(c) Write a procedure make-mul, generalizing make-double and make-triple
One parameter, a number.
Result: a procedure of one parameter, that multiplies its argument
by the given number.
(define double (make-mul 2))
(double 4) --> 8
((make-mul 3) 4) --> 12

1



3. Define a procedure doublefn that takes a procedure of one argument as
an argument and returns a procedure that applies the original procedure
twice. That is, if passed the function f , the (doublefn f) returns a
procedure that computes f(f(x)).

For example, if inc is a procedure that adds one to its single argument,
then (double inc) should itself be a procedure that adds 2.

(a) Define doublefn.

(b) What is the value returned by
((doublefn (doublefn (doublefn inc))) 5)

(c) What is the value returned by
(((doublefn (doublefn doublefn)) inc) 5)
Make sure you understand why (i.e. you could do this on a test
without the scheme interpreter at your side)

Submit all 3 parts and well-chosen test cases on paper to the TA (or by the
start of class Tuesday) to receive full credit.

2


