
CISC-280 Fall 2000—Final Exam 1

Programming Paradigms
CISC-280 Fall 2000

Final Exam

NAME:

There are 100 points on 9 pages.

6 points

For each procedure, say if it is linear recursive, tail recursive/iterative, or tree recursive.

(define (square-list items)
(if (null? items)

nil
(cons (square (car items)) (square-list (cdr items)))))

(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))

(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))

(define (fib n)
(cond ((= n 0) 0)

((= n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))))

6 points

Write expressions to get the symbol “hello” from each of the following list variables x, y, and z:

(define x ’((foo bar baz) (hello fritz marble)))
(define y (cons ’((name fred) (state pa) (total 1556))

’(((name barney) (state nj) (total 876))
((name hello) (state ny) (total 1038)))))

(define z (append (list ’baby ’mother)
(list ’doctor ’hello)
(cons ’creature (list ’judgement ’butcher ’engineer)))

CISC-280 Fall 2000—Final Exam 2

8 points

Procedures as parameters and returned values: Define a procedure (compose f g). The procedure
compose takes two, one-argument procedures f and g, and it RETURNS a one-argument proce-
dure that for any argument x returns f of g of x (i.e. f(g(x)) in mathematical notation). For example,
compose could be used like this (assume factorial takes one arg and returns a number, and
square takes one arg and returns a number):

(define biggie (compose factorial square))
(biggie 2) --> 24 ;this is (2x2)!
(biggie 10) --> 93326215443944152681699238856266700

49071596826438162146859296389521759999322991560
89414639761565182862536979208272237582511852109
16864000000000000000000000000 ;This is (10x10)!

(define (compose f g)

CISC-280 Fall 2000—Final Exam 3

10 points

Consider the following definitions:

(define (five) (+ 2 3))
(define foo five)
(define bar (five))
(define (baz) five)
(define (fizz) (five))

What do the following do and/or return? If it’s an error, say so. If the result is just a procedure
(i.e. DrScheme prints #<procedure:baz>), then say so. Hint: you might want to rewrite any
procedures using syntactic sugar above into their base “lambda” form. Hint: take your time and
work it out using the substitution model.

(foo)

bar

(bar)

((baz))

(fizz)

5 points

Define a procedure (trace proc). It returns a procedure which does the same thing as proc
except that it prints ”entering #<proc:proc>" before executing proc and ”exiting #<proc:proc>
with result” afterwards. Make sure that it returns the original value. You may assume that
traced functions only take 1 argument, or use the (. args) notation for arbitrary arguments. Assume
(display square) prints #<procedure:square>.

For example, after you have defined trace, you could have the following:

(define (square x) (* x x))
(define (add a b) (+ a b))
(define (test x y) (add (square x) (square y)))
(define square (trace square))
(define add (trace add))
>(test 2 3)
entering #<procedure:square>
exiting #<procedure:square> with 4
entering #<procedure:square>
exiting #<procedure:square> with 9
entering #<procedure:add>
exiting #<procedure:add> with 13
13

CISC-280 Fall 2000—Final Exam 4

15 points

Draw the environment diagram (all frames and user-defined procedure definitions) that results from
executing the following lines of Scheme code.

(define (make-withdraw balance)
(lambda (amount)

(if (> = balance amount)
(begin (set! balance (- balance amount))

balance)
"Insufficient Funds")))

(define W1 (make-withdraw 100))
(W1 50)

CISC-280 Fall 2000—Final Exam 5

10 points

Object Oriented Programming: In class we defined a simple OOP system for Scheme. We did
an example involving the speaker, lecturer, and arrogant-lecturer classes (each inherits from the
previous one):

(define (ask object message . args)
(let ((method (get-method object message)))
(if (method? method)

(apply method (cons object args))
(error "No method" message (cadr method)))))

(define (make-speaker)
(define (self message)
(cond ((eq? message ’say)

(lambda (self stuff) (display stuff)))
(else (no-method message))))

self)
(define (make-lecturer)
(let ((speaker (make-speaker)))
(define (self message)
(cond ((eq? message ’lecture)

(lambda (self stuff)
(ask self ’say stuff)
(ask self ’say ’(you should be taking notes))))

(else (get-method speaker message))))
self))

(define (make-singer)
(lambda (message)
(cond ((eq? message ’say)

(lambda (self stuff)
(display (append ’(tra-la-la --) stuff))))

((eq? message ’sing)
(lambda (self)
(display ’(tra-la-la))))

(else (no-method "SINGER")))))

We also defined Ben to be both a singer and a lecturer.

(define ben
(let ((singer (make-singer))

(lecturer (make-lecturer)))
(lambda (message)
(let ((sing (get-method singer message))

(lect (get-method lecturer message)))
(if (method? sing)

sing
lect)))))

Questions are on the next page....

CISC-280 Fall 2000—Final Exam 6

A. [10 points] How can we modify Ben so that if a message is handled by both Ben’s “singer”
AND Ben’s “lecturer”, that BOTH methods are executed?

CISC-280 Fall 2000—Final Exam 7

15 points

Concurrency. Examine the following Monkeys-and-rope simulation:

;;; Rope is 0 if empty, positive n for n monkeys going east, negative n for
n monkeys going west.
(define *ROPE* 0)
(define (make-monkey name)
(let ((side (if (= (random 2) 0) 1 -1)))
(define (try-cross)
(sleep (random 2)) ;wait a while
(if (test-and-grab-rope side)

(begin (cross)
(release-rope side)
(print-success side name))

(try-cross)))
try-cross))

(define (same-sign? x y)
(or (= x y)

(and (> x 0) (> y 0))
(and (< x 0) (< y 0))))

(define (test-and-grab-rope side)
(cond ((= *ROPE* 0)

(set! *ROPE* (+ *ROPE* side))
#t)
((same-sign? *ROPE* side)
(set! *ROPE* (+ *ROPE* side))
#t)
(else #f)))

(define (release-rope side)
(set! *ROPE* (- *ROPE* side)))

(define (print-success side name)
(display "Monkey ")
(display name)
(display " went from ")
(if (> side 0)

(display "west to east.")
(display "east to west."))

(newline))
(define (cross) (sleep (random 2)))
(define (test)
(parallel-execute (make-monkey 1) (make-monkey 2) (make-monkey

3) (make-monkey 4) (make-monkey 5) (make-monkey 6) (make-monkey 7)
(make-monkey 8) (make-monkey 9) (make-monkey 10)))

A. [5 points] How many serializers (created by (make-serializer)) are needed to make this
code safe? Remember that a serializer takes a procedure (or lambda expression) as an argument
and returns a new, “protected” lambda such that no two procedures protected by the same serializer
can have their execution interleaved in parallel. The classic example is to protect access to a shared
variable that is being mutated. It’s best if the smallest amount of code is placed in the serializer,

CISC-280 Fall 2000—Final Exam 8

since the code inside the serializer CANNOT execute in parallel with any other serialized code.

B. [10 pts] Modify the above code with the appropriate serializer(s) Please feel free to just mark
up the code above.

CISC-280 Fall 2000—Final Exam 9

15 points

Recall that the code for our implementation of the Scheme Evaluator was:

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

The code as it stands does NOT handle all of Scheme’s Special Forms. Modify the code above to
handle the AND special form. Recall that AND evaluates its expressions from left to right. If any
expression evaluates to false, false is returned and any remaining expressions are NOT evaluated.
If all the expressions evaluate to true values, then the value of the last expression is returned. If
there are no expressions then true is returned.

A. [5 pts] Assume we already have a procedure (eval-and exp env), and a predicate (and?
exp). Indicate how we would modify the above code to add in the AND special form (just write
it in above and put an arrow to the right spot).

B. [10 pts] Write the procedure (eval-and exp env). Just use the plain old regular list
operations we’ve used before, don’t use the complex redefinitions from the book chapter 4.

CISC-280 Fall 2000—Final Exam 10

4 points

Complete the following alternative definition of the infinite stream of integers:

(define integers (cons-stream 1 (stream-map <??> integers)))

6 points

The procedure reorder-stream rearranges items in one stream (the data-stream) into the order
specified by another stream (the order stream), which consistes of item numbers specifying the
desired order. For example, if the order stream starts with 4, 13, 2, 8 and the order stream starts
with 3, 1, 4, 2 then the result stream will start with 2, 4, 8, 13. (The first item of the result is the
third item of the data, the second item of the result is the first item of the data, etc.) [application:
some fancy memory-based sorting, or even edit decision lists for video streams]

A. Complete the following definition:

(define (reorder order-stream data-stream)
(cond ((stream-null? order-stream) the-empty-stream)

((stream-null? data-stream) the-empty-stream)
(else (cons-stream <??> <??>))))

The following stream definitions are used to define the stream of factorials.

(define ones
(cons-stream 1 ones))

(define integers
(cons-stream 1 (add-streams ones integers)))

(define fact
(cons-stream 1 (mul-streams fact integers)))

B. How many multiplications are performed when computing the nth factorial value in the fact
stream? Explain your answer.

C. If there were no memoization in Scheme, how many multiplications would be performed when
computing the nth factorial value in the fact stream? Explain your answer.

