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Remarks on IEEE 802.11
DCF Performance Analysis

Giuseppe Bianchi and Ilenia Tinnirello

Abstract— This letter presents a new approach to evaluate the
throughput/delay performance of the 802.11 Distributed Coor-
dination Function (DCF). Our approach relies on elementary
conditional probability arguments rather than bidimensional
Markov chains (as proposed in previous models), and can be
easily extended to account for backoff operation more general
than DCF’s one.

Index Terms— IEEE 802.11, Multiple Access Control, perfor-
mance evaluation.

I. INTRODUCTION

A SIMPLE, but accurate, analytical model to evaluate the
IEEE 802.11 Distributed Coordination Function (DCF)

saturation throughput performance was proposed in [1] and
further detailed in [2]. Several papers have built on this basic
model, e.g. adapting it to backoff variants [3], [4], using
different assumptions [5], or accounting for supplementary
modeling details such as finite retransmission attempts [6],
k-ary exponential backoff and multiple traffic classes [7],
error-prone channel conditions [8], hidden terminals [9], etc.
In addition to the throughput analysis, some of the above
mentioned papers provide a companion derivation of the
average delay performance. Indeed, a careful derivation is
needed in the case of finite retransmission attempts [10].

The contribution of this letter is threefold. Section III
presents an alternative and simpler derivation of the model
proposed in [1], based on elementary conditional probability
arguments rather than bidimensional Markov chains. The new
derivation clearly decouples the backoff stage updating process
from the backoff counter one. It also highlights the ability
of the analysis to account for a large variety of backoff
mechanisms, differing in terms of backoff stage evolution and
per-stage backoff counter extraction rules. Section IV modifies
the throughput computation in [1] to properly account for the
backoff freezing details specified in the 802.11 DCF standard.
Finally, section V proposes an alternative derivation of the
average delay performance, based on a perhaps not obvious
application of the Little’s result.

II. ASSUMPTIONS AND NOTATIONS

In what follows, we assume the reader to be familiar with
the analysis proposed in [1], [2]. This analysis considers ideal
channel conditions, and assumes a finite and fixed number
n of contending stations in “saturation” conditions, i.e. each
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station is assumed to always have packets in the transmission
buffer. Such a model was enabled by the recognition that each
individual station sees the events occurring on the channel
according to a discrete, though not uniform, slotted time scale.
With respect to [1], we here adopt a more precise definition
of the slotted time scale. Specifically, a new ”model” slot
starts whenever the backoff counter of a non transmitting
station is decremented. As discussed in more details in section
IV, a single model slot may comprise more than a single
transmission, and includes an additional idle backoff slot at the
end of a transmission or collision. According to this definition,
a station whose backoff counter, during a given slot, is equal
to b, will transmit in the next b-th slot.

Let us define with the term “Backoff Stage” the number of
retransmissions suffered by an Head-Of-Line (HOL) packet
(note that this definition differs from what adopted in [1]).
The backoff stage ranges from a minimum value 0 (first trans-
mission), to a maximum value R representing the maximum
number of retries after which a frame is dropped from the
transmission buffer. The case of infinite retries is modeled
by setting R = ∞. Owing to the saturation assumption, a
station in backoff stage 0, i.e., willing to transmit a new packet,
will draw a random backoff value from a random variable b0,
uniformly distributed in the range (0, CW0). If the transmitted
packet collides, the next backoff value extracted in stage 1, will
be drawn from a random variable b1, in a possibly different
range (0, CW1) and so forth1.

III. ALTERNATIVE DERIVATION

Let us denote with (TX) the event that a station is being
transmitting a frame into a time slot, and denote with (s = i)
the event that the station is found in backoff stage i ∈
(0, · · · , R). We are ultimately interested in the unconditional
probability τ = P (TX) that the station transmits in a
randomly chosen slot. Thanks to Bayes’ theorem,

P (TX)
P (s = i|TX)
P (TX|s = i)

= P (s = i) i ∈ (0, · · · , R).

(1)
Since this equality holds for all is in (0, · · · , R), it also holds
for the summation:

P (TX)
R∑

i=0

P (s = i|TX)
P (TX|s = i)

=
R∑

i=0

P (s = i) = 1. (2)

We can thus express τ as:

τ = P (TX) =
1∑R

i=0
P (s=i|TX)
P (TX|s=i)

. (3)

1The specific exponential backoff rules adopted in DCF are modeled by
setting CWi = min(2i(CWmin + 1) − 1, CWmax) for i = 1 · · ·R,
and, for reasons that will be clarified in the following section IV, CW0 =
CWmin − 1 (instead of the more intuitive value CW0 = CWmin).
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The conditional probability P (s = i|TX) represents the
probability that a station being transmitting is found in stage
i. This probability is the steady-state distribution of a discrete-
time Markov chain s(k), describing the evolution of the
backoff stage during the station’s transmission instants k, and
whose non-null one-step transition probabilities are:⎧⎨
⎩

P (s(k + 1) = i|s(k) = i − 1) = p i = 1, · · · , R
P (s(k + 1) = 0|s(k) = i) = 1 − p i = 0, · · · , R − 1
P (s(k + 1) = 0|s(k) = R) = 1 i = R

(4)
where p, referred to as conditional collision probability, is the
probability that a packet transmitted shall collide. Following
[1], p is assumed to be a constant value, independent of the
number of retransmissions occurred. It readily follows that
P (s = i|TX) is a (truncated, in the case of finite value R)
geometric distribution, i.e.:

P (s = i|TX) =
(1 − p)pi

1 − pR+1
i ∈ (0, · · · , R). (5)

we remark that the generalization to more complex backoff
processes with memory, i.e., whose backoff stage evolution
is regulated by a Markov chain (e.g. the slow CW decrease
proposed in [3] is one of such cases) is immediate, by defining
an alternative Markov chain for process s(k) and substituting
its steady-state distribution in (5).

Let us now focus on the conditional transmission probability
P (TX|s = i), i.e., the probability that a station transmits
while being in backoff stage i. We can envision the trans-
mission process as the recurrence of consecutive transmission
cycles, composed by transmission events separated by backoff
times. Since we are conditioning on a given backoff stage i, we
have to consider a sub-set of cycles, corresponding to backoff
times and transmissions originated while in stage i. Assuming
independence among transmission cycles, from renewal the-
ory2 we conclude that the probability P (TX|s = i) can be
computed by dividing the average number of slots spent for
transmissions in a transmission cycle (owing to the time scale
adopted, exactly 1 slot), with the average number of slots spent
by the station during the whole cycle. Since, according to the
definition given in section II, a model slot corresponds to a
backoff counter decrement, it readily follows that:

P (TX| s = i) =
1

1 + E[bi]
i ∈ (0, · · · , R). (6)

where E[bi] is the average value of the backoff counter
extracted by a station entering stage i. E[bi] results equal to
CWi/2 in the assumption of uniform distribution in the range
(0, CWi). Substituting (5) and (6) into (3):

τ =
1∑R

i=0
1−p

1−pR+1 pi (1 + E[bi])
=

1

1 + 1−p
1−pR+1

∑R
i=0 piE[bi]

(7)
We remark that, in the above derivation, the transmission

probability τ depends only on the sequence of mean backoff
values E[bi], and not on the specific probability distributions
P (bi = k) from which the backoff counters are extracted.

2Specifically, this computation can be interpreted as an application of the
Long-Run Renewal rate theorem (see, e.g. William Feller, An introduction to
probability theory and its Applications, Vol. II, Wiley, Cap. XI - pp. 368-380).

This ”insensitivity” property implies that different backoff
distributions with the same average values will give identical
throughput performance. Moreover, τ depends on the con-
ditional collision probability p, which can be expressed as
the probability that, in a time slot, at least one of the n − 1
remaining stations transmits. At steady state, each remaining
station transmits a packet with probability τ . This yields:

p = 1 − (1 − τ)n−1 (8)

Equations (7) and (8) represent a non linear system in the
two unknowns τ and p, which can be solved using numerical
techniques.

IV. THROUGHPUT

Once the value τ is known, the throughput S can be
computed as [2]:

S =
PsPtrE[P ]′

(1−Ptr)σ+PtrPsT ′
s+Ptr(1−Ps)T ′

c

(9)

where Ptr = 1 − (1 − τ)n is the probability that there
is at least one transmission in the considered slot time,
Ps = nτ(1− τ)n−1/Ptr is the probability that a transmission
occurring on the channel is successful, E[P ]′ is the average
amount of payload bits transmitted in a transmission slot, σ is
the DCF backoff slot size, and T ′

s and T ′
c are the average

successful transmission slot time and the average collision
slot time, respectively. We recall that the denominator in (9)
represents the average slot size E[slot].

The values E[P ]′, T ′
s and T ′

c slightly differ with respect
to the corresponding ones defined in [2], in order to more
accurately model the backoff freezing operation specified in
the 802.11 DCF standard. E[P ]′ and T ′

s are derived as follows.
Neglecting capture effects, a successful transmission implies
that all the other ”listening” stations have a backoff counter
greater or equal than 1 at the beginning of the transmission
period (otherwise they would have been involved in the
considered transmission period and a collision would have
occurred). According to the DCF specifications, after a DIFS
time, a listening station will decrement its backoff counter
only after a further idle backoff slot σ has elapsed. Hence,
only the successfully transmitting station may access the first
slot after the DIFS. This occurs when it extracts a new
backoff counter value equal to zero, i.e. with probability B0 =
1/(CWmin + 1). Moreover, such an eventual transmission
will be collision-free. Consistently with the new definition of
model slot given before, we may conclude that a successful
transmission slot may contain more than a single packet.
Being E[P ] the average packet payload size, the amount of
information transmitted in a successful access is thus:

E[P ]′ = E[P ] +
∞∑

i=1

Bk
0E[P ] =

E[P ]
1 − B0

, (10)

and the duration of a successful transmission slot is updated,
with respect to the Ts value defined in [2], as:

T ′
s = Ts +

∞∑
i=1

Bk
0Ts + σ =

Ts

1 − B0
+ σ, (11)

where an extra empty backoff slot σ is included in T ′
s,

to allow listening stations to decrement their backoff counter
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(thus ending the model slot as defined in section II). This also
implies that a successfully transmitting station will enter a new
model slot with the initially drawn backoff counter (which is
greater than 0 because of our slot definition) decremented of
one unit, and thus in the range (0, CWmin − 1).

Similar considerations can be drawn for what concerns
T ′

c, which is updated as T ′
c = Tc + σ, where Tc can be

computed either as in [2], or by considering an EIFS instead
of a DIFS after the end of the collision (this depends on the
assumptions made on the physical layer operation3). In fact,
neither the listening stations, for the reasons discussed above,
nor the contending stations, due to the very specific setting of
the ACK Timeout parameter in the DCF specification4, may
access the first backoff slot σ at the end of the considered
DIFS or EIFS interframe space.

V. DELAY DERIVATION VIA LITTLE’S RESULT

Let D be the average access delay, defined as the time
elapsing between the instant of time the packet is put into
service - i.e., it becomes head-of-line (HOL) - and the instant
of time the packet terminates a successful deliver. D can be
computed via Little’s Result as:

D =
E[N ]

S/E[P ]
(12)

where the numerator E[N ] represents the average number of
competing stations which will successfully deliver their HOL
packet, and the denominator represents the packet delivery
rate (i.e., the throughput measured in packets/seconds). In
the case of unbounded retries (R = ∞), all the competing
stations will ultimately deliver their HOL packet, and thus it
is trivial to conclude that E[N ] = n. Conversely, it is not
obvious to determine the proper value E[N ] in the case of
finite retry limit, since some of the n packets competing during
a randomly chosen slot-time will be ultimately dropped. In
such a case,

E[N ] = n[1 − P (pck drop)] (13)

where P (pck drop) represents the probability that a com-
peting station, randomly chosen in a generic slot-time, will
ultimately lose its HOL packet due to retry limit exhaustion.
Since this probability depends on the number of already
suffered transmissions, conditioning on the probability P (s =
i) that in the randomly chosen slot the station is found in
backoff stage i, we obtain:

P (pck drop) =
R∑

i=0

P (pck drop|s = i) P (s = i) (14)

A packet in backoff stage i will be dropped if it first
reaches stage R (i.e., it collides for R − i times) and then
it also collides during the last transmission attempt. Hence,

3The usage of an EIFS or a DIFS depends, respectively, on whether a
listening station succeeds or not in bit-synchronizing during the transmission
of the colliding physical layer preambles. For numerical comparison purposes,
we alert the reader that some common simulation platforms (e.g. OPNET and
NS-2) rely on the EIFS assumption.

4According to the formal description of the MAC operation, appendix
of the standard, Ack Timeout = CTS Timeout = aSifs + Duration(Ack) +
PLCPHeader + PLCPPreamble + aSlotTime.

P (pck drop|s = i) = pR+1−i. The probability P (s = i),
given in (1), can be expressed in terms of the known values
p, τ, E[bi], and R through (5) and (6), yielding:

P (s = i) = τ · (1 − p)pi

1 − pR+1
· (1 + E[bi]) (15)

Hence, after algebraic simplifications,

P (pck drop) = τ(1 − p)
pR+1

1 − pR+1

R∑
i=0

(1 + E[bi]) (16)

and, finally,

D =
n

S/E[P ]
− E[slot](1 − B0)

pR+1

1 − pR+1

R∑
i=0

(1 + E[bi])

(17)
where, in the simplifications, we have made use of the fact
that:

τ(1−p) =
S · E[slot]

nE[P ]′
=

S(1 − B0)
nE[P ]

E[slot] (18)

which is immediate from (9) and (10). The average delay
expression (17) is consistent with the one found in [10]. It
takes into account only the packets successfully delivered at
the destination, while packets dropped because of frame retry
limit do not contribute to the delay computation
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