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Abstruct- For wireless cellular communication systems, one 
seeks a simple effective means of power control of signals asso- 
ciated with randomly dispersed users that are reusing a single 
channel in different cells. By effecting the lowest interference en- 
vironment, in meeting a required minimum signal-to-interference 
ratio of p per user, channel reuse is maximized. Distributed 
procedures for doing this are of special interest, since the centrally 
administered alternative requires added infrastructure, latency, 
and network vulnerability. Successful distributed powering en- 
tails guiding the evolution of the transmitted power level of each 
of the signals, using only local measurements, so that eventually 
all users meet the p requirement. The local per channel power 
measurements include that of the intended signal as well as the 
undesired interference from other users (plus receiver noise). For 
a certain simple distributed type of algorithm, whenever power 
settings exist for which all users meet the p requirement, we 
demonstrate exponentially fast convergence to these settings. 

I. INTRODUCTION 
OR wireless cellular communication systems, one seeks F a simple effective means of power control of the base- 

to-mobile signals, for a channel that is being reused by J 
randomly dispersed customers in different cells. [For exam- 
ple, the channel can be a TDMA or FDMA channel.) For 
expositional simplicity, we will concentrate here on the down- 
link power control problem; however, it will be made clear 
that what we have to say generalizes easily to the combined 
up-link-down-link problem. 

Using no more power than is required in meeting a min- 
imum signal-to-interference ratio constraint of p per user is 
critical for efficient channel use, since by effecting the lowest 
interference environment, channel reuse is maximized. Our 
consideration here of power control for a static propagation 
model is a step toward eventually understanding algorithms 
for users moving about in a time-varying propagation envi- 
ronment, 

Distributed power control is of special interest, since the 
alternative of centrally orchestrated control involves added 
infrastructure, latency, and network vulnerability. Successful 
distributed power control entails guiding the evolution of the 
power level of each of the J base-launched signals, using 
only local measurements, so that eventually all users meet 
the p requirement. The local per channel power measurements, 
made at each user’s site and relayed to the corresponding base, 
include that of the intended signal as well as the combined 
interference from other users (plus receiver noise). Interesting 
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questions include: Given J deployed users and bases, is it 
possible to meet the p constraint even with a central controller 
of power levels? When it is possible, can these same power 
levels be achieved with a distributed algorithm? If so, how 
fast can such a distributed power control respond? We aim to 
help develop answers to these questions here. 

Specifically, we show that for a certain simple type of 
distributed algorithm that we will specify, whenever there 
exist power settings that meet the p constraint for all users, 
exponentially fast convergence to these desired settings occurs. 
Perhaps the very simplest instance of the algorithm type, and 
an associated convergence result, goes as follows: Each user 
proceeds to iteratively reset its power level to what it needs to 
be to have acceptable performance as if the other users were 
not going to change their power level. Yet the other users 
are following the same algorithm and, therefore, are changing 
their power levels. No matter; for each user, exponentially fast 
convergence to the desired performance occurs with this local 
distributed algorithm any time a central controller can achieve 
the desired performance. 

For analytical work on power control in wireless systems 
see [1]-[9].l J. Zander, in [3 ] ,  (which builds on the basic 
reference [ 2 ] )  as well as Zander’s companion paper, [4], 
report interesting initial work on distributed power control.2 
Namely, an iterative scheme is presented that operates under 
the assumption that the transmitter power is sufficiently high 
in order to allow receiver noise to be neglected. The power of 
the signals for the J users is evolved to achieve the greatest 
signal-to-interference ratio that they are jointly capable of 
achieving (the same ratio for all J users). The algorithm is 
provably optimum in terms of maximizing the minimum signal 
to interference ratio. The absolute power setting turns out to be 
problematic. Zander raises the issue of how it should be set as 
an open topic that needs to be addressed to establish whether 
the scheme can be completed in a fully distributed way. As will 
be apparent to those readers familiar with the iterative scheme 
in [3]  and [4], while there are strong similarities, key features 
differ from the algorithm that will occupy us here. Particularly, 
our inclusion of receiver noise in the definition of interference 
avoids the difficulty with absolute power settings. Here we will 
stress defining an algorithm that is totally local in that only 

‘References [3], [7], and, [Sj provide an up-to-date listing of references, 
including several of special interest for the area of spread spectrum commu- 
nications. The papers [3j-[9] include numerical studies for various cellular 
propagation models. Papers [6]-[9] also include a preliminary look at some 
dynamic channel allocation considerations. 

2Reference [5] reports an improved variant of Zander’s scheme that has 
superior convergence properties. 
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the power and interference measurements of each base-mobile 
link is used to evolve power levels on that link. Also, as we 
have already mentioned, we will work with a prefixed target p 
that our algorithm will succeed or fail in attaining for all users, 
rather than the interesting, but different, floating “best-we-can- 
do-under-the-circumstances’’ type of objective considered in 
[3]  and [4]. 

11. NOTATION 

In preparation for introducing the algorithm that is the topic 
of the present paper and establishing its convergence, we 
introduce the following notation: 

Base-to-user propagation matrix: A .  In this report, A is 
a random constant J x J matrix having only nonnegative 
entries that are strictly positive along the diagonal. We 
use a[;jl for the i j t h  entry of A so that A = [a ; j ] .  

Let a;j be one when i = j and - p  otherwise. The 
matrix A and the diagonally normalized variant that we 
will employ, B = [a;ja;j/aii] ,  are each assumed to be 
sufficiently random to have J distinct eigenvalues with 
probability one. For example, users could be randomly 
placed uniformly, over space of such a geographical scope 
as to include a large number of cells, and signal loss 
could follow a decay law complicated by lognormally 
distributed fading. (In more refined studies, A can be 
taken to be a matrix random process incorporating the 
element of Raleigh fading.) 
J-dimensional power vector: p ( t ) .  The j t h  component, 
pj(t), denotes the power of the signal launched at the 
j t h  base intended for the j t h  user. 
Power of the signal at the ith user site from the j t h  base: 

Power of the additive receiver noise at the user sites: u. 
Znterferencepower at the i th  user: ~ ; ( t )  = Cj#iaijpj(t)+ 
v. As already mentioned, we are taking the liberty of using 
the term “interference power” to include receiver noise as 
well as intercell interference. 
Signal-to-interference ratio at the i th  user: p ; ( t )  = 

ai jPj ( t ) .  

%Pi ( t ) / L i  ( t ) .  

111. DISTRIBUTED ALGORITHMS: 
DEFINITIONS AND CONVERGENCE THEORY 

Our focus here is on defining the dynamics of a simple 
class of power control algorithms and analyzing convergence 
properties. These algorithms seek to effect, the quicker the 
better, the determination of whether or not J users can achieve 
a signal-to-interference ratio of p. 

In Section III.A., primarily for the purpose of motivating 
a type of power control algorithm, we start with a simple, 
idealized, continuous time view of power level evolution. 
Aside from its motivational feature, the continuous time view 
also serves to offer a simple model of power control for future, 
high-level, wireless system studies. Then, in Section III.B., we 
shift to a discrete time version of this type of algorithm. The 
more realistic discrete time model exhibits a stability issue that 
is glossed over when the continuous time model is used. 

A.  Differential Equation Form of Algorithm 

A differential dynamic that might seem desirable (if it 
was attainable) is to have the zth user evolve his signal- 
to-interference ratio, pz ( t ) ,  to drive it towards the desired 
amount p by an amount proportional to the offset from p. 
Expressing this dynamic using ,B to denote the (necessarily 
positive) proportionality constant, we have 

bP(t) = -P[pz(t)  - P1. (1) 

This dynamic cannot be implemented in a distributed manner: 
While the i th  user is assumed to have direct control over his 
own power, p ,  ( t ) ,  he is assumed to have no direct control over 
the power level for the other users. 

In place of (l), we need a dynamic that is easily synthesized 
using only local measurements. To get such a substitute for (l), 
we take a cue from the circumstance that the ith user does 
not have direct knowledge or control of how ~ , ( t )  will change. 
So we simply have the ith user strive to evolve p, as if L, 

were not going to change. (Despite this method of devising a 
local autonomous dynamic, we stress that interference levels 
can indeed change, and those changes will be fully accounted 
for in our algorithm analysis.) In other words, we compose a 
dynamic by replacing the derivative of pa in equation (1) by a 
“surrogate derivative of p,,” computed as if the L~ denominator 
held constant. The equation for this new dynamic is, therefore, 

aZZlj,(t)/LZ(t) = - P [ p x ( t )  - PI. (4 
We stress that we are aiming for a distributed control law 
so that only pz and p ,  (and p )  appear on the right-hand side 
of the equation. Multiplying through by L,/a,, enables us to 
achieve this. Specifically, we get the key differential equation 
for guiding the evolution of p z ( t ) :  

( i =  1 , 2 , . . . , J )  . (3) 

As with (l), this dynamic cannot stop unless p ; ( t )  = p for 
each i. 

As background for investigating convergence of p ( t ) ,  we 
need the following result paraphrased from reference [ll]: 

Lemma: If a J x J matrix has nonnegative entries off the 
diagonal, and if it maps a J-vector, all of whose entires are 
positive, into a J-vector, all of whose entires are negative, then 
each of the J eigenvalues of the matrix has negative real parts. 

With this Lemma we can now prove: 
Proposition: If there is a power vector p * ,  for which the 

desired p; values are attained, then no matter what the initial 
pi  (0) , each of the pi  ( t )  evolving according to (3 )  will converge 

Proof: To explore the convergence properties of 
(3 )  it is expendient to convert to vector form. For that, the 
following definition is useful: 

to p * .  

71 = p[(v/a11), ( ~ l a z z ) , ~  . . ( 4 a J J ) I ’ .  

li(t) = -PBp(t) + P71. 

(4) 

(5)  

We can now rewrite ( 3 )  as a vector differential equation 
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At the desired p * ,  we have 

Bp* = q. (6) 

The solution to such a linear, constant coefficient, differen- 
tial equation with initial setting of p ( 0 )  is, [lo], 

r t  

J o  

(Recall that the exponential function of a matrix is defined 
by the standard power series for the exponential function.) 
The lemma, coupled with (6), enables us to conclude that all 
the eigenvalues of -B have negative real parts. Since B is 
diagonalizable, we can factor B as 

were A is a diagonal matrix, all of whose entries have positve 
real parts. By analyticity of the matrix exponential function 

00 

,-PBt = ~ ( - P ~ Q A Q - ~ ) ~ / ~ !  = Q ~ - ~ * ~ Q - ~ .  (9) 
0 

We use (9) to substitute into (7), and then take a limit to get 

n t  

The p ( 0 )  term is absent since limt,, ePaBtp(’) is the all 
zero vector by virtue of the positivity of the real parts of the 
eigenvalues of B. Equation (lo), after integrating, becomes 

lim p ( t )  = lim Qe-PAt(epAt - 
t+m t-+m 

r)p- A- Q - pq (1 1) 

where I denotes the identity matrix. It is easy to see that the 
evaluated limit is 

demonstrating the required convergence. 
From ( l l ) ,  it is evident that the “time constant” of the p ( t )  

evolution is (p x CYB)-’, where Q B  is the real part of the 
eigenvalue of the B matrix that possesses the smallest real part. 
So the marginality of the convergence situation is measured by 
real part of (p x as /3 x 010 tends to zero, convergence 
is slower and slower. 

The convergence result generalizes easily: in (3) the thermal 
noise level, v. the desired signal-to-interference ratio, p ,  and 
the proportionality factor, p, can instead be functions of the 
user index, i; so we have v,, p, and Pz in (3) in place 
of v . p  and 0. We are still assured of convergence. This 
is demonstrated in essentially the same way as when these 
vectors were required to have equal entries. The generality 
has various applications. For example, allowance for different 
P k  is useful, since different p,+ can be associated with different 
services or grades of service. Also, different p k  can be used for 
discriminatory endowing of user responsiveness to changing 
conditions. 

B. More Precise Difference Equation Form of Algorithm 
In the discrete time set-up that we investigate next, we 

conveniently define the time coordinate so that unity is the time 
between consecutive power vector iterations. A substantial 
multiple of the transmitted data symbol period could be used 
for this unit time. We employ a captial letter for the iterated 
power vector so that P ( k )  is the power vector at the time 

In correspondence with (5), we write the difference equation 
IC = 0 , 1 , 2 . . .  . 

P ( k  + 1) - P ( k )  = -PBP(k)  + pq. (13) 

As with (3), the distributed control law must have it that 
P(k  + 1) is determined in terms of P ( k )  and p, (and p ) .  
We stress that this is the case by rewriting (13) in the form 

Pt(k + 1) = (1 - P)Pz(k) [ l  + - P ) ( P / P % ) l  (134  

which also serves to reveal best the differences with references 
[4] and [5]. See, for example, the component form of the 
iteration appearing in the first sentence of the proof in Section 
111 of [4]. See also Equation (6) of [5]. 

Proposition: Whenever a centralized “genie” can find a 
power vector p* meeting the desired criterion, then so long 
as p is appropriately chosen, the solution to (13a) starting 
from any initial vector P(0)  converges to p*.  

Proof: A substitution into (13a) verifies that the 
solution of this equation starting from the initial vector P(O), is 

P ( k )  = ( I  + c + c2 + . . . Ck))Pq + C“(O), 
(C = I - pa). (14) 

From (8) we can write Ck = Q ( I  - PA)‘Q&-’, where the 
diagonal entries of I - PA are the eigenvalues of C. The Q 
matrix diagonalizes all powers of C. Therefore, as long as the 
moduli of each of the eigenvalues of C are strictly less than 
one, the geometric series formula allows us to conclude 

lim P ( k )  = ( I  - C)-lPq = B - l q  = p*.  (15) 

This is the limit desired, but just when are the moduli of 
the eigenvalues of C all strictly less than one? This question, 
which brings us to the subject of algorithm stability, is shown 
to have a very satisfactory answer. The answer, so long as p 
is set correctly, is: when the centralized “genie” can find a 
power vector p* meeting the desired criterion. 

When the “genie” can find such a power vector p * ,  it is 
easy to show that, so long as we choose P appropriately, 
the moduli of the eigenvalues of C are all less than one. As 
mentioned in Section III.A., for a “genie” to be successful, 
the eigenvalues of B must have positive real parts. From this 
positivity, it follows directly that for p, a sufficiently small 
positive number, all the moduli of the eigenvalues of C are 
less than one. Indeed, as P approaches zero, the moduli of the 
eigenvalues of C = I - PB approach one as approximately 
linear functions of p with negative slopes. 

Next we take up the issue of the universality. Is there a 
universal setting of 0, such that, whenever the “genie” has a 
solution, by using (13a), P ( k )  will converge to p* no matter 
what A is? This universality question is important because the 

k + m  
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users do not know the A matrix. They cannot even be expected 
to know the number of interfering users J.  We show that /3 = 1 
is the largest possible universal constant, from which it follows 
immediately that any value of p on the half-open interval (0, 
11 is universal. 

To demonstrate the universality of ,B = 1, we need some 
additional notation. Define Ro by reversing the sign of the 
corresponding entry of B and taking the diagonal terms of Ro 
to all be zero: Ro = I - B. When, for a vector x, we write 
z < 0 (z 5 0) we mean that the strict (nonstrict) inequality 
constraint is imposed on each component of x. The meaning 
of a vector being strictly greater than (and greater than) zero is 
defined in the corresponding way. We also need the notation, 
X + ,  for the set of all J vectors, z, other than the zero vector, 
that satisfy z 2 0. 

Furthermore, we need the following result from [ l l ] ,  [12] 
that holds for any square matrix with nonnegative entries. 

Lemma: Ro possesses a nonnegative eigenvalue p that 
is larger in modulus than the modulus of any of its other 
eigenvalues. This eigenvalue is given by 

p = min min [real y such that Roz - yz 5 01. 
X E X +  (16) 

With the lemma we can now prove the following. 
Proposition: With the choice p = 1; whenever the “genie” 

has a solution, by using (13a), P ( k )  will converge to p* no 
matter what A is. Also p = 1 is the best (largest) universal 
constant possible. 

Proof: If in (15) we replace X+ by the smaller set 
containing only p * ,  we can write 

p 5 min [real y such that Rap* - yp* 5 01. (17) 

From (6), Rop* -p* < 0, so in inequality (17) the minimizing 
y must be strictly less than one. We can, therefore, conclude 
that p < 1. With p = 1, C = Ro. Because of the strictness 
of this bound on p, if we take p = 1, (13a) exhibits universal 
convergence to p* whenever p* exists. 

That p = 1 is the best (largest) universal constant possible 
can be seen by considering the case J = 2. Suppose A is 
such that two users are essentially isolated from the others. 
To study the interaction of these two users, we employ the 
notation a = +(a12a21/alla22)1/2.  The eigenvalues of G are 
A+ = (1 - p) + pap and A- = (1 - p) - pap. The constraints 
that the absolute value of the eigenvalues be strictly less than 
one lead directly to the requirement that one strictly exceeds 
pa, and when it does, 2/(1 + pa)  strictly exceeds p. It is 
evident from these two inequalities that, as we wanted to show, 
a p exceeding one is not universal. 

(Since this two-user case is so easy to analyze explicitly, 
it is worthwhile doing so even though the remainder of this 
paragraph is subsumed by the preceding much more abstract 
general development in this subsection.) When these two 
conditions hold, the algorithm converges as desired to the 
“genie’s’’ solution. As can be shown directly from (61, the 
first of these two conditions, 1 > pa,  is essential for the 
“genie” to have a solution in the first place. This condition 
can be interpreted as requiring that the geometric mean of 
the two “raw signal interference ratios” allla12 and a22/a21 

exceed the requirement p. The selection of p giving the 
fastest convergence, that is, the choice that gives the minimum 
maximum modulus, is easily seen to be p = 1. This (universal) 
choice of /3 gives IA+I = 1A-I = a p  < 1. 

With the largest universal value of p determined to be 
p = 1, (13) becomes 

P ( k  + 1) = RoP(k) + q. (18) 

Recall that Ro has pai j la i i  in each nondiagonal i j th  po- 
sition and zero along the diagonal, while the generic (ith) 
component of v is pv/ai i .  We see then, that according to 
(18), each user simply proceeds to reset its power level to 
what it needs to be to have acceptable performance when the 
users are not changing their power level. Yet the other users 
are changing their power levels. No matter, for each user, 
convergence to the desired performance occurs with this local 
distributed algorithm any time a central controller can achieve 
the desired performance. 

While we see from our theoretical study so far that there is 
a strong preference for /3 = 1, follow-up work may reveal that 
there are practical tracking considerations which could make it 
advisable to back off to a somewhat lower p value. In Section 
IV we will get an indication of the effect of varying p. 

C. Generalizing to Inlcude Up-Link Power Control 

In the development so far we have dealt exclusively with 
the down-link dynamic. If a “genie” can find both up-link and 
down-link power settings, p* and q* respectively, to achieve 
the signal-to-interference requirements, then the solution to 
(5)  (or (13) or (18)) together with its up-link counterpart will 
converge exponentially fast to the (p* ,  q*) pair, no matter 
how the power settings are initiated. The explanation of this 
convergence is essentially the same as for the down-link only 
case that we have treated. In the simplest case, the up-link 
and down-link channels are assumed to be identical from a 
propagation standpoint-the user-to-base channel is the same 
as the base-to-user channel; it is just used in the reverse 
direction at a different time. In this case, the up-link power 
control dynamical equation differs from that for the down-link 
dynamic only in that B is replaced by its transpose. This is 
assumed for the way that the up-link power control is treated 
in the numerical examples that follow next. 

Iv .  NUMERICAL EXAMPLE OF IMPROVED 
RESPONSIVENESS AS p INCREASES 

In this section, we report a power control simulation result 
for an idealized, regular, two-dimensional, hexagonal cellular 
array. Single channel reuse was simulated to take an initial 
look at the effect of increasing p. 

Channel request arrivals are taken to be uniformly dis- 
tributed over 64 contiguous cells arranged in a locally planar 
fashion, but as a square (8 x 8) toroid to encourage interfer- 
ence. In each hexagonal cell, a base is situated at the center. 
The propagation environment model includes a distance from 
transmitter decay law with exponent y = 4. The model also 
includes a shadow fading component which is assumed to 
be normally distributed with a mean of 0 dB and a standard 
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deviation of 8 dB. The transmitter power was normalized to 
unity at (1/100)th the distance from the base (located at cell 
center) to a cell corner. The receiver noise level of -100 dB 
is expressed relative to this normalization. The up-link and 
down-link propagation matrices are assumed to be transposes 
of each other. In the example, the required p is 12 dB. A 
user gets assigned to the base with the strongest signal-to- 
interference ratio at time of arrival, which is not necessarily 
the base for the hexagon that the user is situated in. 

Moreover, the simulations also incorporate the practical 
constraint that the received power cannot exhibit gain. Some 
10000 independent experiments involving six randomly placed 
users were conducted. About 48% of the experiments permit- 
ted coexistence with 12 dB performance for all users. Only 
these cases where convergence is possible are represented in 
Fig. l(a), which, therefore, represents compatible situations 
where the users have a significant tendency to interfere with 
each other. Note that, as predicted in Section III.B., as ,# 
increases, the mean time to convergence is reduced. 

Fig. 1(a) includes two cases. In one case, all six users power- 
up together, while, in the second case, a sixth user jockeys 
in, powering up after the other five users have converged 
to an equilibrium (which is upset by the sixth user). In the 
simulation, “convergence” was considered to have occured 
when all users attained performance within 1% of the 12 
dB objective; in other words a signal-to-interference ratio of 
15.85 f .16. Intuitively, there is typically more to be done 
in the first case where all six users power-up. Therefore, it is 
not surprising the graphs show that the case where the five 
ongoing users are perturbed by a sixth takes fewer iterations 
to converge. 

Secondly, we looked at those cases where a sixth user cannot 
join five users that coexist with p = 12 dB and allow all six 
to achieve this p value. The number of iterations until at least 
one user learns that coexistence is impossible is shown. In 
these examples, the need to exceed the maximum allowable 
transmitter power provides the knowledge that coexistence 
is impossible. With j? = 1, this is seen to have a mean of 
1.3 iterations and a 95% point of two iterations. In actual 
situations, a user recognizing the impossibility of coexistence 
might use this information to trigger leaving the channel for 
another, or, as a last resort, dropping the call in progress. 

In the above examples, the departure of users is not mod- 
eled. However, imagining an application with a level of user 
interaction as in the example, it is interesting to consider 
whether the intursion to accommodate a new user is an 
acceptable disturbance of a call in progress. If a call lasts 
an average of 100 s, a mean of five steps (and a 95 percentile 
of 10 steps) at p = 1 might be interpreted as quite reasonable 
if, say, the time per iteration was about .01 s. If, on the other 
hand, the time per iteration were, say 0.1 s, it is not clear if 
that would be acceptable; further study would be required. 

While the figures all correspond to a p of 12 dB some spot 
examples for 9, 15 and 18 dB were also studied. The results 
are not very sensitive to changes in p .  For example from figure 
B at ,# = 1 we see that an average of about 1.3 iterations are 
needed until some user learns coexistence is impossible. As p 
ranges from 9 dB to 18 dB this mean changes from 1.5 to 1.2. 

1 Single new user tries joining five others 

i 
J 

STEP SIZE (8) 

(b) 

Fig. 1. Six tightly coupled users controlling their power: 10 000 independent 
computer experiments were performed in which six users were randomly 
(uniformly) situated in 64 contiguous hexagonal cells on a two-dimensional 
surface. The users share a single reused channel on each of the up and down 
links. They interfere with each other according to a standard propagation 
model, incorporating an attenuation with distance effect as well as shadow 
fading. A signal-to-interference requirement of 12 dB was required on both 
the up-link and down-link for each of the six users in order for them to 
coexist. The “interference” included -100 dB of receiver noise relative to 
the maximum allowable transmitter power. Graphs of number of iterations 
versus d are shown. (a) The approximately 48% of cases where the six users 
can coexist is represented. ’ b o  situations are depicted, one where all six users 
power-up together from zero power, and the other where five of the users are 
coexisting at the required 12 dB performance level and are then disturbed 
by a sixth user that can be accommodated. (b) Cases where it is impossible 
for a sixth user to join five users that are meeting the 12 dB requirement are 
represented. The number of iterations until at least one of the users learns of 
the impossibility of the situation is shown. 

We emphasize that the above examples employ a very 
preliminary model. In more detailed quantitative studies3 the 
effects of Rayleigh fading would also be included. Mobility 
is another complicating feature to be considered for future 
investigations [13]. 

V. CONCLUSION 
Equation (3) (or (5), or better (13a)) expresses a simple 

distributed autonomous means of power control, in that only 
local power and interference measurements are used to effect 
the control dynamic. In Section 111, we proved convergence 

3References [3] and [4] take a preliminary look at the effect of fast fading 
on the power control scheme reported there, and suggest that it does not 
undermine control accuracy very much. 
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of the algorithm: When an all-knowing “genie” can set each 
of the transmitted signals at power levels needed to achieve 
a required signal-to-interference ratio of p dB for each user, 
these settings can be made to arise exponentially fast from 
scratch, by evolution in accordance with (3) (or (5) or (13a)). 
These equations deal with only the down-link, but, as indicated 
in Section III.C., the algorithm and convergence result extend 
in a straightforward manner to include controlling both the 
up-link and down-link power together. 

For the more practical discrete form of the algorithm given 
by (13a), the question arises as to just how fast the algorithm 
can be made to evolve. The issue of pacing the power control 
evolution is a concern, since instability is a risk if the pace 
is too great. The fastest version of the algorithm for which 
convergence is assured was found in Section 1II.B. The effect 
of improving the convergence speed was illustrated in the 
simulation example of Section IV. 
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