
Performance of Stop-and-Wait

Reliable Transmission

Recover from corrupted and discarded frames

• Error Correcting Codes (ECC) — Forward Error Correction
(FEC) ←− not good enough

• Acknowledgements (ACK) and Timeouts —
Automatic Repeat reQuest (ARQ)

UDel CISC 650 (CCS) Performance of Stop-and-Wait-1

Stop-and-Wait

• After tx’ing one frame, the sender waits for an ACK before
tx’ing the next frame

• If ACK didn’t arrive after a certain period of time, the sender
times out and retx’es the original frame

Problem – duplicates (lost ACKs or premature timeout)
Solution – 1-bit sequence # (since a frame can only be
confused with the frame before it or the one after it)

Drawback – low link utilization
Solution – keep the pipe full

Example – 1.5Mbps link × 45ms RTT = 67.5Kb (≈ 8KB).
Assuming frame size of 1KB, stop-and-wait uses about 1

8 of
the link’s capacity =⇒ want the sender to be able to transmit
up to 8 frames before having to wait for an ACK

UDel CISC 650 (CCS) Performance of Stop-and-Wait-2

Performance of Stop-and-Wait – No Errors

• Consideration transmission in one direction only

• Define

F = length of frame (in bits)

D = length of data (info) field (in bits)

A = length of ACK (in bits)

C = link capacity (in bits/sec)

τ = one-way propagation delay & processing time (in sec)

U = (Link) Utilization = fraction of time that useful
data is being successfully tramsmitted

=
time to tx data

total time to tx a frame

=
D/C

F/C + τ + A/C + τ

UDel CISC 650 (CCS) Performance of Stop-and-Wait-3

Performance of Stop-and-Wait – With Errors

Define

T = Timeout interval

P1 = probability a data frame is damaged/lost

P2 = probability an ACK frame is damaged/lost

L = Prob. a data frame or its ACK is damaged/lost

1 − L =

so L =

Time to successfully transmit a frame

= [F/C + 2τ + A/C] + (F/C + T) ∗ L + (F/C + T) ∗ L2

+(F/C + T) ∗ L3 + · · ·
= [F/C + 2τ + A/C] + (F/C + T) ∗ L

1−L

U =
D/C

F/C + 2τ + A/C + (F/C + T) ∗ L/(1 − L)

UDel CISC 650 (CCS) Performance of Stop-and-Wait-4

Sliding Window Protocols

Idea – Allow sender to transmit multiple frames before
receiving an ACK =⇒ keeping the pipe full =⇒ pipelining

Example – Assume D×BW = 8KB and frame size = 1KB, we
would like the sender to be ready to tx the 9th frame at about
the same time that the ACK for the 1st frame arrives

UDel CISC 650 (CCS) Performance of Stop-and-Wait-5

Sender:

• Assign sequence number to each frame (SeqNum)

• Maintain 3 state variables and 1 invariant

– sending window size (SWS) – # of unACKed frames

– last acknowledgment received (LAR)

– last frame sent (LFS)

– invariant: LFS - LAR ≤ SWS

• When ACK arrives, advance LAR → slide (advance) window

• Associate a timer with each outstanding frame

• Retx the frame should the timer expire before an ACK is
received

• Buffer up to SWS frames for (potential) retransmission

UDel CISC 650 (CCS) Performance of Stop-and-Wait-6

Receiver:

• Maintain 3 state variables and 1 invariant

– receiving window size (RWS) – # of out-of-order frames

– last frame acceptable (LFA)

– next frame expected (NFE)

– invariant: LFA - NFE + 1 ≤ RWS

• Frame SeqNum arrives –

– if (SeqNum < NFE) or (SeqNum > LFA) =⇒ discarded

– if (NFE ≤ SeqNum ≤ LFA) =⇒ accept

Problems –

• errors (damaged/lost frames)

• finite sequence #

• whether to send ACK if an out-of-order frame is
received ?

• solutions – go-back-N and selective repeat

UDel CISC 650 (CCS) Performance of Stop-and-Wait-7

Go-Back-N

• Finite sequence numbers: 0 1 2 3 4 · · · M

• Maximum sending window size (SWS = w) – maximum # of
frames outstanding (not yet ACKed)

• Receiving window size (RWS) = 1

– R discards all subsequent frames and sends no ACKs for
them

– S retransmits all unACKed frames starting with the
damaged/lost one

• Example – SWS (w) = 3 and M = 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 · · ·

– send 0, 1, 2

– send 3 only after ACK 0 received

– send 4 only after ACK 1 received

– · · ·

• Example – SWS (w) = M + 1

– S sends 0 1 2 · · · M

– S gets ACK0 ACK1 ACK2 · · · ACKM

– S sends another incarnation 0 1 2 · · · M

– Question - Did R acknowledge new frames or resend old
ACKs ???

UDel CISC 650 (CCS) Performance of Stop-and-Wait-8

Go-Back-N – SWS and Sequence #

• Must have w ≤ M to avoid overlap

UDel CISC 650 (CCS) Performance of Stop-and-Wait-9

Selective Repeat

• Receiver accepts any frame in its receiving window even it’s
out of order

• Receiving Window Size (RWS) ≡ 1 −→ Go-Back-N

• Sequence numbers: 0, 1, 2, 3, 4, · · ·, M

• Must have w ≤ (M + 1)/2 to avoid overlap

UDel CISC 650 (CCS) Performance of Stop-and-Wait-10

Performance of Go-Back-N

Case 1 – No errors and window large enough so we don’t have
to wait for ACKs

• Define

– w = Maximum Window Size

– F = length of frame (in bits)

– D = length of data (info) field (in bits)

– C = link capacity (in bits/sec)

– τ = one-way propagation delay (in sec)

– wF/C is the time to tx a full window

– 1st frame takes F/C+τ to reach receiver

– With a piggybacked ACK, ACK returns after 2F/C+2τ

– Window large enough =⇒ wF/C ≥ 2F/C+2τ

– No overhead due to Go-Back-N, except the header

– U = D
F

UDel CISC 650 (CCS) Performance of Stop-and-Wait-11

Case 2 – No errors and small window to wait for ACKs

• Send w frames, then wait for ACKs

• U = wD/C
2F/C+2τ = wD

2F+2τC

Case 3 – With errors (Oh! No...)

UDel CISC 650 (CCS) Performance of Stop-and-Wait-12

Go-Back-N vs. Selective Repeat

0 1

0 1 2 3 4 5 6 7 8E D D D D D D

2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

Timeout interval

Error Frames discarded by data link layer

Ac
k 0

Ac
k 1 Ack

2
Ack

3
Ack

4
Ack

5
Ack

6
Ack

7

0 1

0 1 2 9 10 11 12E 3 4 5 6 7 8

2 3 4 5 6 7 8 2 9 10 11 12 13 14

Timeout interval

Error Buffered by data link layer Packets 2-8 passed
to network layer

Ack
0

Ack
1

Ack
1

Ack
1

Ack
1

Ack
1

Ack
1

Ack
1

Ack
8

Ack
9

Ack
10

Time

(a)

(b)

Trade-offs

• bandwidth →
• buffer space →

UDel CISC 650 (CCS) Performance of Stop-and-Wait-13

