
Performance of Stop-and-Wait

Reliable Transmission

Recover from corrupted and discarded frames

• Error Correcting Codes (ECC) — Forward Error Correction
(FEC) ←− not good enough

• Acknowledgements (ACK) and Timeouts —
Automatic Repeat reQuest (ARQ)
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Stop-and-Wait

• After tx’ing one frame, the sender waits for an ACK before
tx’ing the next frame

• If ACK didn’t arrive after a certain period of time, the sender
times out and retx’es the original frame

Problem – duplicates (lost ACKs or premature timeout)
Solution – 1-bit sequence # (since a frame can only be
confused with the frame before it or the one after it)

Drawback – low link utilization
Solution – keep the pipe full

Example – 1.5Mbps link × 45ms RTT = 67.5Kb (≈ 8KB).
Assuming frame size of 1KB, stop-and-wait uses about 1

8 of
the link’s capacity =⇒ want the sender to be able to transmit
up to 8 frames before having to wait for an ACK
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Performance of Stop-and-Wait – No Errors

• Consideration transmission in one direction only

• Define

F = length of frame (in bits)

D = length of data (info) field (in bits)

A = length of ACK (in bits)

C = link capacity (in bits/sec)

τ = one-way propagation delay & processing time (in sec)

U = (Link) Utilization = fraction of time that useful
data is being successfully tramsmitted

=
time to tx data

total time to tx a frame

=
D/C

F/C + τ + A/C + τ
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Performance of Stop-and-Wait – With Errors

Define

T = Timeout interval

P1 = probability a data frame is damaged/lost

P2 = probability an ACK frame is damaged/lost

L = Prob. a data frame or its ACK is damaged/lost

1 − L =

so L =

Time to successfully transmit a frame

= [F/C + 2τ + A/C] + (F/C + T ) ∗ L + (F/C + T ) ∗ L2

+(F/C + T ) ∗ L3 + · · ·
= [F/C + 2τ + A/C] + (F/C + T ) ∗ L

1−L

U =
D/C

F/C + 2τ + A/C + (F/C + T ) ∗ L/(1 − L)
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Sliding Window Protocols

Idea – Allow sender to transmit multiple frames before
receiving an ACK =⇒ keeping the pipe full =⇒ pipelining

Example – Assume D×BW = 8KB and frame size = 1KB, we
would like the sender to be ready to tx the 9th frame at about
the same time that the ACK for the 1st frame arrives
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Sender:

• Assign sequence number to each frame (SeqNum)

• Maintain 3 state variables and 1 invariant

– sending window size (SWS) – # of unACKed frames

– last acknowledgment received (LAR)

– last frame sent (LFS)

– invariant: LFS - LAR ≤ SWS

• When ACK arrives, advance LAR → slide (advance) window

• Associate a timer with each outstanding frame

• Retx the frame should the timer expire before an ACK is
received

• Buffer up to SWS frames for (potential) retransmission
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Receiver:

• Maintain 3 state variables and 1 invariant

– receiving window size (RWS) – # of out-of-order frames

– last frame acceptable (LFA)

– next frame expected (NFE)

– invariant: LFA - NFE + 1 ≤ RWS

• Frame SeqNum arrives –

– if (SeqNum < NFE) or (SeqNum > LFA) =⇒ discarded

– if (NFE ≤ SeqNum ≤ LFA) =⇒ accept

Problems –

• errors (damaged/lost frames)

• finite sequence #

• whether to send ACK if an out-of-order frame is
received ?

• solutions – go-back-N and selective repeat
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Go-Back-N

• Finite sequence numbers: 0 1 2 3 4 · · · M

• Maximum sending window size (SWS = w) – maximum # of
frames outstanding (not yet ACKed)

• Receiving window size (RWS) = 1

– R discards all subsequent frames and sends no ACKs for
them

– S retransmits all unACKed frames starting with the
damaged/lost one

• Example – SWS (w) = 3 and M = 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 · · ·

– send 0, 1, 2

– send 3 only after ACK 0 received

– send 4 only after ACK 1 received

– · · ·

• Example – SWS (w) = M + 1

– S sends 0 1 2 · · · M

– S gets ACK0 ACK1 ACK2 · · · ACKM

– S sends another incarnation 0 1 2 · · · M

– Question - Did R acknowledge new frames or resend old
ACKs ???
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Go-Back-N – SWS and Sequence #

• Must have w ≤ M to avoid overlap
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Selective Repeat

• Receiver accepts any frame in its receiving window even it’s
out of order

• Receiving Window Size (RWS) ≡ 1 −→ Go-Back-N

• Sequence numbers: 0, 1, 2, 3, 4, · · ·, M

• Must have w ≤ (M + 1)/2 to avoid overlap
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Performance of Go-Back-N

Case 1 – No errors and window large enough so we don’t have
to wait for ACKs

• Define

– w = Maximum Window Size

– F = length of frame (in bits)

– D = length of data (info) field (in bits)

– C = link capacity (in bits/sec)

– τ = one-way propagation delay (in sec)

– wF/C is the time to tx a full window

– 1st frame takes F/C+τ to reach receiver

– With a piggybacked ACK, ACK returns after 2F/C+2τ

– Window large enough =⇒ wF/C ≥ 2F/C+2τ

– No overhead due to Go-Back-N, except the header

– U = D
F
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Case 2 – No errors and small window to wait for ACKs

• Send w frames, then wait for ACKs

• U = wD/C
2F/C+2τ = wD

2F+2τC

Case 3 – With errors (Oh! No...)
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Go-Back-N vs. Selective Repeat
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Trade-offs

• bandwidth →
• buffer space →
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