Performance of Stop-and-Wait

Stop-and-Wait

Reliable Transmission e After tx'ing one frame, the sender waits for an ACK before
tx'ing the next frame

Recover from corrupted and discarded frames
o If ACK didn’t arrive after a certain period of time, the sender

e Error Correcting Codes (ECC) — Forward Error Correction times out and retx’es the original frame
(FEC) «— not good enough

e Acknowledgements (ACK) and Timeouts —

Automatic Repeat reQuest (ARQ) 2

= | =

Problem — duplicates (lost ACKs or premature timeout)
Solution — 1-bit sequence # (since a frame can only be
confused with the frame before it or the one after it)

Drawback — low link utilization
Solution — keep the pipe full

Example — 1.5Mbps link x 45ms RTT = 67.5Kb (~ 8KB).
/ Assuming frame size of 1KB, stop-and-wait uses about % of

the link’s capacity = want the sender to be able to transmit
up to 8 frames before having to wait for an ACK

W WY

UDel CISC 650 (CCS) Performance of Stop-and-Wait-1 UDel CISC 650 (CCS) Performance of Stop-and-Wait-2

Performance of Stop-and-Wait — With Errors
Define

Performance of Stop-and-Wait — No Errors

e Consideration transmission in one direction only
e Define

F = length of frame (in bits)

D = length of data (info) field (in bits)
A = length of ACK (in bits)

C' = link capacity (in bits/sec)

T = Timeout interval

Py = probability a data frame is damaged/lost

P, = probability an ACK frame is damaged/lost

L = Prob. a data frame or its ACK is damaged/lost
1-L=

T = one-way propagation delay & processing time (in sec) so L =

U = (Link) Utilization = fraction of time that useful

data is being successfully tramsmitted Time to successfully transmit a frame

7 time to tx data =[F/C+27+ A/C)+ (F/C+T)* L+ (F/C+T)xL?
 total time to tx a frame +HF/C+T)* L+ ---
p/C =[F/C+21+A/C)+ (F/C+T) =L

T F/C+T+AJCHT
D/C

U:F/C+27+A/C+(F/C+T)*L/(l—L)

UDel CISC 650 (CCS) Performance of Stop-and-Wait-3 UDel CISC 650 (CCS) Performance of Stop-and-Wait-4

Sliding Window Protocols

Idea — Allow sender to transmit multiple frames before
receiving an ACK = keeping the pipe full — pipelining

Example — Assume DxBW = 8KB and frame size = 1KB, we
would like the sender to be ready to tx the 9th frame at about
the same time that the ACK for the 1st frame arrives

\

UDel CISC 650 (CCS) Performance of Stop-and-Wait-5

Sender:

e Assign sequence number to each frame (SeqNum)

e Maintain 3 state variables and 1 invariant

— sending window size (SWS) — # of unACKed frames
— last acknowledgment received (LAR)

— last frame sent (LFS)

— invariant: LFS - LAR < SWS

e When ACK arrives, advance LAR — slide (advance) window
e Associate a timer with each outstanding frame

e Retx the frame should the timer expire before an ACK is
received

e Buffer up to SWS frames for (potential) retransmission

UDel CISC 650 (CCS) Performance of Stop-and-Wait-6

Receiver:

e Maintain 3 state variables and 1 invariant
— receiving window size (RWS) — # of out-of-order frames
— last frame acceptable (LFA)
— next frame expected (NFE)
— invariant: LFA - NFE + 1 < RWS

e Frame SeqNum arrives —

— if (SeqNum < NFE) or (SeqNum > LFA) = discarded
—if (NFE < SegNum < LFA) = accept

Problems

e errors (damaged/lost frames)
e finite sequence #

e whether to send ACK if an out-of-order frame is
received ?

e solutions — go-back-N and selective repeat

UDel CISC 650 (CCS) Performance of Stop-and-Wait-7

Go-Back-N

e Finite sequence numbers: 01234 --- M
e Maximum sending window size (SWS = w) — maximum # of
frames outstanding (not yet ACKed)
e Receiving window size (RWS) =1
— R discards all subsequent frames and sends no ACKs for
them
— S retransmits all unACKed frames starting with the
damaged /lost one

e Example - SWS (w) =3 and M =7
01234567012345670---

—send 0, 1, 2
— send 3 only after ACK 0 received
—send 4 only after ACK 1 received

e Example - SWS (w) = M + 1
—Ssends012--- M
— S gets ACKO ACK1 ACK2 --- ACKM
— S sends another incarnation 012 --- M

— Question - Did R acknowledge new frames or resend old
ACKs 777

UDel CISC 650 (CCS) Performance of Stop-and-Wait-8

Go-Back-N — SWS and Sequence # Selective Repeat

. e Recelver accepts any frame in its receiving window even it’s
o Must have to avoid overlap ot (; pts any Ire g
out of order

e Receiving Window Size (RWS) = 1 — Go-Back-N
e Sequence numbers: 0, 1,2, 3,4, ---, M
e Must have ‘w < (M + 1)/2‘ to avoid overlap

UDel CISC 650 (CCS) Performance of Stop-and-Wait-9 UDel CISC 650 (CCS) Performance of Stop-and-Wait-10

Performance of Go-Back-N

Case 1 — No errors and window large enough so we don’t have
to wait for ACKs

e Define

—w = Maximum Window Size

— F = length of frame (in bits)

— D = length of data (info) field (in bits)

— C = link capacity (in bits/sec)

— 7 = one-way propagation delay (in sec)

— wF'/C is the time to tx a full window

— 1st frame takes F'/C+7 to reach receiver

— With a piggybacked ACK, ACK returns after 2F/C+21
— Window large enough — wF/C > 2F/C+27

— No overhead due to Go-Back-N, except the header

D
Uv="2

UDel CISC 650 (CCS) Performance of Stop-and-Wait-11

Case 2 — No errors and small window to wait for ACKs

e Send w frames, then wait for ACKs

_ wD/C _ wD
* U= g5/ = arsarC

Case 3 — With errors (Oh! No...)

UDel CISC 650 (CCS) Performance of Stop-and-Wait-12

Go-Back-N vs. Selective Repeat

‘<7Timeout interval4>‘

DA

Error Frames discarded by data link layer

S ‘5%

Time ——

(a)

‘<7Timeout interval4>‘

’{@'{'{'@'{'{

~4~ w~ 9
0 ¢ G

, YAV
.', ' . /'/

Buffered by data link layer Packets 2-8 passed
to network layer

(b)

Trade-offs

e bandwidth —

¢ buffer space —

UDel CISC 650 (CCS) Performance of Stop-and-Wait-13

