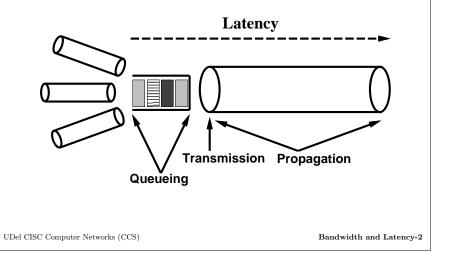

Bandwidth and Latency

Bandwidth

- Amount of data that can be *transmitted* per time unit
 ⇒ *transmitted* = put into the pipe (wire)
- Example: 10Mbps (10 million bits per second)



Latency

- Time it takes to send a message from point A to point B
- \bullet Components of latency

Latency = Propagation + Transmit + Queueing Propagation = Distance / Speed-of-Light Transmit = Packet-Size / Bandwidth

- Speed of light (electromagnetic wave)
 - 3.0 \times 10^8 meters/second in a vacuum
 - -2.3×10^8 meters/second in a cable
 - -2.0×10^8 meters/second in a fiber
 - $-C = \lambda \times f$

Performance

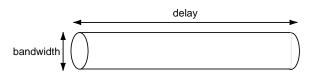
Network performance is measured in 2 fundamental ways

(1) Bandwidth (throughput – measured performance)

- \bullet Amount of data that can be transmitted per time unit
- Example: 10Mbps (10 million bits per second)

(2) Latency (delay)

- Time it takes to send message from point A to point B
- Components of latency


Latency = Propagation + Transmit + Queueing Propagation = Distance / Speed-of-Light Transmit = Packet-Size / Bandwidth

- Speed of light
 - 3.0×10^8 meters/second in a vacuum
 - 2.3×10^8 meters/second in a cable
 - 2.0×10^8 meters/second in a fiber
- Notes
 - no queueing delays in direct link
 - process-to-process latency includes software overhead
 - software overhead can dominate when Distance is small

UDel CISC Computer Networks (CCS)

Performance-3

- **Relative importance** of bandwidth vs. latency depending on applications
 - small message (e.g., 1 byte): [1ms vs 100ms] (latency) dominates [1Mbps vs 100Mbps]
 - large message (e.g., 25 MB): [1Mbps vs 100Mbps] $({\bf BW})$ dominates [1ms vs 100ms]
- **Delay** × **Bandwidth Product** *volume of pipe* how many bits the sender must tx. before the 1st bit arrives at the receiver
 - \Rightarrow the amount of data that could be in transit

Example: 100ms RTT and 45Mbps BW \approx 560 KB of data

Principle – keep the pipe full

- Application needs (vs. channel can support)
 - bandwidth: digital library (burst; the more the better) vs.
 video (peak rate; upper limit)
 - latency: one-way delay vs. latency varies from packet to packet (*jitter*)

UDel CISC Computer Networks (CCS)

Performance-4