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i 

Abstract 

 
The ability to efficiently and accurately determine the subcellular location of a protein is 

an active area of research in proteomics.  The subcellular location of a protein can help to 

elucidate several of its characteristics, including its function, its role in biological 

processes, and its potential as a drug target.  In this thesis we present a new system, called 

EpiLoc, for predicting subcellular location.  EpiLoc represents proteins as term-vectors, 

where each component in a vector corresponds to a term that is correlated with a specific 

location.  The system uses a method we refer to as Z-Test to identify the set of terms that 

is used to represent proteins, and we conduct an in-depth study comparing this method to 

other standard feature selection methods.  For a given protein, the weight assigned to a 

term is based on its frequency of occurrence in text about the protein.  To ensure that 

EpiLoc can predict the location of practically any protein, we develop several methods 

for associating text with proteins.  The term-vectors are used to train a classifier to 

recognize term distributions that are indicative of specific locations.  The performance of 

the EpiLoc system is examined both as a standalone classifier and as part of an integrated 

sequence- and text-based classifier called SherLoc (the latter developed in collaboration 

with a group from the University of Tübingen).  Both systems are compared to several 

other state-of-the-art classifiers.  The results demonstrate that as a standalone classifier 

EpiLoc performs at a level comparable to (and in some cases better than) other state-of-

the-art systems.  Moreover, the results from the integrated system suggest that the 

integration of text and sequence data can achieve a significant, quantitative improvement 

over a system that uses biological data alone. 
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Chapter 1 

 

Introduction 
The subcellular location of a protein provides important information for deducing its role 

within the cell.  Computational systems for predicting subcellular location are actively 

being developed and studied.  To this end, we present in this thesis two new systems, 

EpiLoc and SherLoc, which utilize text data to predict location.  

1.1 Motivation 

Proteins are large molecules composed of amino acids arranged in a sequence. They 

control the behavior of the cell through the myriad of functions they perform, such as 

transporting molecules, acting as support structures, catalyzing reactions, digesting 

molecules, signaling to other cells, and defending against disease [52]. 

 The set of proteins that an organism produces is determined by its genes; they 

specify how, and when, to create a protein.  An organism’s complete genetic information 

is called its genome.  Recent methods allow researchers to sequence entire genomes, 

thereby making it possible to deduce the set of proteins found in organisms [52].  Several 

genomes, including the human genome [50, 25], have been determined.  This 

breakthrough has resulted in vast amounts of protein data.  The human genome alone 
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encodes hundreds of thousands of proteins [37].  For the majority of proteins discovered 

through large-scale genomic efforts, very little is known about their role within the cell. 

 The goal of proteomics, the field of research concerned with the study of proteins, 

is to reliably annotate proteins with information regarding their structure and function.  

The reliable annotation of all known proteins is a long-term project that will take years to 

complete.  It requires the development of systems that can quickly and reliably determine 

specific characteristics of a protein, including its structure, interaction partners, binding 

sites, and subcellular location.  Computational methods that assign these characteristics to 

a protein are being developed [12].  In this thesis, we are specifically interested in 

methods that assign a subcellular location to a protein. 

 Subcellular location is a starting point for discerning other information about a 

protein.  A protein’s location is often directly related to its function.  For example, 

proteins found in the mitochondria are often involved in metabolism.  Moreover, 

knowing the location of a protein can help clarify its role in disease, or even indicate its 

suitability as a drug target [43].  Consequently, methods for determining subcellular 

location are being actively studied. 

 Experimental methods for determining a protein’s location already exist [18, 26].  

Such methods, however, are laborious and time consuming; applying them to the large 

number of proteins for which a subcellular location is still unknown would be almost 

impossible to accomplish in the near future.  Therefore, other methods that can rapidly 

assign subcellular location are being developed. 

 The fastest methods for assigning a putative subcellular location are computer 

based.  Many systems assign a location based on certain amino acid sequence 
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characteristics, including the order of its amino acids [15, 4], its composition [41, 8, 23, 

38], and its similarity to other protein sequences [33].  Other systems employ a subset of 

these criteria in order to assign subcellular location [20, 34].  However, none of these 

systems is completely accurate.  Typically, systems that achieve high accuracy [14, 15] 

can only distinguish among proteins from a few locations.  On the other hand, systems 

that assign proteins to a larger number of different subcellular locations [21, 8] usually 

achieve a low accuracy.  The most advanced systems [38, 20] assign proteins to a large 

number of locations and achieve a relatively high accuracy, but still leave room for 

improvement.   

 To improve the reliability of prediction systems, other sources of protein 

information may need to be considered.  Techniques that use textual information 

concerning a protein have already been introduced, although none have so far 

demonstrated a significant improvement over sequence-based classifiers.  This thesis 

presents a new text-based method for the prediction of protein subcellular location, and 

demonstrates its use in a system that integrates both sequence and text information to 

assign protein location. 

1.2 Thesis Objectives 

The work described here aims to investigate the utility of using text data to predict the 

subcellular location of a protein.  Our primary goal is to design, develop, and test a 

complete standalone text-based location prediction system that can also supplement and 
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improve the performance of a sequence-based prediction system.  Specifically, this work 

intends to: 

• Produce a text-based system that predicts protein subcellular location, and 

compare our system’s performance to that of state-of-the-art systems.  To be 

comparable to other systems, ours must be able to assign a subcellular location to 

essentially any protein.  This is a challenging task, as text relevant to each protein 

is not always available. 

• Integrate our text-based system with a sequence-based system, compare the 

performance of the integrated system to that of state-of-the-art systems, and 

examine the effects of the integration. 

 

 We call our text-based classifier EpiLoc.  Its development involves the following 

essential steps: 

1. Assignment of text to a protein dataset. 

2. Selection, from that text, of terms that will be used to represent the proteins. 

3. Representation of each protein as a vector of term-weights, where each weight 

represents the significance of a term in the text specifically associated with the 

protein.   

4. Training and testing of a classifier using the vectors. 

We also build a system that combines text and sequence data, by integrating an early 

version of EpiLoc with the sequence-based system, MultiLoc [20].  The integrated 

system is called SherLoc.  The design of both systems is described in detail in Chapter 3. 
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1.3 Thesis Contributions 

The performance of both EpiLoc and SherLoc has been evaluated extensively, and 

suggest that both are viable tools for subcelluar location prediction.  Specifically, the 

main contributions of this thesis are: 

1. We demonstrate that our text-based prediction system, EpiLoc, is as effective as 

current state-of-the-art systems for protein subcellular location prediction.  

Moreover, we conduct an in-depth study of specific components of the EpiLoc 

system.  In particular, we compare several different feature selection methods, and 

evaluate the effectiveness of several methods for associating text with proteins. 

2. We demonstrate that the integrated sequence- and text-based classifier, SherLoc, 

significantly improves upon other state-of-the-art systems for predicting 

subcellular location. 

3. We show that a system that uses biological and text data to address a biological 

problem can achieve a significant improvement over a system that uses biological 

data alone. 

1.4 Thesis Outline 

This thesis describes the development of the EpiLoc and the SherLoc systems, as well as 

the procedures used to test their effectiveness.  Chapter 2 provides an introduction to the 

biology driving protein localization in organisms, and surveys current work on 

determining the subcellular location of a protein. Chapter 3 details the design of the 

EpiLoc and the SherLoc systems, and describes several methods for assigning text to 

proteins.  In Chapter 4, we describe the approach used to test the effectiveness of EpiLoc 
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and SherLoc, while in Chapter 5 we define and analyze our term selection method.  The 

results of our experiments are presented in Chapter 6, while Chapter 7 concludes the 

thesis and proposes future work. 
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Chapter 2 

 

Background 

In this chapter we provide background about proteins and the methods used for inferring 

and predicting their subcellular location.  We begin by presenting the basic biology 

pertaining to proteins, specifically details concerning subcellular localization.  Such 

details are important, as they are often considered in the design of systems for subcellular 

location prediction. 

We next survey experimental and computational techniques used to assign protein 

subcellular location.  As laboratory techniques are slow and labour intensive, there is a 

clear need for quicker, computer-based approaches to predict subcellular location.  

Understanding existing approaches is imperative in order to understand where and how 

improvements may be made to the prediction process.  
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2.1 Proteins 

Every organism is controlled by proteins and the functions they perform within its cells.  

Some proteins have mechanical or structural functions, while others play important roles 

in the production of cellular energy.  Still others are involved in immune responses, cell 

signalling, digestion, and catalysis of biochemical reactions.  Protein functions within a 

cell determine its role within an organism, thereby influencing the overall development 

and activity of the organism [52]. 

A protein is a macromolecule comprised of basic units, called amino acids, 

arranged in a sequence (Figure 2.1.1).  There are millions of proteins, varying in length 

and in their amino-acid composition.  The exact sequence of each protein is determined 

by its coding gene [52].  

Genes are stored as part of the deoxyribonucleic acid (DNA), which is a long 

sequence of a particular type of molecules, known as nucleotides.  Individual genes are 

located along sections of the DNA, and along each gene there are certain regions that 

encode a protein.  These coding regions consist of sequences of codons, which are 

sequences of three nucleotides that specify an amino acid (Figure 2.1.1).  Each codon 

encodes a single amino acid; the sequence of codons found in a gene determines the 

amino acid sequence of a protein.  Therefore, the amino acid sequence of a protein can be 

derived directly from the nucleotide sequence of its corresponding gene [52]. 

The synthesis of a protein consists of two main steps, transcription and 

translation.  During transcription, DNA is used to produce molecules called mRNA that 

carry the code for creating a protein from the nucleus, which contains the DNA, to the 

ribosomes, which form the part of the cell where proteins are formed.  During translation, 
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the ribosomes adjoin together, in order, the amino acids specified by the mRNA.  

Following translation, the newly formed amino acid sequence arranges itself into its final 

shape, or conformation, and protein synthesis is complete [52].  To perform its function, 

the fully formed protein is then transported to its final location within or outside the cell.  

Some proteins may be found in more than a single location, and some may even “shuttle” 

between multiple locations [6]. 

 

 
Figure 2.1.1:  The correspondence between the nucleotide sequence of a gene 
and the amino acid sequence of a protein.  A sequence of 3 nucleotides encodes 
one amino acid.   

 
 

The nucleotide sequences of several genomes, including the human genome [50, 

25], have been determined.  Researchers are using these genomes to deduce the amino 

acid sequence of hundreds of thousands of proteins, many of which have yet to be 

experimentally produced and studied.  Determining the function of these proteins is a 

major goal of proteomics, as a protein’s function provides insight into its role in disease 

and healthy processes.  However, function is often difficult to determine.   
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The subcellular location of a protein can often help to elucidate several of its 

properties, including its function [12].  For example, proteins found in the nucleus often 

interact with the DNA in processes such as transcription.  In addition to providing cues 

about function, the location of a protein may also help to determine its interaction 

partners and its potential as a drug target [12, 20].   

As knowing the subcellular location of a protein can help to advance its study, the 

ability to determine subcellular location has become an important objective of 

computational proteomics.  Understanding the physical localization process of proteins 

within the cell may help guide the development of systems for computationally 

determining a protein’s location.  This process continues to be researched, and we 

describe it in the next section. 

2.2 Cellular Sorting Processes 

Proteins have evolved over time, during which their sequences have adapted to function 

optimally within specific subcellular locations [1].  As a result, the correct delivery of a 

protein to its final location is imperative to ensure its proper functioning [12].   

The cells within organisms consist of several components (or locations), where 

different organisms have different sets of subcellular components.  In this thesis we focus 

on subcellular locations found in either plant, animal, or fungal cells.  These types of cells 

contain several membrane-bound components, known as organelles, in which proteins 

may be found.  Each organelle performs a specific function within the cell (Table 2.1.1).  

The main organelles are the endoplasmic reticulum, Golgi apparatus, lysosome, 

mitochondria, nucleus, peroxisome, and plasma membrane.  There are also organelles 

that are specific to certain organisms, such as the chloroplast (plant), lysosome (animal), 
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and vacuole (plant and fungal).  All organelles are surrounded by the cytoplasm, and the 

plasma membrane encapsulates the cell and separates its contents from the extracellular 

space [7].  Table 2.1.1 lists the organelles (also included are the extracellular space and 

the cytoplasm) along with their function and the type of organism in which they can be 

found. 

  

Subcellular Location Primary Function Organism(s) 

chloroplast Generates energy for plant cells from 
sunlight Plant 

cytoplasm Surrounds the organelles and 
maintains the shape of the cell Animal, Plant, Fungal 

Endoplasmic reticulum 
Transports proteins to be attached to 
the plasma membrane or to  be 
secreted to the extracellular space 

Animal, Plant, Fungal 

extracellular space Surrounds the cell Animal, Plant, Fungal 

Golgi apparatus 
Processes and packages molecules 
synthesized by the cell, including 
proteins 

Animal, Plant, Fungal 

lysosome 

Primary site of digestion, breaks down 
proteins and other molecules within 
the cell before they are exported to the 
extracellular space 

Animal 

mitochondria 
Creates energy for the cell by 
converting organic matter into energy 
that the cell can use 

Animal, Plant, Fungal 

nucleus Stores the DNA and separates it from 
the cytoplasm Animal, Plant, Fungal 

peroxisome Rids the cell of toxic materials Animal, Plant, Fungal 

plasma membrane Controls the movement of molecules 
in and out of the cell Animal, Plant, Fungal 

vacuole Stores - as well as exports - waste, 
water, and food Plant, Fungal 

 
Table 2.1.1:  Subcellular locations and their primary functions.  The type of organism in which each 
organelle can be found is listed in the rightmost column.  

 
 

The translation of mRNA into proteins occurs in the cytoplasm.  From there, 

proteins can enter the secretory pathway (the system that transports proteins and other 
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molecules to the plasma membrane and the extracellular space), be routed to other 

locations that are not part of the secretory pathway, or remain in the cytoplasm [12].   The 

specific location of a protein within the cell depends in large part on its amino acid 

sequence and on certain subsequences within it (known as motifs) [1]. 

 The secretory pathway is comprised of the Endoplasmic reticulum, extracellular 

space, Golgi apparatus, lysosome, plasma membrane, and vacuole.  Proteins that are 

bound for the secretory pathway typically carry a targeting signal, called a signal peptide, 

as part of their amino acid sequence.  The signal peptide is located on the N-terminal 

region, which is the end of a protein that has an unbound amino group (the other end is 

the C-terminal region, and has an unbound carboxyl group).  Proteins bound for the 

secretory pathway may also contain a signal anchor, which is found further away from 

the N-terminal region [29].  In both cases, proteins are translated and simultaneously 

transported to the inside of the endoplasmic reticulum (ER).  Once inside the ER, they 

may either remain there (if they contain an ER retention signal) or move to other regions 

of the secretory pathway [12].   

 Proteins bound for locations outside the secretory pathway are completely 

assembled in the cytoplasm, and then transported to their final destination.  Chloroplast, 

mitochondrial, and lysosomal proteins usually have an N-terminal targeting sequence, or 

transit peptide, which is recognized by the trafficking system.  Some intrinsic sequences 

guide proteins to the plasma membrane, while those going to the nucleus are generally 

identified by a nuclear localization signal, which consists of 4 to 8 amino acids.  

Peroxisomal proteins contain a short C-terminal signal sequence that allows them to cross 

the peroxisome’s membrane and pass into its interior.  If a protein does not have any of 
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the signals described above, it usually remains in the cytoplasm and carries out its 

function there [12]. 

The sorting signals described above are not the only ones to determine the 

protein’s subcellular location.  Factors such as conformation and amino acid composition 

also participate in protein localization.  The conformation of a protein affects its 

localization, as conformation, to a large extent, determines the interactions a protein may 

undergo during localization.  Moreover, a protein’s amino acid composition, the relative 

frequency of each amino acid in the protein’s sequence, is correlated with and influences 

subcellular localization [1].  For instance, plasma membrane proteins tend to contain a 

disproportionately large number of hydrophobic amino acids (amino acids that lack an 

affinity for water). 

 Methods for determining a protein’s subcellular location are actively being 

investigated.  These methods are generally either experimental or computational, and are 

described in the sections that follow.  

2.3 Experimental Localization  

The task of ascertaining the location of a protein within a cell was initially undertaken in 

a laboratory setting.  Lab techniques involve attaching a marker to a protein to allow 

researchers to visually trace the path of the protein to its subcellular location.  The two 

most common techniques are green fluorescent protein (GFP) localization [18] and 

immunolocalization [26]. 

 Green fluorescent protein emits fluorescent light.  Attaching a GFP to another 

protein makes the latter detectable by observing the light it emits.  Tagging with a GFP 

involves fusing the GFP’s corresponding gene sequence to the end of another gene.  A 
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region that can be used to promote transcription is also fused to the end of the gene.  

Transcription is induced, and the protein is synthesized.  As the protein relocates to its 

subcellular location the fluorescent light emitted by the GFP tag makes it possible to 

observe and determine the location of the protein [18]. 

 Immunolocalization is another experimental procedure that, similarly to the GFP 

tagging, allows a researcher to physically observe a protein.  However, for 

immunolocalization the target protein is tagged with an epitope, which is the portion of a 

protein that other proteins recognize and to which they bind.  A gene sequence encoding 

the epitope is fused to the end of the coding gene, and the resulting target protein thus 

contains the epitope.  A protein that binds to the epitope and has been altered to emit 

fluorescent light is then added to the cell.  The interaction between the target and the 

fluorescent-emitting proteins allows researchers to determine its location within the cell 

by observing the fluorescent light [26]. 

 Immunolocalization and GFP tagging are both very accurate processes.  Special 

consideration is required, however, when utilizing either method, as the required 

modification to the original gene sequence can affect the localization mechanism itself.  

For instance, fusing GFP at the N-terminal of a protein might prevent the trafficking 

system from interacting with the targeting signal that normally guides the protein to the 

mitochondria [26].  Another problem with using either method is that the inclusion of the 

extra protein portion may cause a conformational change in the protein that could either 

activate or deactivate a localization signal that may or may not be normally present in the 

native protein [18].  Finally, both processes are slow and labour intensive, and cannot 

handle the massive amounts of protein data currently available.  As such, high-throughput 



CHAPTER 2.  BACKGROUND  15 

 

computational techniques for the assignment of subcellular location have been proposed 

in recent years. 

2.4 Classification using Sequence Information 

In order to address the need for high-throughput methods for determining protein 

subcellular location, computational techniques have been developed.  These techniques 

do not simply match localization signals against a protein sequence to determine 

subcellular location.  Despite the knowledge that has been acquired regarding protein 

sorting, the final location of a protein cannot be fully determined from its sequence alone.  

Signal sequences are not always present or easy to identify, and proteins with similar 

amino acid composition may belong to different locations.  Therefore, methods that 

attempt to predict subcellular location have been developed.   Specifically, classification 

methods assign a location, (where the latter is viewed as a class tag), to a protein whose 

location is unknown.   

One method for predicting subcellular location involves assigning a protein to the 

same location as that of a protein whose amino acid sequence is similar (known as a 

homolog), and whose location is already known.  Often proteins that are highly similar 

share many other characteristics such as conformation, function, etc. [52, 33, 5].  There 

are several algorithms, such as BLASTP [2], that measure the similarity between two 

protein sequences.  Nair and Rost [33] demonstrated that if the amino acid sequences of 

two proteins are similar enough, the subcellular location of one can be reliably assigned 

to its homolog.  They found that in order to confidently assign a location, the protein 

whose location is unknown must be at least 70% identical to the protein whose location is 

known.  As a result, proteins that do not have a homolog with a high enough similarity 
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cannot be localized using this method, and expert systems or machine learning classifiers 

are used instead. 

An expert system is a collection of if-then rules based on expert knowledge.  Such 

systems have been used to derive the location from protein information [12, 34].  A 

different approach is to use a machine learning technique, such as hidden Markov Models 

(HMMs), artificial neural networks (ANN), Bayesian networks, K-nearest neighbours, or 

support vector machines (SVMs), to predict subcellular location [45].  To use such 

techniques, proteins are represented by information related to them, and a classifier is 

trained based on this representation to assign a subcellular location.   

There are three common ways to represent a protein.  The first is based on N-

terminal targeting signals; the second global sequence features, most often amino acid 

composition.  The third is based on combining several types of protein data that may 

come from N-terminal targeting signals, amino acid composition, sequence motifs, text 

annotations, or other sources of information about a protein [12].  These approaches vary 

in the number of possible locations into which they can classify proteins, the number of 

proteins they can represent (known as coverage), and most importantly – in their 

prediction accuracy1.  The following sections provide more details about the different 

approaches and the systems using them. 

2.4.1 N-Terminal Based Classifiers 

Methods based on N-terminal targeting information classify proteins into four possible 

locations: chloroplast, mitochondria, secretory pathway (SP), and Other, where Other 

includes proteins belonging to all other possible locations.   Plant proteins can be 

                                                 
1 Accuracy is defined as the number of proteins correctly classified, divided by the total number of proteins.  
A formal definition of accuracy and other performance measures are provided in Section 3.2.2. 
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classified into all four locations, while animal proteins can only be classified into three of 

them, as they cannot be localized to the chloroplast.  As a result of the broad classes into 

which N-terminal based classifiers may assign a protein (both SP and Other include 

proteins from multiple locations), they usually attain a high accuracy [20].   

Two early attempts to classify proteins based on their N-terminal sequence were 

SignalP [36] and ChloroP [14].  SignalP classifies an amino acid sequence as 

belonging/not-belonging to a signal peptide, while ChloroP classifies a sequence as 

belonging/not-belonging to a chloroplast transit peptide.  Both techniques are based on 

neural networks, and use a multi-layer network architecture.  The first layer classifies 

each amino acid in the N-terminal sequence as belonging/not-belonging to a targeting 

signal.  The output from the first layer is fed into a second layer, which classifies the 

overall protein according to whether or not it contains a targeting signal.   

TargetP [15], which was based on SignalP and ChloroP, uses portions of its two 

predecessors to assign a subcellular location to a protein.  The first layer of TargetP 

consists of the first layer classifier of SignalP and of ChloroP, joined by a third classifier 

that classifies each amino acid in a sequence as belonging/not-belonging to a 

mitochondrial targeting peptide.  The output of all three classifiers is presented to a 

second layer neural network that classifies a protein as belonging to the mitochondria, 

chloroplast, secretory pathway, or Other.  TargetP is currently considered the state-of-

the-art of prediction systems among those based solely on N-terminal sequence 

information.  It has demonstrated an overall prediction accuracy of 85% for plant 

proteins, and 90% for non-plant proteins. 
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A well-known problem with using neural networks for classification is that it is 

very difficult to understand why a class is assigned.  This difficulty makes it impossible 

to gain any insight into the biological justification for the assigned location.  The more 

recent iPSORT [4] system classifies proteins into the same categories as TargetP [15], but 

uses a series of knowledge-based rules that are easy to interpret.  These rules capture 

features of the amino acids associated with certain locations, based on the AAindex 

database [17] of amino acid properties.  While iPSORT’s accuracy does not reach that of 

TargetP, the rules used to create the classifier are easy to understand and follow. 

2.4.2 Amino Acid Composition Based Classifiers 

ProtLoc [8] was one of the earliest systems based on amino acid composition.  As has 

become standard for systems of this type, proteins are represented by a 20-dimensional 

feature vector.  Each feature represents one of the 20 different amino acids, and holds the 

relative frequency of the corresponding amino acid in the protein sequence.  ProtLoc 

predicts the location of a target protein by comparing its amino acid composition to that 

of proteins of known location.  The target protein is assigned to the same location as the 

protein with the most similar composition vector. 

Reinhardt and Hubbard [41] were the first to apply neural networks, trained on 

proteins represented by amino acid composition, to predicting protein subcellular 

location.  Like TargetP, their system, NNPSL, classifies proteins into three or four 

subcellular locations, depending on the organism.   

In their system, SubLoc, Hua and Sun [23] introduced support vector machines 

(SVMs) as a classification scheme for subcellular location.   Trained on the same dataset 

as NNPSL, SubLoc was compared to neural networks and hidden Markov model 
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systems, (both based on amino-acid composition), and outperformed them both.  Hua and 

Sun [23] also used SubLoc to demonstrate the robustness of basing classifiers on amino 

acid composition compared with N-terminal sequence information.  To do so, SubLoc 

was trained using protein sequences lacking a portion of their N-terminal sequence, in 

order to mimic the often incomplete amino acid sequence at the N-terminal region of 

proteins that are discovered through large sequencing projects.  Despite the lack of an N-

terminal sequence, the performance of the system remained essentially the same. 

Park and Kanehisa followed in 2003 with the introduction of the PLOC [38] 

prediction system.  PLOC uses SVMs to classify proteins into 12 different locations – the 

11 described in Table 2.1.1, and the cytoskeleton, which is a support structure for the cell.  

PLOC represents a protein based on its on amino acid, amino acid pair, and gapped 

amino acid pair compositions.  An amino acid pair is a pair of consecutive amino acids, 

whereas a gapped pair is two amino acids separated by one or more intervening amino 

acids. Park and Kanehisa considered gaps of up to three intervening amino acids.  The 

motivation behind this representation was to capture the effects of order within the 

sequence.  In particular, gapped amino acid pair compositions were included in order to 

detect periodic co-occurrences of certain amino acids.  With an overall accuracy of 

78.5% and 79.6% on plant proteins and animal proteins, respectively, PLOC remains the 

most successful prediction system based solely on composition data. 

These accuracies were the best reported at the time, but still left room for 

improvement.  Although amino acid composition influences protein localization, it 

cannot be used exclusively to determine a protein’s location [8].  Several other factors 



CHAPTER 2.  BACKGROUND  20 

 

play an important role in subcellular localization.  As a result, techniques incorporating 

multiple forms of protein information have been developed. 

2.4.3 Integrated Classifiers 

PSORT [34], one of the earliest protein subcellular location prediction systems, was also 

one of the first to incorporate multiple types of protein information.  Introduced in 1992, 

PSORT incorporates overall amino acid composition, N-terminal targeting sequence data, 

and sequence motif data into its prediction system.  Using a knowledge base of if-then 

rules, which were derived either computationally or experimentally, PSORT classifies a 

protein into 14 animal and 17 plant subcellular locations.  The increase in the number of 

locations, beyond the 11 listed in Table 2.1.1, is a result of the refined division of some 

locations into sub-subcellular locations; that is, specific areas within the location.  For 

each of the chloroplast, ER, lysosome, mitochondria, and plasma membrane, finer sub-

components were identified within them and considered as potential subcellular 

locations.  Later versions of PSORT improved upon its accuracy by utilizing a 

probabilistic [21] and a K-nearest neighbour classifier [22]. 

More recently, the MultiLoc [20] system was introduced, and has been shown to 

outperform the PSORT and the TargetP classifiers.  MultiLoc incorporates information 

about N-terminal targeting sequences, amino acid composition, and sequence motifs to 

make its predictions.  It is constructed as an assembly of classifiers, where a protein 

sequence is presented to four different classifiers simultaneously.  The output of each is 

fed into a final classifier that assigns a protein to one of the following eleven locations: 

chloroplast, cytoplasm, endoplasmic reticulum, extracellular space, Golgi apparatus,  
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Figure 2.4.1:  An overview of the MultiLoc classifier.  White boxes represent the input/output of 
the classifiers. Grey boxes are the classifiers themselves.  SVMTarget calculates the probability 
that a protein belongs to the chloroplast, mitochondria, secretory pathway and other.  SVMSA 
calculates the probability that a protein contains a signal anchor.  SVMaac calculates the 
probability that a protein belongs to each location in a dataset.  MotifSearch checks for the 
presence of sequence motifs in a protein sequence.  The Integrating SVM calculates the 
probability that a protein belongs to each location in a dataset. 

 

lysosome, mitochondria, nucleus, peroxisome, plasma membrane, and vacuole.  Figure 

2.4.1 illustrates the architecture of the MultiLoc classifier. 

The four different classifiers of the first layer are organized as follows.  The first 

three classifiers are all SVM-based.  SVMTarget is similar to TargetP [15] as it predicts 

location based on the N-terminal sequence.  As with TargetP, SVMTarget classifies 

proteins from non-plant organisms into three locations, and proteins from plant organisms 

into four locations.  The two classifiers differ in the machine learning methods and in the 

types of protein information that they are based on.  SVMTarget is based on SVMs and 

the amino acid composition of the N-terminal sequence, while TargetP is based on neural 

networks and the primary amino acid sequence of the N-terminal sequence.  The second 

classifier, SVMSA, calculates the probability that a protein sequence contains a signal 

Protein 

SVMTarget SVMaac MotifSearch SVMSA 

0.1 | 0.6 | 0.2 | 0.1 0.6 | 0.4 0.1 | 0.2 | ……|0.1| 0.1 1 | 0 | 1 | 1 | 0 | 1

Integrating SVM 

0.1 | 0.2 | ……|0.1| 0.1
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anchor.  The third, SVMaac, uses the amino acid composition of a protein to calculate its 

probability to occur in each of the locations associated with a dataset.  SVMTarget, 

SVMSA, and SVMaac each produces a probability vector, in which each classified item 

is assigned an n-dimensional vector that denotes the item’s probability to belong to each 

of the n locations associated with the classifier.  The last classifier, MotifSearch, checks 

the protein sequence for the occurrence of certain motifs, defined in the PROSITE [24] 

and the NLSdb [31] databases.  PROSITE is a database of motifs associated with certain 

protein families, while NLSdb is a database of nuclear localization signals.  The output of 

MotifSearch is a binary vector in which 1 indicates the presence of a certain motif, and 0 

indicates its absence.  MultiLoc attains an overall accuracy of 74.6% for both plant and 

animal proteins, and is considered the state-of-the-art in subcellular location prediction 

systems based on integrating multiple forms of protein information.  Although the results 

reported for MultiLoc are impressive, they still leave room for further improvement  

One possible way to improve the accuracy of protein subcellular location 

prediction is to include information about the proteins other than their sequence data.  In 

this work, we investigate the effectiveness of using text to train a standalone subcellular 

location prediction system, and of using a text-based classifier to supplement a sequence-

based classifier.  The use of text for both standalone and integrated subcellular location 

classifiers has previously been attempted, as described in the next section. 

2.5 Classification using Text Information 

An alternative approach to classifying proteins uses textual representations of the 

proteins.  The approach is based on the idea that if there is a passage of text containing 

information relevant to a protein, then there is often enough information contained 
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therein to deduce the protein’s subcellular location.  This deduction may be accomplished 

by recognizing specific words in the text that are indicative of location, or by recognizing 

the jargon that is commonly used when describing proteins from certain locations.  

Craven and Kumlien [10] demonstrated the possibility of extracting protein subcellular 

location from documents that specifically indicate subcellular location.  Other groups 

have gone a step further to develop systems that predict a protein’s subcellular location 

based on text about the protein, even if the text does not explicitly state its subcellular 

location. 

Eisenhaber and Bork [13] suggested that the functional annotations associated with 

proteins in the Swiss-Prot [3] protein database can be used to determine the location of a 

protein.  To show that, they created the Meta_A(nnotator) program, a database of if-then 

rules for classifying proteins into one of ten possible locations.  The results of the system 

were not compared against those of other systems, and the validation was done by 

checking 4,000 proteins against their correct location assignments.  The if-then rules were 

modified so that the location assignments for the entire set of 4,000 proteins were all 

correct. 

The notion of using text as a means for predicting protein location has since been 

investigated by several groups.  Instead of using rules, most of these groups have 

represented proteins as vectors of terms based on the text associated with them, and 

trained a classifier for assigning subcellular location.  Systems that use this approach to 

representing proteins, called the “bag of words” [30] approach, generally differ from each 

other in the type of text associated with a protein, the terms chosen to represent the 

protein, and the method used to weight each term within the term-vector. 
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There are several possibilities for associating text with a set of proteins; any 

resource that contains documents related to proteins may be used as the source of text.  

However, when developing a location prediction system, it is important to select a text 

source that associates text with the majority of the proteins in the dataset, thereby 

allowing for the majority of the proteins to be represented (that is, achieve a high level of 

coverage).  A system that cannot represent many proteins has little value as a predictive 

tool.  Two resources for text are Swiss-Prot [3] and PubMed [35].  Swiss-Prot is a 

database containing information about hundreds of thousands of proteins, including their 

function, subcellular location, etc.  PubMed is an online biomedical abstract database that 

contains the abstracts of millions of scientific articles.  Both of the databases have 

previously been used by text-based systems to predict subcellular location [49, 32]. 

Once the text for a set of proteins has been gathered, terms must be selected from 

the text to represent the proteins.  This process, known as feature selection, is commonly 

used in a variety of text classification tasks.  The goal is to select only those terms that 

are useful for distinguishing between items from different classes.  Feature selection 

reduces the computational expense of machine learning algorithms, and often improves 

classification accuracy [55].  Several methods for feature selection have previously been 

proposed, some of which are described in Chapter 5. 

Following the feature selection step, a weighting scheme for representing each term 

within a protein’s term-vector must be chosen.  The simplest weighting scheme assigns a 

binary weight, where 1 indicates the presence of a term within the protein’s associated 

text and 0 indicates its absence.  Another scheme, term frequency (tf), assigns a weight 

based on the term’s frequency of occurrence within the protein’s associated text.  A third, 
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and the most common weighting scheme, is referred to as tf·idf (term frequency times 

inverse document frequency) [27].  This scheme measures how important a term is in the 

text associated with a protein.  The importance increases according to the number of 

times it occurs in the text associated with the protein, and decreases according to the 

number of times it occurs in the text associated with the entire protein dataset. 

Several recent studies have investigated text-based prediction of subcellular 

location.  Stapley et al. [49] used SVMs to classify a set of yeast proteins into their 

respective locations.  Text for each protein was chosen as the PubMed abstracts that 

contained the protein’s gene name; this method of text association attained a high level of 

coverage.  The vector for each protein was generated by using the tf·idf weighting 

scheme, without applying any feature selection.  Stapley et al. compared their text-based 

system to an amino acid composition based system that they also trained, and found the 

former to perform better.  They also compared their text system to a combined text- and 

sequence-based classifier, but did not find significant improvement over the text-based 

system alone.  These results were not compared against those of any other state-of-the-art 

system, but did not appear to show an improvement over the state-of-the-art at that time. 

Nair and Rost also used text for the classification of proteins, developing the 

LOCkey [32] classifier.  They associated with each protein the functional keywords 

found in its corresponding Swiss-Prot entry [3].  A feature selection scheme, which is 

described in Chapter 5, was applied, and a binary weighing scheme was used to create the 

vector for each protein.  Proteins were classified according to their vector’s similarity to 

vectors associated with proteins of known location.  Selecting only functional keywords 

to generate vectors greatly limited the coverage of the system, since many Swiss-Prot 
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entries lack such keywords.  For the proteins for which a vector could be generated, the 

results appeared to be compatible with the state-of-the-art at the time.  The system, 

however, was not compared with any other system or dataset, making it difficult to assess 

its relative effectiveness. 

Eskin and Agicthein [16] expanded on LOCkey [32] with a system that combined 

protein sequence and text information to create a classifier.  Starting with a dataset of 

proteins of which only a small subset had known locations, they used a text-based 

classifier similar to LOCkey to increase the number of proteins with an assigned location.  

However, unlike Nair and Rost, who considered only functional keywords, Eskin and 

Agicthein incorporated all available textual annotations in a protein’s Swiss-Prot entry.  

They then used this expanded dataset to train a joint sequence- and text-based SVM 

classifier.  To represent each protein in the dataset, they used the spectrum method [28], 

which represents proteins as sets of their amino acid subsequences of a fixed length.  The 

reported results did not demonstrate improvement over previous systems, nor did they 

indicate that integrating text with a sequence based classifier improves performance. 

 In this work, we introduce a new text-based subcellular location prediction 

system.  It produces results comparable to those of other state-of-the-art systems, and 

when integrated with a sequence-based system (MultiLoc [20]), significantly improves 

on the current state-of-the-art.  The next chapter describes in detail both our text-based 

system and the integrated text- and sequence-based system. 
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Chapter 3 

 

EpiLoc and SherLoc 

This chapter describes two new systems for predicting protein subcellular location.  The 

first is the text-based system, named EpiLoc, and the second is the integrated system that 

uses both sequence and text data, named SherLoc.  SherLoc is a combination of an early 

version of EpiLoc and the sequence-based classifier, MultiLoc [20, 19, 47]. 

We begin by fully describing the EpiLoc system, which includes two components: 

a primary method for representing a protein with text, and a machine learning method for 

predicting subcellular location.  Next, we define the measures for evaluating the 

performance of EpiLoc and SherLoc.  We then explain the method used to combine the 

early version of EpiLoc with MultiLoc, in order to produce SherLoc.  Finally, we 

describe three methods used to assign text to a protein when the primary method of 

EpiLoc cannot do so. 
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3.1 Protein Representation 

The common approach to representing a protein with text, as discussed in Section 2.5, is 

the “bag of words” approach.  It involves creating a vector of terms to represent a protein.  

The terms used in the representation are referred to as features, and are selected from text 

associated with the set of proteins.  The three main steps in this process are: the selection 

of text to associate with the set of proteins, the selection of important features from that 

text, and the weighting of these features with respect to each protein.  The sections that 

follow describe in detail the text association process and the weighting scheme.  The 

feature selection method is presented in Chapter 5. 

3.1.1 Text Association 

EpiLoc’s primary method for associating text with a protein involves two steps: 

collecting text from a text source, and processing that text to produce a set of terms that 

are useful for classification. These two steps are discussed below. 

Text Source: PubMed via Swiss-Prot  

Several sources of text information related to proteins are readily available, as discussed 

in Section 2.5.  Depending on the source of the text associated with a set of proteins, the 

effectiveness of the representation of each protein may vary.  Nair and Rost [32] 

associated with each protein the keywords of functional annotations found in a protein’s 

Swiss-Prot [3] entry.  However, the entry of many of the proteins in their dataset did not 

contain such keywords, and as a result these proteins could not be represented.  Nair and 

Rost were able to represent less than 36% of their protein set.  Stapley et al. [49] 

associated with each protein in their dataset the PubMed [35] abstracts that contained a 
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protein’s corresponding gene name.  However, this approach to text association may 

incorporate abstracts that do not contain information pertinent to the proteins being 

represented.  By selecting all abstracts that contain a protein’s gene name, the resulting 

set may include abstracts that contain the gene name, but no information about the 

protein. 

 We attempt to select a large enough amount of text to represent the majority of 

the proteins in the dataset, while including only text that contains information pertinent to 

the proteins themselves.  To this end, we select as the source of text for each protein the 

set of PubMed [35] abstracts referenced by its Swiss-Prot entry.  Selecting these abstracts 

produces a set of authoritative abstracts for each protein, as determined by Swiss-Prot 

curators; the reference to a PubMed abstract by a Swiss-Prot entry implies that the 

document for which the abstract was written contains information directly relevant to the 

protein.   

We note that the abstracts do not necessarily discuss localization – but rather are 

authoritative with respect to the protein in general.  If proteins were only associated with 

abstracts that explicitly stated their location, the system would not have as much value, as 

it would only be able to provide the location of proteins for which a location is already 

known.   

The set of abstracts for each protein is gathered by scanning Swiss-Prot [3] and 

extracting all PubMed [35] references.  These references are given in the form of 

PubMed identifiers (PMIDs).  Figure 3.1.1 illustrates a Swiss-Prot entry and the 

corresponding PMIDs associated with a protein. 
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Figure 3.1.1:  A Swiss-Prot entry [3].  The underlined numbers are the PMIDs that reference abstracts in 
the PubMed database. 

 
 
Text Processing 

We begin text processing by removing abstracts that are referenced by the Swiss-Prot 

entries of proteins from three or more locations.  This removal is performed to facilitate 

the next step in the protein representation process, feature selection.  The objective of 

feature selection is to select those terms that are useful for distinguishing one class from 

another.  For subcellular location prediction, this involves selecting terms that distinguish 

between proteins from different locations.  An abstract that is associated with many 

locations is not useful for obtaining terms that can characterize a single location.  

However, if we require each abstract to be associated with only a single location, we may 

be left with a set of abstracts that is too small to represent many of the proteins in the 

dataset.  Furthermore, some proteins may actually be found in more than one location 

within a cell.  Therefore, we associate with a protein those abstracts that are associated 

with at most two locations. 
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Once abstracts associated with three or more locations are removed, a local 

version of PubMed [35] is scanned to gather the remaining abstracts.  For each PubMed 

entry, the title and the text of the abstract are retained.  The abstract is parsed into a set of 

terms consisting of single words (unigrams) and pairs of consecutive words (bigrams).  

Following the weighting scheme used in PubMed’s search engine, terms that occur in the 

title are counted twice: once as a part of the overall abstract, and once as a part of the 

title, practically assigning more weight to title terms, as they provide important 

information about the subject of a document.  Additionally, a list of standard stop words, 

shown in Appendix A, is removed from the set of terms.  The list consists of very 

common terms such as prepositions and articles, which have little value for 

distinguishing between proteins from different locations.   

Porter Stemming [39] is applied next, to strip suffixes off terms so that different 

variations of the same term are coalesced into a single form.  This is a standard step in 

many document classification systems, done in order to reduce the size of the feature 

space, as well as to expose connections between terms with similar semantics.  For 

example, the two terms “connects” and “connecting” have similar semantics but slightly 

different forms.  The use of stemming reduces them both to the form “connect”, giving 

rise to a single semantic term. 

Last, terms that occur in fewer than three abstracts or in more than 60% of all 

abstracts are removed; a term that occurs in fewer than three abstracts cannot be used to 

represent the majority of the proteins in the dataset, while terms that occur in more than 

60% of all abstracts are likely to have little discriminative value.  



CHAPTER 3.  EPILOC AND SHERLOC  32 

 

Feature selection is applied to those terms that remain after the above term 

reduction steps.  For this work, we use a feature selection method based on the Z-test 

[51].  The method used can greatly influence the classifier’s performance [55, 44].  As 

such, we compare our feature selection method with several others, and present it, along 

with the results of the comparison, in Chapter 5. 

3.1.2 Term Weighting 

Our feature selection method selects a set of N terms, denoted TN, that is helpful for 

distinguishing between different locations.  Using these terms, each protein, p, is 

represented as a vector of length N, < pw1 … p
Nw >, where each value, p

iw , in the vector 

denotes the weight of term, ti.  A weighting scheme was developed that represents each 

term by its significance, relative to the other distinguishing terms, within the abstracts 

associated with the protein.  For a protein p, the weight p
iw  of term ti at position i is 

defined as the probability of term ti to occur in the abstracts associated with the protein p 

(the set of abstracts Dp).  This probability, denoted ( )pi Dt |Pr , is estimated as the ratio 

between the total number of occurrences of term ti in Dp and the total number of 

occurrences of all distinguishing terms in Dp.  Formally, each weight is calculated as: 

,
)in  occurs   timesof (#  

in  occurs   timesof #

∑
∈

=

Nj Tt
pj

pip
t Dt

Dt
W  

where the sum is taken over all the terms tj in the set of distinguishing terms TN.  

 The above approach is used to represent the proteins in the dataset.  In order to 

determine the effectiveness of this representation, we develop a classifier based on it and 

measure the classifier’s performance. 
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3.2 Training and Testing a Classifier 

Our classifier (also referred to as a prediction system or predictor) uses the LIBSVM [9] 

implementation of support vector machines (SVMs).  LIBSVM supports soft, 

probabilistic categorization for n-class tasks [54], in which each classified item is 

assigned an n-dimensional vector that denotes the item’s probability to belong to each of 

the n classes. Here n is the number of subcellular locations.  

The classifier is trained on proteins that have been represented using the method 

described in Section 3.1.  The performance of the predictor, evaluated through 5-fold 

cross-validation, is compared to that of several other state-of-the-art prediction systems.  

The cross-validation scheme and the choice of LIBSVM as the backbone of our classifier 

follow the design of the sequence-based classifier MultiLoc [20], as we developed our 

text-based classifier with the intent of integrating it with MultiLoc.  The following 

sections describe the SVM method, the performance metrics, and the cross-validation 

scheme employed to develop and to test the EpiLoc classifier. 

3.2.1 Support Vector Machines 

Support vector machines are an example of a supervised learning method.  In supervised 

learning, the dataset is split into a training set and a test set.  The classifier is built based 

on the training set; the classifier “learns” the aspects of the data that will allow it to 

classify a sample.  The test set is used to determine the effectiveness of the classifier; it 

predicts the class of the test samples, and the predicted classes are compared against the 

actual classes, in order to estimate the classifier’s performance. 

 Support vector machines attempt to construct a hyperplane that separates two 

classes of vectors.  To do so, they implicitly map a set of training vectors into a higher 
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dimensional space defined through a kernel function. The kernel function denotes a 

similarity measure between vectors, which corresponds to a dot product between vectors 

in a higher-dimensional space, in which the calculated separating hyperplane is 

embedded.  A vector whose class is unknown is classified according to its location 

relative to the hyperplane; it is assigned to the same class as that of the vectors on its side 

of the hyperplane. 

 There may be infinitely many hyperplanes that separate two classes of vectors.  

SVMs try to select the hyperplane whose distance to the nearest training vectors of each 

class is maximal.  The distance between the selected hyperplane and the nearest vectors is 

called the margin, and the hyperplane itself is referred to as the maximum margin 

hyperplane (Figure 3.2.1).  The vectors closest to the hyperplane are called support 

vectors, hence the name support vector machines.  When two classes of vectors are not 

perfectly separable, there is a trade-off between the number of incorrectly classified 

vectors in the training set, and the size of the margin. 

 

 

Figure 3.2.1:  Two classes separated by three hyperplanes.  The dashed 
line represents the maximum margin hyperplane. 
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The hyperplane created by an SVM separates only two classes.  For a multi-class 

problem, the results from multiple binary classifiers must be combined.  The one-vs-one 

approach to the multi-class case trains a binary classifier for each pair of classes.  For a 

problem with n classes, this results in ( )
2

1−nn  different classifiers.  When classifying an 

unknown sample, it is presented to all classifiers, and their results are combined to make 

a prediction.  LIBSVM’s [9] default approach to combining results uses a voting strategy: 

each binary classification is considered to be a vote for one of two classes, and a vector is 

assigned to the class that receives the most votes from the set of classifiers.  An 

alternative approach implemented by LIBSVM, and used for EpiLoc, employs estimates 

of the probability of a vector to belong to a class (See publication by Wu et al. [54] for 

details). 

For the EpiLoc classifier, we use the LIBSVM implementation of SVMs with the 

Radial Basis Function (RBF) kernel, a standard kernel used for classification tasks.  The 

use of the RBF kernel requires the optimization of two parameters, C and γ.  The C 

parameter controls the trade off between the number of errors made on the training data 

and the size of the margin.  The γ parameter controls the width of the RBF kernel 

function [48].  As the kernel denotes a dot-product in high-dimensional space, when 

using the RBF kernel to calculate the dot product, increasing the width of the kernel 

increases the likelihood of two vectors to be considered similar. 

3.2.2 Performance Metrics 

The performance of previous systems has been measured using several different metrics.  

We calculate the same measures to allow a fair comparison to other systems.  For each 
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location the sensitivity (Sens), specificity (Spec), and Matthew’s Correlation coefficient  

(MCC) [29] are calculated.  These are formally defined as: 

and,,
FPTP

TPSpec
FNTP

TPSens
+

=
+

=  

( ) ( ) ( ) ( )
,

FPTNFNTNFPTPFNTP
FNFPTNTPMCC

+⋅+⋅+⋅+
⋅−⋅

=  

where TP, TN, FP, and FN represent the number of true positives, true negatives, false 

positives, and false negatives, respectively, with respect to a given location.  Sensitivity 

measures a classifier’s ability to recognize all samples belonging to a class, while 

specificity assesses its ability to correctly identify only those samples belonging to a 

given class and exclude those from other classes; MCC is a combination of the two 

measures.  We also measure the overall accuracy of a system, denoted Acc, defined as 

Acc = C/N, where C is the total number of correctly classified proteins and N is the total 

number of classified proteins.  Finally, we calculate the average sensitivity, denoted Avg, 

over all locations, giving an equal weight to each location’s sensitivity, regardless of the 

number of proteins associated with the location. 

3.2.3 Cross-Validation 

EpiLoc is tested on several different datasets using 5-fold cross-validation.  In 5-fold 

cross-validation, the dataset is randomly partitioned into five equal subsets.  This 

partitioning is referred to as a split.  We use stratified cross-validation, where each subset 

maintains the same distribution of classes as is found in the whole dataset.  The classes of 

the samples in each subset are predicted by a classifier trained on the remaining four 

subsets; the subset for which predictions are made is the test set, and the remaining four 

subsets comprise the training set.  The predictions for each test set are combined and 
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compared to their actual classes, to measure the system’s performance on the entire 

dataset.  This cross-validation process is implemented in the same manner for each 

dataset, as described next. 

For a given dataset, each location’s proteins are distributed uniformly at random 

among the five subsets.  If the number of proteins associated with a certain location is not 

divisible by five, then the number of proteins equal to the remainder is excluded from the 

training process. 

Once the dataset is partitioned, feature vectors are created for the proteins in each 

training set and its corresponding test set.  To do so, a set of distinguishing terms is first 

selected from each training set.  The distinguishing terms are used to represent each of 

the proteins in the training set and in the test set as feature vectors (as described in 

Section 3.1.3).  After the feature vectors are created, SVM training begins. 

The feature vectors are used to train the ( )
2

1−nn  classifiers required for the one-

vs-one approach to multi-class classification.  Each pair of locations has an associated 

classifier.  For example, if there were only three locations, e.g. the chloroplast, 

mitochondria, and nucleus, three binary classifiers would be trained to distinguish 

between each of the possible pairs: chloroplast vs. mitochondria, chloroplast vs. nucleus, 

and nucleus vs. mitochondria. 

We use an equal number of proteins from each location to train each binary 

classifier.  The number of proteins associated with each location can vary greatly.  If a 

classifier is trained over two locations, and one has a greater number of associated 

proteins, the classifier may be biased towards the more highly represented location.  To 

prevent this bias, each binary classifier is trained with a balanced set of proteins.  Proteins 
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are randomly removed from each of the five subsets associated with the location with the 

largest number of proteins until these subsets are equal in size to the subset associated 

with the location with the fewest proteins. Once this equalization step is done, the binary 

classifiers are trained.   

Training of a binary classifier first requires the optimization of the C and γ 

parameters of the SVM.  To do so, a coarse grid search is performed, searching through 

the same values of C and γ examined when building the MultiLoc [20] classifier.  These 

values are: 

C =   0.01, 0.1, 0.5, 1, 2, 5, 8, 10, 20, 50, 100, 300, 500, 700, 1000, and 

γ =   0.01, 0.1, 0.5, 1, 2, 5, 10, 100. 

For all five pairs of training and test sets, a binary classifier is trained with each 

combination of C and γ values, and is used to predict the locations of the test vectors.  

The results of all five test sets for a single combination of C and γ are combined, and the 

MCC value is calculated over all test proteins.  The values of C and γ that attain the 

highest MCC are selected, and a binary classifier is trained on each of the five training 

sets.  Each binary classifier is thus trained using different values for C and γ. 

Once trained, the collection of binary classifiers associated with each training set 

is assessed based on its ability to correctly classify the corresponding test proteins.  

Proteins excluded from each location during the initial partitioning prior to training are 

reintroduced and distributed uniformly at random among the five subsets in the test 

phase.  Each binary classifier assigns to each test protein a probability to occur in each of 

the two locations associated with the classifier.  The probabilities from each classifier in 

the collection are combined, as described by Wu et al. [54], to predict the location of the 
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protein.  The predicted classes of the proteins in all five test sets are compared to their 

actual classes to measure the overall performance of the system. 

The EpiLoc system is also trained to classify proteins not included in the cross-

validation datasets.  The setup of the system is the same, but the training procedure is 

based on the entire protein set (as opposed to just 4/5 of it).  The system is trained using 

the MultiLoc dataset, which is described in Chapter 4. 

The EpiLoc system is capable of acting as a standalone system for predicting 

protein subcellular location.  However, as discussed in Chapter 1, our goal is also to 

examine the integration of a sequence-based classifier and a text-based classifier.  To do 

so, our EpiLoc classifier is combined with the MultiLoc classifier [20, 19, 47]. 

3.3 Combined Sequence and Text Classifier: SherLoc 

We have discussed above our new text-based classifier for predicting subcellular 

location.  In this section, we describe the integrated sequence- and text- based predictor 

called SherLoc [19, 47].   

The sequence-based classifier, MultiLoc [20], was described in Section 2.4.3.  It 

combines four classifiers, SVMTarget, SVMSA, SVMaac, and MotifSearch, to create 

one comprehensive classifier for protein location prediction.  The SVM-based 

components produce probability vectors, while MotifSearch produces a vector of binary 

values.  These vectors are concatenated to create a single vector that forms the input to a 

final classifier, the Integrating SVM, which predicts the location of a protein.   
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Figure 3.3.1:  Overview of the SherLoc system.  The output vector produced by 
EpiLoc is concatenated to the vectors produced by the MultiLoc classifiers forming a 
single vector.  The dark grey boxes indicate the text components that we introduce into 
the system. 

 
 

MultiLoc is then combined with an early version of the EpiLoc classifier, which 

we call EarlyText2.  Combining MultiLoc with EarlyText entails concatenating the 

probability vector produced by EpiLoc to the vector output from the first four classifiers 

of MultiLoc, and training a new Integrating SVM to accept as input the combined vectors 

of the two systems.  Figure 3.3.1 provides an overview of the SherLoc classifier [19, 47].   

SherLoc was implemented early on in the development of EpiLoc.  As a result, 

the version of EpiLoc incorporated in SherLoc, EarlyText, predates the version that we 

use to test EpiLoc as a standalone classifier.  Changes have been made to EpiLoc since 

the testing of SherLoc was completed, all of which involve the feature selection process, 

and are discussed in Chapter 5.  

                                                 
2 The integration of the two predictors, including the training of EarlyText from our term-vectors, was 
performed by the group that built the MultiLoc classifier [19]. 
 

Protein 

SVMTarget SVMaac MotifSearch SVMSA 

0.1 | 0.6 | 0.2 | 0.6 | 0.4 0.1 | 0.2 |…|0.1| 0.1 1 | 0 | 1 | 1 | 0 | 1

Integrating SVM 

0.1 | 0.2 | ……|0.1| 0.1

EpiLoc 

0.1 | 0.2 |…| 0.1 | 0.1
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Both SherLoc and EpiLoc should be able to predict the location of any protein.  

However, for some proteins, there may be insufficient text to represent them using the 

primary method of EpiLoc, described in Section 3.1.  To make EpiLoc applicable to all 

proteins, it is necessary to develop additional methods for associating text with proteins.  

The next section presents three such methods. 

3.4 Associating Text with Textless Proteins 

Thus far, we have introduced one method for associating text with proteins.  Namely, we 

have associated with each protein the PubMed abstracts referenced by its Swiss-Prot 

entry.  However, this method is not applicable in four situations: 

1. A protein has no Swiss-Prot [3] entry.  While Swiss-Prot is a very large database 

of proteins, millions of proteins are still not included in it, either because their 

data has simply not been entered yet, or they have not been sufficiently studied.  

Since the text-selection procedure already described depends on the Swiss-Prot 

entry for references to PubMed, the lack of a Swiss-Prot entry prevents it from 

being applied.   

2. A protein’s Swiss-Prot entry contains no references to PubMed. 

3. The Swiss-Prot entry does reference PubMed articles, but these references are all 

shared by other proteins from three or more different locations.  In such cases the 

PubMed abstracts are not good representatives of any single location, and we do 

not associate them with the protein.    

4. A protein’s associated abstracts do not contain any of the selected distinguishing 

terms. 
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Situations 1-3 effectively result in a protein having no associated abstracts, while 

situation 4 results in a protein having no associated terms.  These four situations produce 

what we call textless proteins, as the proteins involved effectively have no associated text 

to represent them.  We next describe several methods that we have developed to associate 

text with such textless proteins.   

3.4.1 HomoLoc 

If a textless protein has close homologs that already have text associated with them, we 

use the text of these homologs to represent the protein.  As stated in Section 2.4, 

homologs are proteins that share similar amino acid sequences.  Many other 

characteristics are often shared between homologous proteins, such as structure, function, 

and subcellular location [52, 33, 5].  However, directly assigning a protein to the 

subcellular location of its homolog is not always reliable [33], and as a standalone 

method for location prediction it was shown less effective than other current methods 

[12].  Nevertheless, homologous proteins do share characteristics, and as such may serve 

as a good alternative source of textual information for textless proteins.  Therefore, our 

first method, called HomoLoc, assigns to a textless protein the text of its homologs. 

 Homologous proteins are identified using a BLAST search [2].  BLAST is a 

search program that compares a biological query sequence against a specified sequence 

database and returns those entries in the database that share a similar subsequence, or 

region, with the query sequence.  Specifically, we use BLASTP, which compares amino 

acid sequences, against the Swiss-Prot [3] database.  A BLASTP search returns with each 

potential homolog an expectation value (E-Val).  The E-Val indicates the expected 

number of proteins that may be returned by chance given the database being searched.  
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The lower the E-Val is, the more likely the proteins are to be true homologs.  For this 

thesis, a protein is only considered a homolog if its E-Val is below 10 (the default value 

used by BLASTP to identify a potential homolog).   

While BLAST is an effective tool for retrieving homologous proteins, the E-Val 

is not always an accurate indicator of protein similarity [33].  To further ensure that 

proteins are in fact homologs, we require that, for two proteins, the percent of their 

similar region that is identical, called percent identity, is at least 40%.  This level of 

sequence similarity was chosen as a result of a study by Brenner et al. (1998) that 

suggested that percent identity of 40% or more between regions of similarity in two 

sequences usually implies the sharing of at least some characteristics between them.  

Thus, to accept a protein as a homolog from a BLASTP search, we require that the E-Val 

is below 10, and that the percent identity is at least 40%.  We note that HomoLoc may 

have performed better had we required an E-Val lower than 10, or two sequences to share 

more than 40% identity over their entire length (as opposed to over their similar sequence 

regions only).  Imposing more stringent requirements may have reduced the likelihood of 

identifying false homologs for a textless protein.  However, as will be shown in Section 

6.3, the current method used by HomoLoc is still very effective. 

 We combine the term-vectors of the three top homologs to produce the term-

vector for a textless protein.  The three vectors are selected as follows: The set of 

homologs with an assigned E-Val below 10 and a percent identity of at least 40% is 

gathered.  From these homologs, the three with the lowest E-Vals that have an associated 

term-vector are selected (if there are fewer than three such homologs, then the 1-2 

homologs that do meet the requirements are selected).  If there are no homologous 
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proteins with associated term-vectors meeting all the threshold requirements, a method 

other than homology must be used to obtain text for the protein. 

 To reflect the degree of homology in the term-vector representation, a modified 

weighting scheme is used, where the number of times each term occurs in the abstracts 

associated with a homolog is multiplied by the percent identity between the homolog and 

the textless protein.  Formally, for a textless protein p, the modified weight used by 

HomoLoc is calculated for each term ti as:  

( ) ( )
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∈ ∈
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where h is a homolog, Dh is the set of abstracts associated with h, and a sum is taken over 

all the homologs of a protein p in the set of homologs H.  

3.4.2 PubLoc 

Proteins whose Swiss-Prot entries do not contain references to PubMed may still have 

abstracts in PubMed discussing them.  PubLoc3 uses a PubMed search to retrieve 

abstracts that may contain information about a textless protein.    Abstracts that mention a 

protein may contain information about it; such abstracts may therefore be used as the 

text-source for producing the term-vector for the protein.  To find abstracts relevant to a 

given protein, a query string is formed and posed to the PubMed database.  The query 

string lists the protein’s name and its gene name, as found in the protein’s Swiss-Prot 

entry, separated by the “OR” Boolean operator.  The five abstracts returned by the search 

                                                 
3 We thank Annette Höglund of the University of Tübingen for suggesting this name. 
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that were most recently entered into PubMed are assigned to the textless protein, and 

used to produce the protein’s feature vector, as described in Section 3.1. 

There are situations in which PubLoc cannot associate text with a protein.  If a 

protein does not have a Swiss-Prot entry, or if the entry does not contain a gene or a 

protein name, no query string can be formed and used to search for text.  Furthermore, if 

PubMed does not contain any abstracts satisfying the query, no text will be returned to be 

associated with the protein.  Both situations result in a protein without a feature vector, 

and require the consideration of a different method for handling textless proteins. 

3.4.3 DiaLoc 

The last approach we developed for obtaining text for textless proteins is called DiaLoc.  

The text-association methods described so far may not be able to assign text to a protein 

in some situations.  Such situations are most likely to occur when a protein has just 

recently been sequenced, as there is very little information about newly sequenced 

proteins in databases such as PubMed or Swiss-Prot.  If there are no known close 

homologs for HomoLoc to be effective, the most reliable source of information 

pertaining to such textless proteins (and the one most likely to be interested in their 

subcellular location) may be the scientist researching the proteins.   

Through a web-interface (Figure 3.4.1) created for this purpose, DiaLoc obtains 

textual information from a researcher studying a textless protein, and uses it to produce a 

feature vector to represent the protein.  The researcher enters a description of the protein 

of at least 100 words, and those words take the place of a single abstract (without a title) 

associated with the protein.  The same process described in Section 3.1 is then carried out 
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Figure 3.4.1:  The DiaLoc web-interface. 
 
 
to produce a feature vector for the protein.  The researcher may select the type of 

organism (plant, animal, or fungal) the protein comes from, and the EpiLoc system 

trained for the specified organism will assign the protein’s feature vector to one of the 

organism’s possible locations.  DiaLoc is meant to be used as an interactive tool for 

laboratory research concerned with individual proteins, and not as a tool for large-scale 

annotation.  

Together, HomoLoc, PubLoc, and DiaLoc should essentially allow any protein to 

be assigned text.  The next chapter describes the experiments designed for evaluating our 

systems.  Specifically, in Section 4.3 we describe experiments for testing the 

effectiveness of the HomoLoc and the PubLoc systems for handling textless proteins.   
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Chapter 4 

 

Experimental Settings 

This chapter presents a set of experiments that evaluate the performance of EpiLoc, 

SherLoc, and our methods for handling textless proteins.  We compare SherLoc and 

EpiLoc to other state-of-the-art prediction systems using existing datasets.  Moreover, we 

validate the performance of SherLoc and of EpiLoc by testing their performance on 

proteins outside of the cross-validation studies.  

To test HomoLoc and PubLoc, we first compare their performance by applying 

them to the textless proteins of the MultiLoc dataset.  We then select the method that 

performs best on these textless proteins, and apply it to the entire MultiLoc dataset 

(excluding the textless proteins), so that the best performing method may be compared to 

the primary method for associating text with proteins.   
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4.1 Systems Comparison 

To determine the quality of EpiLoc and of SherLoc, the performance of each of the 

systems is compared to that of several other state-of-the-art classifiers using their 

respective datasets.  We compare both EpiLoc and SherLoc to the MultiLoc [20], PLOC 

[38], and TargetP [15] subcellular location predictors (all of which were described in 

Chapter 2), using the same dataset and evaluation procedure (5-fold cross-validation) 

employed by the three systems.  To evaluate EpiLoc, we do not use the same partitions as 

used to evaluate each of TargetP, PLOC, and MultiLoc, as these partitions include 

textless proteins, which we do not include in the evaluation of the primary method of 

EpiLoc.  Therefore, for each dataset we randomized the data split five times (on top of 

the 5-fold cross-validation) to ensure the robustness of the evaluation.  Results are 

averaged over the five different splits of each dataset.  SherLoc is compared with PLOC 

and MultiLoc using the exact same partitions of their datasets.  However, the split used to 

test TargetP was not available, and as such five sets of 5-fold cross-validation are used to 

compare SherLoc to TargetP.  The performance of SherLoc and EpiLoc is compared to 

that of TargetP, PLOC, and MultiLoc, as reported in their corresponding publications.  

We next describe the TargetP, MultiLoc, and PLOC datasets used in the comparative 

study.  

4.1.1 TargetP 

A total of 3,415 proteins, of which 292 are textless, comprise the TargetP dataset [15].  

Proteins are sorted into chloroplast (ch), mitochondria (mi), secretory pathway (SP), and 

Other (OT) classes for plant proteins, and mitochondria, SP, and Other classes for non-

plant proteins.  The SP class includes proteins from the endoplasmic reticulum (er), 
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extracellular space (ex), Golgi apparatus (go), lysosome (ly), plasma membrane (pm), and 

vacuole (va).  The OT class includes cytoplasm (cy) and nucleus (nu) proteins.  Table 

4.1.1 shows the number of proteins in each location for the TargetP dataset. 

Location Number of Proteins 

Chloroplast (ch) 141 

Mitochondria (mi) 477 

Secretory pathway (SP) 983 

Other (OT) 1,814 

Total 3,415 

 
Table 4.1.1:  The number of proteins per location for the TargetP dataset. 

 
 

4.1.2 MultiLoc 

The MultiLoc [20] dataset consists of 5,959 proteins extracted from Swiss-Prot release 

42.0 [3], and includes 614 textless proteins.  Proteins originating in animal, fungal, and 

plant cells with annotated subcellular locations were collected and sorted into eleven 

different classes: ch, cy, er, ex, go, ly, mi, nu, pe, pm, and va.  Homologous proteins with 

a sequence identity greater than 80% were excluded from the dataset, as were any 

proteins with a SUBCELLULAR LOCATION line in their Swiss-Prot entry’s comment 

field that contained the words by similarity, potential, or probable.  The latter were 

excluded so that only proteins whose location was certain were included.  The number of 

proteins per location is shown in Table 4.1.2. 
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Location Number of Proteins 

Chloroplast (ch) 449 

Cytoplasm (cy) 1411 

Endoplasmic reticulum (er) 198 

Extracellular space (ex) 843 

Golgi apparatus (go) 150 

Lysosome (ly) 103 

Mitochondria (mi) 510 

Nucleus (nu) 837 

Peroxisome (pe) 157 

Plasma membrane (pm) 1,238 

Vacuole (va) 63 

Total 5,959 

 
Table 4.1.2:  The number of proteins per location for the MultiLoc dataset. 

 
 

4.1.3 PLOC 

The dataset used to train the PLOC [38] classifier consists of 7,589 proteins (1,076 of 

which are textless) with a maximum sequence identity of 80%, extracted from Swiss-Prot 

release 39.0 [3].  The PLOC dataset is made up of the 11 locations comprising the 

MultiLoc dataset, as well as the cytoskeleton (cs) location.  In contrast to the MultiLoc 

dataset, if the annotations by similarity, potential, or probable were included in a 

protein’s SUBCELLULAR LOCATION line, the protein was still included in the dataset.  

Table 4.1.3 shows the number of proteins in each location for the PLOC dataset. 
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Location Number of Proteins 

Chloroplast (ch) 671 

Cytoplasm (cy) 1245 

Cytoskeleton (cs) 41 

Endoplasmic reticulum (er) 114 

Extracellular space (ex) 862 

Golgi apparatus (go) 48 

Lysosome (ly) 93 

Mitochondria (mi) 727 

Nucleus (nu) 1,932 

Peroxisome (pe) 125 

Plasma membrane (pm) 1,677 

Vacuole (va) 54 

Total 7,589 

 
Table 4.1.3:  The number of proteins per location for the PLOC dataset. 

 
 
 

Each of the three datasets, TargetP, MultiLoc, and PLOC, is also divided into 

subsets that include only proteins from locations that are found in certain organisms.  

TargetP, as described above, has plant and non-plant subsets of proteins.  PLOC and 

MultiLoc both include plant, animal, and fungal subsets.  The plant subsets do not 

include lysosomal proteins, the animal subsets exclude the chloroplast and vacuolar 

proteins, and the fungal subsets do not include lysosomal or chloroplast proteins.   The 

performance of EpiLoc and SherLoc is measured through stratified 5-fold cross-

validation, for each of the organisms in each dataset.  In the next section, we describe the 
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extraction of a set of proteins that are used to test both EpiLoc’s and SherLoc’s 

performance on proteins outside of the cross-validation data.   

4.2 De Novo Prediction 

To further validate the predictive ability of EpiLoc and SherLoc, we use two new datasets 

[19, 47].  These datasets consist of proteins that were not included in the development of 

SherLoc and EpiLoc, or in the cross-validation studies.   The first dataset, Diff48, consists 

of proteins that either had no assigned location, or were annotated as uncertain in Swiss-

Prot release 42.0 (on which EpiLoc and SherLoc were trained) but have since been 

assigned a definite location in version 48.84.  The second dataset, Unknown, is formed of 

proteins with an uncertain or unknown location in Swiss-Prot version 48.8.  The proteins 

in both datasets were required to have an associated PubMed reference, so that a text 

vector could be created for each protein using the primary method of EpiLoc5. 

The two datasets were created by first extracting from Swiss-Prot release 42.0 all 

proteins that either did not have a SUBCELLULAR LOCATION line, or contained the 

words by similarity, potential, or probable in that line.  Only animal, plant, and fungal 

proteins were included in the new dataset, as indicated by the presence of the keywords 

Metazoa, Fungi, or Viridiplantae, respectively, in the Organism Classification (OC) field.  

Any protein that occurred in the MultiLoc dataset was removed from this new set, to 

ensure that no protein used for training EpiLoc or SherLoc was reused in the new 

evaluation.  Swiss-Prot release 48.8 was then scanned for each of the remaining proteins.  

Those that were assigned with certainty to a location, as determined by the rules used to 

                                                 
4 Swiss-Prot version 48.8 was the latest version available at the time of the dataset creation. 
5 SherLoc was developed and tested using an early version of EpiLoc, for which we had not yet developed 
methods for handling textless proteins. 
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build the MultiLoc dataset [20], were included in the Diff48 dataset, for a total of 361 

proteins.  The rules used to construct the MultiLoc dataset are as follows: 

• Proteins are assigned to a subcellular location only if the 

SUBCELLULAR LOCATION line contains the words cyto, nucle, lyso, 

endopl, plasma, peroxi, mitochon, golgi, secret (or extracellular), 

chloroplast, or vacuol, corresponding to cy, nu, ly, er, pm, pe, mi, go, 

ex, ch, and va locations, respectively. 

• Mitochondrial and chloroplast proteins are required to have the 

keyword transit, followed by an annotated cleavage site, in their FT 

(feature) field.  

• Secretory pathway proteins (er, ex, go, ly, pm, and va) are required to 

have the keywords signal or signal-anchor and annotated start and 

stop sites, in their FT field.  

• Plasma membrane proteins are required to have the keywords domain 

and extracellular and domain and cytoplasmic in their FT fields.  If the 

keywords domain and luminal are present in an FT fields, the protein 

is not accepted as a plasma membrane protein. 

• The SUBCELLULAR LOCATION line cannot include the words by 

similarity, potential, or probable. 

 

Table 4.2.1 displays the number of proteins in each location for the Diff48 dataset.  

There are several locations for which no newly assigned proteins were found.  These 

locations are left out of Table 4.2.1.  
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Location Number of Proteins 

Chloroplast (ch) 1 

Cytoplasm (cy) 91 

Endoplasmic reticulum (er) 3 

Extracellular space (ex) 132 

Mitochondria (mi) 21 

Nucleus (nu) 111 

Vacuole (va) 2 

Total 361 

 
Table 4.2.1:  The number of proteins per location for the Diff48 dataset. Only 
locations to which proteins had been newly assigned are shown. 

 
 

The text for each protein in the Diff48 set comes from the PubMed references 

listed within the protein’s entry in Swiss-Prot release 45.0 or earlier, specifically, the last 

release in which the protein was not annotated with a location (all preceding release 

48.8). Selecting text in this manner ensures that only text that was available before the 

protein was experimentally localized is used to represent it.  To summarize, the Diff48 

proteins have the following characteristics: a) They were not included in any form in 

training EpiLoc; b) Their location was unknown in the version of the data used to train 

EpiLoc; c) The PubMed entries associated with the proteins predate the protein 

localization time; d) The location of these proteins is now known.  

Proteins that remained either without an assigned location or with an uncertain 

location assignment (in Swiss-Prot release 48.8) form the Unknown dataset.  This dataset 

contains 19,498 proteins, of which 14,890 have no known location, while the location of 

4,608 proteins is annotated as uncertain. 
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The performance of both SherLoc and EpiLoc is measured on the Diff48 set of 

proteins.  SherLoc is also used to predict the location of the 19,498 proteins in the 

Unknown dataset; the accuracy of these predictions can only be validated once the 

proteins are experimentally localized in the lab. 

4.3 Testing HomoLoc and PubLoc 

In Section 3.4 we presented two methods, PubLoc and HomoLoc, for associating text 

with textless proteins.  Our goal is for one of these methods to serve as the preferred 

method for handling textless proteins when large-scale annotation is required6.  To select 

the preferred method, we compare the effectiveness of both HomoLoc and PubLoc at 

associating text with the textless proteins from the MultiLoc [20] dataset; the method 

shown most effective is selected.  To assess how effective the preferred method is, we 

compare its performance to that of EpiLoc’s primary method (the use of PubMed 

abstracts referenced by Swiss-Prot).  

HomoLoc and PubLoc are compared using the textless proteins from the 

MultiLoc dataset.  The number of textless proteins from each location of the MultiLoc 

dataset is displayed in Table 4.3.1.  We trained EpiLoc on all the proteins in the MultiLoc 

dataset that do have associated text.  We then represented the remaining textless proteins 

using both PubLoc and HomoLoc, and classified these proteins using the trained system.  

We also compare the versions of HomoLoc and PubLoc described in Section 3.4 with 

simpler versions of these same methods in order to determine if the more complicated 

versions indeed improve performance.  The HomoLoc method described in Section 3.4.1, 

 

                                                 
6 DiaLoc is not meant for large-scale annotation. 
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Location Number of Proteins 

Chloroplast 101 

Cytoplasm 121 

ER 35 

Extracellular space 22 

Golgi Apparatus 10 

Lysosome 5 

Mitochondria 67 

Nucleus 152 

Peroxisome 22 

Plasma Membrane 65 

Vacuole 14 

Total 614 

 
Table 4.3.1:  The number of textless proteins per location for the MultiLoc dataset. 

 
 
which combines the vectors of the top three homologs of a protein to produce a term-

vector, is compared against a version that uses only the single top homolog.  The version 

of PubLoc described in Section 3.4.2, which uses the five most recent abstracts returned 

by a PubMed search to produce a term-vector, is compared against a version that uses 

only the three most recent abstracts returned.  We refer to these simpler versions of 

HomoLoc and PubLoc as SimpHom and SimpPub, respectively.  The method whose 

resulting representation of the textless proteins leads to the most accurate classification of 

the proteins is selected as the preferred method for handling textless proteins.  As will be 

shown in Chapter 6, the method is HomoLoc. 

We next compare the performance of HomoLoc to that of EpiLoc’s primary 

method for associating text with proteins.  We perform this comparison in order to 
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determine if HomoLoc is indeed suitable for handling textless proteins.  The comparison 

is made over the MultiLoc dataset using 5-fold cross-validation, and we employ the same 

splits of the data, and the same classifiers trained on those splits, that were originally used 

to measure the performance of the EpiLoc system.  To test HomoLoc, we remove the text 

associated with the proteins in each of the five test subsets used for the cross-validation 

of EpiLoc.   Each protein in each test subset is then assigned the text of its homologs by 

HomoLoc, without considering the protein’s own Swiss-Prot entry.  The pre-trained 

classifiers predict the location of the test proteins based on these representations.  We 

compare the results of the predictions to those obtained for the test proteins represented 

using the primary method. 

The results of the experiments described in this section, and of all other 

experiments described in this chapter, are presented in Chapter 6.  Before presenting 

these results, we discuss our feature selection method in the next chapter. 
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Chapter 5 

 

Feature Selection 

We present here our feature selection method, which is based on the Z-test [51], and refer 

to it as the Z-Test method.  We begin by fully defining the Z-Test method.  Next, we 

describe an experiment designed to compare the Z-Test method with several other feature 

selection methods, and analyze the results of the experiment.  Finally, we examine the 

differences between the feature selection method used in the mature version of EpiLoc 

and the earlier version of EpiLoc incorporated in the SherLoc classifier [19, 47]. 

5.1 The Z-Test Method 

For text classification tasks, the goal of feature selection is to reduce the number of terms 

in a corpus while retaining those terms that best differentiate between classes.  Including 

every feature may result in high-dimensional vectors that render many machine learning 

algorithms ineffective.  Reducing the number of features alleviates this problem, and may 

even lead to improved performance [55]. 
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 In this work, we select what we call distinguishing terms as our features.  A term 

is considered distinguishing for a location L if the likelihood of finding it in the abstracts 

associated with location L is significantly different from that of finding it in the abstracts 

associated with all other locations.  In order to compare these likelihoods, terms are 

scored with respect to each subcellular location.  The scoring method and the means for 

comparing scores are formalized in the following paragraphs. 

 Let t be a term, p a protein, L a location, and d an abstract.  A protein, p, localized 

to L, is denoted ,Lp∈  and has a set of associated abstracts, denoted Dp.  The set of all 

proteins known to be localized to L is denoted PL, and the set of abstracts associated with 

L, denoted DL, is the set of all abstracts associated with the proteins that are localized to 

L.  Formally, this set is defined as:  

.}|{ pPpL DddD
L

∈= ∈U  

The number of abstracts in this set is denoted by |DL|.  The likelihood of the term t to 

occur in the abstracts associated with location L is represented by the probability of term t 

to be associated with L, denoted ( )Lt |Pr .  Formally, ( )Lt |Pr  is the conditional 

probability of the term t to appear in an abstract, given that the abstract is associated with 

the location L, expressed as: 

(1)    ( ) .)|Pr(|Pr LDddtLt ∈∈=  

A maximum likelihood estimate of this probability is the proportion of abstracts 

containing the term t out of all those associated with location L, calculated as: 

( )
L

L

D
dttsDdLt ∈∈

≈
.. abstracts of #|Pr  , 
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where both the numerator and the denominator are estimated from the set of abstracts 

associated with location L in our dataset, denoted DL.  This probability estimate is 

calculated for each term t and each location L. 

Based on the above formulation, a term t is deemed distinguishing for location L, 

if and only if its probability to occur in the abstracts associated with location L is 

significantly different from its probability to occur in the abstracts associated with any 

other location.  To determine the significance of the difference between the two 

probabilities, a statistical test is employed that utilizes the Z-score [51].   The test scores 

the difference between two binomial probabilities; in this case, the probabilities of term t 

to occur in the abstracts associated with locations L and L', denoted ( )Lt |Pr  and ( )'|Pr Lt , 

respectively.  The Z-score is defined as: 

( ) ( )

( )
( ) ( )

.
'|Pr|Pr

  where,
111

'|Pr|Pr

'

'

'

',
LL

LL

LL

t
LL DD

LtDLtD
P

DD
PP

LtLtZ
+

⋅+⋅
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅−⋅

−
=  

The value of t
LLZ ',  indicates the statistical significance of the difference between the two 

probabilities.  For instance, if the Z-score calculated with respect to two probabilities is 

greater than 1.96 or less than -1.96, there is a confidence of 95% that the difference 

between the two probabilities is not arbitrary and can be considered statistically 

significant.  Therefore, a term t is considered distinguishing for a location L if for any 

other location L’, t
LLZ ',  is greater than a predetermined threshold.  The precise thresholds 

we use for each dataset are presented in Section 5.2.4.  
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5.2 Comparison of Feature Selection Methods 

The Z-Test method is one of several possible approaches to feature selection.  As such, its 

performance needs to be compared with that of other feature selection techniques used in 

practice.  We select a different feature set using each of the following methods: odds 

ratio, Chi-squared, mutual information, information gain, and Entropy – which is part of 

the LOCKEY classifier [32] discussed in Section 2.5.  Each feature set is used to produce 

a representation of the proteins in the MultiLoc dataset (described in Section 4.1.2).  A 

classifier is then trained and tested on each protein set representation, and the results from 

each classifier are compared to the results of a classifier that uses Z-Test for feature 

selection.  The following sections describe in detail each of the feature selection methods, 

the comparison process, and the results of this comparison.  We also examine adjusting 

the threshold for the Z-Test method when it is applied to different datasets. 

5.2.1 Feature Selection Methods 

For text classification tasks, feature selection methods score each term in a set such that 

terms with the highest scores are selected as features.  We describe next four standard 

methods for feature selection: odds ratio, Chi-squared, mutual information, and 

information gain.  We then describe the Entropy method. 

Standard Scoring Methods 

Each of the techniques discussed here captures an aspect of the term distributions that is 

useful for selecting distinguishing terms.  Odds ratio (OR) measures the degree of 

association between two variables, in this case a term, t, and a location, L, while Chi-

squared (χ2) measures the amount of dependence between the two variables [55].  



CHAPTER 5.  FEATURE SELECTION  62 

 

Information gain (IG) and mutual information (MI) incorporate ideas from Shannon’s 

information theory to select terms.  Information gain measures the amount of information 

gained about the location by knowing whether a term is present or absent in an abstract.  

Mutual information measures the amount of information added about one variable when 

the other is known, and vice versa.  Each method scores a term t with respect to a location 

L, and is formally defined [44] in Table 5.2.1.  The probabilities incorporated in the 

scoring functions are defined below.  If any of the probabilities discussed throughout this 

chapter are calculated to be zero, they are set, instead, to 1 x 10 -9.  Using the latter value 

instead of zero reflects the fact that the calculated probabilities are estimates based on a 

limited set of data, as in reality these probabilities are not expected to be zero.  We use 

the value 1 x 10 -9 because it is sufficiently smaller than the value of any of the 

probability estimates that we calculate based on data, and is therefore guaranteed to 

represent the lowest possible probability in our system. 

 
Function Mathematical Form 

Information Gain ( ) ( )
( ) ( ) ( ) ( )

( ) ( )tL
LtLt

tL
LtLt

PrPr
,Prlog,Pr

PrPr
,Prlog,Pr

⋅
+

⋅
 

Mutual Information 
( )

( ) ( )Lt
Lt

PrPr
,Prlog
⋅

 

Chi-squared ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )LLtt

LtLtLtLtTr

PrPrPrPr

,Pr,Pr,Pr,Pr
2

⋅⋅⋅

⋅−⋅⋅
 

Odds Ratio 
( ) ( )( )

( )( ) ( )LtLt
LtLt
|Pr|Pr1

|Pr1|Pr
⋅−

−⋅  

 
Table 5.2.1:   The mathematical form of information gain, mutual information, Chi-squared, and 
odds ratio, defined through probabilities, where t is a term, L is a location, and Tr is the total number 
of terms [44]. 
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A number of prior probabilities are estimated by the feature selection methods.  

The prior probability that an abstract contains the term t, denoted ( )tPr , is estimated.  A 

maximum likelihood estimate for this probability is the proportion of the number of 

abstracts containing term t among all abstracts, calculated as: 

( )
abstractsoftotal

tcontainingabstractsoft
#

#Pr ≈ . 

The prior probability that an abstract does not contain term t, ( )tPr , is calculated, as 

( )tPr1− .   

The prior probability of an abstract to be associated with a location, L, 

denoted ( )LPr , is estimated as the proportion of abstracts associated with location L 

among all abstracts, and is defined as: 

( )
abstractsoftotal

LwithassociatedabstractsofL
#

#Pr = .   

The prior probability of an abstract to not be associated with location L, ( )LPr , is 

calculated as ( )LPr1− . 

Each of the feature selection methods incorporates conditional probabilities in 

their scoring function.  The probability of a term to occur (or not to occur) in an abstract 

is estimated under two conditions: given that the abstract is associated with location L, 

and given that the abstract is not associated with location L.  The conditional probability 

of a term to appear in an abstract, given that the abstract is associated with location L, 

was already defined in Section 5.1 Eq. (1).  It is the same probability used by the Z-Test 

method: 

( ) ( )LDddtLt ∈∈= |Pr|Pr  , 
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where t, d, and DL denote a term, abstract, and set of abstracts associated with L, 

respectively.  The probability is estimated by: 

( )
L

L

D
dttsDdLt ∈∈

≈
.. abstracts of #|Pr . 

The conditional probability of a term not to occur in an abstract, given that the abstract is 

associated with location L, is formally defined as: 

( ) ( )LDddtLt ∈∉= |Pr|Pr , 

and is calculated as: 

( ) ( )LtLt |Pr1|Pr −= . 

The probability of a term to occur in an abstract given that the abstract is not associated 

with location L, and the probability of a term to not occur in an abstract given that the 

abstract is not associated with location L are defined as: 

( ) ( )LDddtLt ∉∈= |Pr|Pr  and  

( ) ( )LtLt |Pr1|Pr −= , 

respectively.  The maximum likelihood estimate for ( )L|tPr  is: 

( )
L

L

D

dttsDd
Lt

∈∈
≈

.. abstracts of #
|Pr  . 

 The definition of conditional probability can be used to calculate the joint 

probability of two events as: 

( ) ( ) ( )B|APrBPrB,APr ⋅= , 

where A and B are the two events.  This formula, along with the prior and conditional 

probabilities defined above, allows for the calculation of the four joint probabilities 
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( ) ( ) ( ) ( )LtLtLtLt ,Pr,,Pr,,Pr,,Pr .  The prior, conditional, and joint probabilities are all 

that is required to calculate a score for a term with the IG, MI,  χ2, and OR scoring 

functions, as defined in Table 5.2.1. 

The four functions calculate a score for each term with respect to each location.  

However, terms are selected based on all locations.  Therefore, to score a term over all 

locations, we combine the term’s scores from each location.  We employ two different 

functions to calculate the single overall score: SUM and MAX.  As their names imply, 

SUM takes the sum of a term’s scores over all locations, while MAX takes the maximum 

score for a term with respect to all locations.  Following previous evaluations [44, 55], we 

chose the SUM function to calculate the OR and IG scores, and the MAX function to 

calculate MI and χ2 scores.   

The Entropy Scoring Method 

The Entropy method, developed by Nair and Rost [32], is also based on Shannon’s 

Information [46].  For each term t, its Shannon Information (SI) is calculated as: 

∑
=

−=
n

i
ii AlogASI

1
, 

where n is the number of different locations, and Ai is the probability of finding the term t 

in the abstracts associated with the ith location.  This probability is estimated as the ratio 

of the number of proteins in the ith location whose associated abstracts contain the term to 

the total number of proteins whose associated abstracts contain the term.  This estimate is 

calculated as:  

P

Pi
i Dt.t.spproteinsof#

Dt.t.sPpproteinsof#
A

∈
∈∈

≈   , 
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where Pi is the set of proteins associated with the ith location and Dp is the set of abstracts 

associated with protein p. 

A normalized SI is also calculated for each term, defined as: 

∑
=

−=
M

i
ii ZZnormSI

1
log   ,  where 

∑
=

= M

i
i

i
i

X

XZ

1

and 

i

pi
i Ppproteinsof#

Dt.t.sPpproteinsof#
X

∈

∈∈
= . 

where M is the number of locations that have associated abstracts containing the term.   

Finally, the percent of fractional change in both the Shannon Information (fracSI) 

and the normalized Shannon Information (fracNormSI) is calculated as: 

SImax
SISImaxfracSI −

⋅= 100  

NormSImax
normSINormSImaxfracNormSI −

⋅= 100 , 

where maxSI is the maximum possible Shannon Information and maxNormSI is the 

maximum normalized Shannon Information.  The maxSI is calculated as the log of the 

total number of locations, n, and maxNormSI is calculated as the log of M.  A term is 

selected for the feature set if both its fracSI and fracNormSI exceed a predetermined 

threshold.   

5.2.2 Comparison Procedure 

All six feature selection methods were tested using the text processing and cross-

validation scheme described in Sections 3.1.1 and 3.2.3, respectively.  Each method was 

applied to the same random partitioning of proteins, in order for the results to be 

comparable.  The MultiLoc dataset, described in Section 4.1.2, served for training and 
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testing.  Feature selection methods are compared on the accuracy of the classifier trained 

using vectors based on their respective feature sets, and across a number of different 

feature set sizes.  To allow this comparison, each method scores the set of potential terms, 

and for several set-sizes N, the N terms with the highest scores are selected, as well as 

any term that has a score equal to the Nth term.  The results of this comparison are 

presented next. 

5.2.3 Results of the Feature Selection Comparison 

The goal of the comparison described in this chapter is to verify that a classifier based on 

the Z-Test feature selection method produces results similar to, if not better than, those 

produced by classifiers based on the other methods. 

Figure 5.2.1 shows the accuracy of each of the classifiers as a function of the 

average number of features used to represent the proteins; 5.2.1 a) displays the results of 

classifiers tested on plant proteins, while 5.2.1 b) shows the results of the classifiers 

tested on animal proteins. 

We note that in the plot the X-axis denotes the average number of features, rather 

than simply the number of features. This is due to the setting of the cross-validation 

process:  A set of features is selected for each of the five training sets.  The number of 

features selected may be different for each training set, because not only the top N 

scoring terms are selected, but also any additional terms with the same score as the Nth 

term (the lowest scoring term among the top N).  The number of terms with the same 

score as the Nth term may vary between training sets.  Therefore, we average the number 

of terms over all five training sets, and plot accuracy against this average.  
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Figure 5.2.1 demonstrates that the performance of the Z-Test, IG, and χ2 methods 

is almost equivalent; we could probably use any of these methods for our classifier and 

achieve similar results.  We use the Z-Test method in the experiments described in this  
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Figure 5.2.1:  The accuracy of each classifier as a function of the average number of 
terms selected to represent the proteins.  Figure a) displays the accuracy of a classifier 
trained with plant proteins. Figure b) shows the accuracy of a classifier trained with 
animal proteins. 
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thesis as Z-Test was our original approach and as it has a simple statistical interpretation.  

We cannot say conclusively which of these top-performing methods is best, as the 

differences between the three are very small, and the results were obtained from only one 

split of the MultiLoc [20] dataset (only one split was used because the amount of time 

required to perform a complete cross-validation experiment for every combination of 

feature number and selection method is very large).  However, the results conclusively 

show that any of the three top-performing methods (Z-Test, χ2 and IG) perform much 

better than the other three methods when used in conjunction with our classification 

scheme.   

The poor performance of the classifiers based on mutual information is not 

surprising.  Previous research has indicated that classification schemes that use mutual 

information for feature selection do not perform as well as those that use  

Chi-squared or information gain [55, 44].  As for the Entropy method, the poor 

performance may be attributed to the fact that it was developed to select features from a 

relatively small set of potential features compared to the set used here.  Nair and Rost 

used the functional keywords in the Swiss-Prot entries of the proteins as potential 

features [32], whereas we use a much larger number of potential features. 

Conversely, we did not expect to observe such poor results from the classifier that 

used odds-ratio for feature selection.  According to previous publications, odds-ratio 

outperforms both Chi-squared and information gain for text categorization tasks [44].  

The poor performance appears to stem from the formulation of the odds ratio function; it 

selects primarily terms associated with a single location, resulting in sparse term-vectors. 
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As was first presented in Section 5.2.1, the odds ratio function [44] is defined as: 

( ) ( )( )
( )( ) ( )LtLt

LtLt
|Pr|Pr1

|Pr1|Pr
⋅−

−⋅  . 

The probability ( )Lt |Pr  in the denominator is the probability of term t to occur in 

the abstracts associated with any location other than location L.  If term t only occurs in 

abstracts associated with location L, then ( )Lt |Pr  is zero, and is thus replaced by the 

value 1 x 10 -9.  This leads to a very small denominator as compared to the numerator; 

( )( )Lt |Pr1−  is close to 1, since ( )Lt |Pr  is 1 x 10 -9; the value ( )Lt |Pr  is much larger 

than 1 x 10 -9 because the term t has to have occurred in the abstracts associated with 

location L in this situation.  Division by the small denominator results in a very high 

score for the term being evaluated.  As a result, terms that occur only in abstracts 

associated with a single location are the first to be included in the set of distinguishing 

terms.  Including primarily such terms causes feature vectors to be sparse; the only terms 

available to represent a given protein are those associated with its own location.  If those 

terms are present in only a few abstracts, there may be insufficient terms associated with 

a location to represent many of its proteins.  Figure 5.2.2, which plots the number of 

proteins represented against the number of distinguishing terms, illustrates this point, as 

the classifiers using odds ratio are able to represent fewer proteins as the number of 

features selected decreases.  Indeed, for any size of feature set, the classifiers using odds 

ratio are unable to represent many of the proteins in the dataset.  As the classifier is 

unable to represent a large portion of the dataset, it is unable to adequately “learn” a 

classification model, resulting in the poor performance of the classifier. 
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Figure 5.2.2:  The number of proteins represented as a function of the average number of 
terms used to represent them, for each of the six feature selection methods.  Figure a) displays 
the plot for plant proteins, b) for animal proteins.  

 
 

The three feature selection methods that performed best with respect to accuracy 

are also the top performers with respect to coverage.  Chi-squared, information gain, and 

Z-Test consistently represent the majority of the proteins, regardless of the number of 

terms selected.  Even when using as few as about 500 terms, the three methods can 
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represent almost all of the proteins in the dataset.  Taken together, Figures 5.2.1 and 5.2.2 

indicate that our Z-Test approach is an effective method for selecting features to represent 

proteins, and that we can confidently use it as a component in our system for predicting 

protein subcellular location.  

5.2.4 Setting the Z-score Threshold for Different Datasets 

As first mentioned in Section 5.1, a term t is considered distinguishing for a location L if 

for any other location L’, the absolute value of the Z-score,  t
LLZ ',  is greater than a set 

threshold.  Based on the results shown in Figure 5.2.1, we decided to set a threshold that 

retains about 2,000 terms, as this number attains a balance between a computationally 

effective feature-space, and the accuracy of the classifier.  As Figure 5.2.1 shows, the 

accuracy of the top methods does not significantly improve by including more than 2,000 

features.  In order to ensure that about 2,000 terms are indeed selected, we set a specific 

threshold for each dataset. 

In order to select about 2,000 terms, for datasets that include locations that have 

only a small number of associated proteins we must set a lower threshold than for those 

datasets that do not include such locations.  Locations that have a small number of 

associated proteins typically have only a few associated abstracts.  The inclusion of a 

location L, with only a few associated abstracts, DL, reduces the likelihood that, for a term 

t, t
LLZ ',  will be above the threshold for every other location L’.  Recall the formula for 

the Z-score: 

( ) ( )

( )
( ) ( )

.
'|Pr|Pr

  where,
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All other values in the equation being equal, the inclusion of the location L will lead to a 

larger denominator in the Z-score expression, than if the same location has more 

associated abstracts.  The larger denominator, which results from an increase in the value 

of ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

'

11

LL DD
, results in a lower t

LLZ ',  than if location L has many associated 

abstracts. 

For each dataset, we have two criteria for setting the threshold.  First, the 

threshold must be sufficiently low to allow the selection of about 2,000 terms.  Second, 

the threshold must be high enough to indicate that the probability of a term to be 

associated with one location is, in fact, statistically significantly different from its 

probability to be associated with all other locations.  We describe next the process used to 

select a precise threshold.   

Dataset Organism Threshold  [Confidence] 
Plant 1.645  [90%] 

TargetP 
Non-Plant 2.576  [99%] 

Plant 1.150  [75%] PLOC 
Animal 1.150  [75%] 
Plant 1.282  [80%] 

MultiLoc 
Animal 1.645   [90%] 

 
Table 5.2.2: The threshold chosen for each organism and dataset. 
 
 

To set the threshold for a dataset, we use a simple search process.  We first 

partition the dataset as we do for 5-fold cross-validation.  The Z-Test method then selects 

terms from each of the five resulting training sets, each consisting of 80% of the data, 

using thresholds of 2.576, 1.960, 1.645, 1.282, and 1.150.  These thresholds correspond 

to confidence levels of 99%, 95%, 90%, 80%, and 75%, respectively, that the difference 

between the two probabilities, ( )Lt |Pr  and ( )'|Pr Lt , is not arbitrary.  Finally, for each 
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threshold, we average the number of terms selected over all five training sets, and select 

the threshold whose average number of terms is closest to 2,000.  Table 5.2.2 presents the 

threshold chosen for each organism in the datasets described in Chapter 4.  

The thresholds shown in Table 5.2.2 are used for the standalone EpiLoc classifier.  

However, a threshold of 1.960 was set for the text-based portion of the SherLoc 

classifier.  As stated in Section 3.3, there are differences between the feature selection 

method used for EpiLoc, and the feature selection method used for the text-based 

classifier integrated in SherLoc.  These differences are discussed next. 

5.3 Feature Selection for SherLoc 

The SherLoc system was tested early in the development of EpiLoc, and as such, an 

earlier version of EpiLoc, which we call EarlyText, was incorporated in the SherLoc 

classifier.  Since then, changes have been made to the feature selection process intended 

to improve EpiLoc’s performance.  As a result of these changes, EpiLoc and SherLoc 

differ with respect to the following three aspects of feature selection: 

1) The abstracts included for feature selection:  Feature selection for EpiLoc 

includes only those abstracts associated with proteins from locations found 

in the organism for which EpiLoc is being trained.  For example, if EpiLoc 

is trained on plant proteins, lysosomal proteins are not included in the 

feature selection process.  In contrast, EarlyText included in the feature 

selection process abstracts associated with proteins from all locations, 

regardless of the organism for which it was being trained. 
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2) The level of the threshold set:  EpiLoc adjusts its threshold according to the 

dataset being considered. Conversely, EarlyText set a single Z-score 

threshold, 1.960, for all datasets. 

3) The point at which feature selection takes place relative to cross-validation:   

For EpiLoc, feature selection is performed during the cross-validation 

process, to allow features to be chosen from each of the five training sets.  

Therefore, a different feature set, which is based on only 80% of the data, is 

used to represent each of the five training-test set pairs.  For the text-based 

portion of SherLoc, feature selection took place before the protein sets were 

partitioned into five subsets.  Thus, a single set of terms, selected from 

100% of the data, was used as a basis for the feature vectors representing 

proteins for all the training and test sets.  

The use of a single set of features selected from the entire dataset to represent all 

the proteins in EarlyText was revisited for the following reason.  When using all the 

abstracts associated with the proteins to select a single feature list, the feature selection 

process involves both training and test proteins. While feature selection is often 

performed as a separate step from classification, and precedes the cross-validation 

process, we wanted to ensure that using the whole dataset for feature selection does not 

strongly affect the evaluation. To do so we conducted the following experiment. 

We compared the performance of two classifiers on the MultiLoc dataset [20], 

one of which selects features from the entire dataset while the other selects features from 

only 80% of the dataset.  For our experiment we used the cross-validation process 

described in Sections 3.2, and employ the exact same split of the data for each classifier.  
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The design of each classifier was intended to duplicate that of EarlyText; a threshold of 

1.960 was applied, and all abstracts associated with all locations of the dataset were 

considered for term selection.  However, the two classifiers differed with respect to the 

stage in which feature selection was performed.  For one of the classifiers (denoted 

Class100), feature selection was performed on the whole dataset, before it had been 

partitioned for cross-validation.  For the other classifier (denoted Class80), feature 

selection was performed after the dataset had been partitioned; therefore, features were  

 

Loc Class80 Class100 
Plant (Sens Spec MCC) 

va 0.73 0.25 0.42 0.83 0.31 0.50 
pe 0.88 0.77 0.82 0.88 0.77 0.82 
go 0.81 0.46 0.60 0.86 0.53 0.66 
er 0.58 0.60 0.57 0.57 0.64 0.59 
ch 0.84 0.74 0.77 0.88 0.76 0.80 
mi 0.81 0.80 0.79 0.82 0.81 0.80 
nu 0.79 0.74 0.73 0.83 0.78 0.78 
ex 0.61 0.74 0.61 0.74 0.77 0.71 
pm 0.82 0.85 0.79 0.84 0.88 0.82 
cy 0.60 0.66 0.51 0.61 0.73 0.57 

Acc 0.72 0.76 
Avg 0.75 0.79 

Animal Proteins (Sens Spec MCC) 
ly 0.80 0.31 0.48 0.83 0.36 0.54 
pe 0.89 0.78 0.82 0.89 0.77 0.82 
go 0.83 0.47 0.61 0.87 0.54 0.67 
er 0.60 0.58 0.57 0.59 0.62 0.59 
mi 0.81 0.82 0.80 0.82 0.82 0.80 
nu 0.81 0.74 0.74 0.84 0.78 0.78 
ex 0.61 0.74 0.61 0.73 0.77 0.70 
pm 0.81 0.85 0.78 0.83 0.88 0.81 
cy 0.61 0.69 0.54 0.64 0.74 0.59 

Acc 0.72 0.76 
Avg 0.75 0.78 

 
Table 5.3.1:  The results of the classifiers based on different feature selection methods, for 
plant and animal proteins.  The mean values, over 200 measurements, of Sens, Spec, MCC, 
Avg, Acc are displayed.  Values in bold indicate a statistically significant difference (p<0.01).  

 
 



CHAPTER 5.  FEATURE SELECTION  77 

 

only selected from 80% of dataset, that is, from each of the four subsets comprising a 

training set.   

We compare the two classifiers over 200 random splits of the data, for both plant 

and animal proteins.  The 200 splits were performed so that a statistical test could be 

applied to determine if the differences in performance were statistically significant.  For 

the two classifiers, we compared the distribution of their 200 results on the following 

measures: accuracy, average sensitivity, sensitivity, specificity, and MCC.  The mean 

value of these measurements over the 200 iterations is shown in Table 5.3.1. 

We note that the results displayed in Table 5.3.1 were produced by the SVMs that 

we trained, and not by the SVMs used in the EarlyText classifier (see Section 3.3).  The 

parameter settings for the Class100 classifier are thus different from those used for the 

EarlyText classifier, and as such the results can be used to evaluate the difference 

between Class80 and Class100 - but do not reproduce (nor can they be compared to) the 

results of EarlyText as shown in Chapter 6. 

We performed a Kolmogorov-Smirnov test [11], which is a statistical test used to 

determine if two datasets differ significantly, on the sensitivity, specificity, MCC, 

average sensitivity, and average accuracy distributions to determine if the differences 

between the results of the two classifiers are statistically significant.  For almost all 

measurements, the test indicates the difference to be highly statistically significant 

(p<0.01).  As is shown in Table 5.3.1, with the exception of peroxisomal (Sens, Spec, 

MCC), endoplasmic (Sens), and mitochondrial (Spec) proteins, the mean value of each 

distribution is higher for Class100 than for Class80.  Therefore, it appears that the 

inclusion of the early version of the text-based system in the SherLoc classifier may 
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somewhat affect its results.  However, the difference in performance between Class80 

and Class100 is less than or equal to 0.06 for almost all measurements, including 

accuracy and average sensitivity.  Only the extracellular (Sens, MCC) and the vacuolar 

(Sens, MCC) proteins have associated measurements that differ, on average, by more than 

0.06 between the two classifiers.   

Loc Class100 Class80 % Change 
va 204.0 150.0 -26.5 
ly 104.0 69.2 -33.5 
pe 82.0 55.7 -32.1 
go 86.0 57.5 -33.1 
er 47.0 34.9 -25.7 
ch 84.0 57.3 -31.8 
mi 47.0 30.6 -34.9 
nu 79.0 50.1 -36.6 
ex 31.0 18.0 -41.9 
pm 52.0 31.2 -40.0 
cy 8.0 6.1 -23.8 

 
Table 5.3.2: The number of terms per location for Class100 and Class80, and 
the percent change from Class100 to Class80.  For Class80, the number of 
terms per location is averaged over the 200 random splits of the data. 

 
 
 For extracellular proteins, the reason for the large decrease in performance from 

Class100 to Class80 appears to be caused by the number of features that are selected 

based on the location.  Table 5.3.2 shows the number of terms selected from the abstracts 

associated with each location by Class100 and Class80, where, for Class80, the number 

of terms is averaged over the 200 different splits (there is no need to average for 

Class100; the same number of terms are selected for each location for each split, as the 

terms are selected from 100% of the data).  As is shown in Table 5.3.2, there is a 41.9% 

decrease in the number of terms selected from abstracts associated with extracellular 

proteins between Class100 and Class80, resulting in only 18 distinguishing terms for the 

extracellular space.  Although the cytoplasm also has very few features associated with it, 
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the relative change in the number of terms associated with the cytoplasm between 

Class80 and Class100 is much smaller; the small number of distinguishing terms 

associated with the cytoplasm appears to manifest itself in the relatively poor 

performance for the location in both the CLASS80 and CLASS100 experiments.  

Furthermore, while the plasma membrane also shows a large percentage decrease in the 

number of distinguishing terms between Class100 and Class80, there are still many more 

distinguishing terms for the plasma membrane (31.2), than there are for the extracellular 

space (18.0).  The fact that the plasma membrane retains, relative to the extracellular 

space, a larger number of associated distinguishing terms, explains the relatively small 

decrease in performance on the plasma membrane proteins between Class100 to Class80. 

The poor performance of Class80, relative to Class100, on the vacuolar proteins is 

likely due to a dearth of data associated with the location.  The vacuole, after removal of 

textless proteins, has only 49 associated proteins in the MultiLoc dataset, half the number 

of the next smallest location, the lysosome.  When performing feature selection for 

Class80, terms are selected from the abstracts associated with only 36 vacuolar proteins 

(80% of 45; 4 of the 49 proteins are removed so that each subset of the dataset receives 

an equal number of proteins).  The number of abstracts associated with the vacuole is 

therefore very small, and the distinguishing terms found in these abstracts do not appear 

to effectively characterize the vacuole.  Therefore the benefit of including 100% of the 

data is more apparent for the vacuole than for other locations, as Class100 is able to draw 

from a larger sample than Class80 when characterizing the vacuole.  

The measurements in Table 5.3.1 suggest that although EarlyText, and therefore 

SherLoc, may have benefited from the selection of text features from 100% of the data, 
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the resulting improvement is quite small compared with the overall improvement 

SherLoc achieved with respect to all earlier systems (see Section 6.1).  Moreover, as we 

show in Chapter 6, EpiLoc – with its cross-validated feature selection process – 

outperforms EarlyText for all locations in the MultiLoc dataset.  These results further 

suggest that the benefits from using the whole dataset for feature selection, as done in 

EarlyText, are marginal.  In the next chapter, we present the performance of EarlyText, 

EpiLoc and SherLoc on several datasets, along with the results of the rest of the 

experiments described in Chapter 4. 
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Chapter 6 

 

Results  

In this chapter, we present the results of the experiments described in Chapter 4.  The 

results of comparing EpiLoc and SherLoc to other state-of-the-art prediction systems, and 

of running SherLoc and EpiLoc on the Diff48 dataset, are examined.  We then look at the 

performance of HomoLoc and PubLoc, to determine if either is suitable for handling 

textless proteins for the EpiLoc system.  Last, we demonstrate the use of DiaLoc. 

6.1 Systems Comparison Results 

This section focuses on the results of running EpiLoc and SherLoc [19, 47] on the three 

datasets described in Section 4.1: TargetP [15], PLOC [38], and MultiLoc [20].  For 

comparison, we present the results of the original TargetP, PLOC, and MultiLoc systems 

on their respective datasets, as reported in their corresponding publications.  We also 

present the performance of the MultiLoc classifier on both the TargetP and PLOC 

datasets, in order to examine the effect of integrating MultiLoc with the early version of 
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our text-based system, EarlyText.  As described in Section 5.3, one of the ways in which 

EarlyText differs from EpiLoc is that EarlyText uses the entire dataset for feature 

selection.  To further examine (beyond the examination done in Section 5.3) the possible 

effect of this difference on the evaluation of SherLoc, we compare EarlyText’s results to 

those of EpiLoc for each of the three datasets.  The results of both EarlyText and 

SherLoc, as reported in the following sections, have appeared in previous publications 

[19, 47].  For each system, on each dataset, we report the sensitivity (Sens), specificity 

(Spec), and Matthew’s Correlation coefficient (MCC) with respect to each location, as 

well as the overall accuracy (Acc) and average sensitivity (Avg), all of which were 

defined in Section 3.2.2. 

6.1.1 Results for the TargetP Dataset 

We present the results of applying EpiLoc and SherLoc to the TargetP dataset, for both 

plant and non-plant proteins, in Table 6.1.1.  The table also includes the results of 

TargetP, EarlyText, and MultiLoc on the dataset.  The values in Table 6.1.1 suggest that 

EpiLoc, as a standalone classifier, performs at a level similar to TargetP, the state-of-the-

art classifier based solely on N-terminal sequence data.  Furthermore, the results indicate 

that among those systems shown in Table 6.1.1, SherLoc is the best performing system 

on the dataset. 

For both plant and non-plant proteins, EpiLoc’s accuracy and average sensitivity 

are slightly higher than those of TargetP.  Moreover, for most location-specific 

performance metrics, EpiLoc and TargetP perform about the same.  The only metrics for 

which TargetP significantly outperforms EpiLoc are specificity for chloroplast and for 

mitochondrial plant proteins. 
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EpiLoc’s low specificity on chloroplast proteins appears to be caused by the small 

amount of data associated with the location.  The 123 chloroplast proteins in the TargetP 

dataset classified by EpiLoc have a total of 181 associated PubMed abstracts.  

Conversely, the location with the most proteins, Other, on which EpiLoc performs very 

well, has 1,636 proteins with 3,782 associated abstracts.  A common problem in machine 

learning is that it is difficult to “learn” a model from little data.  The feature distribution 

that characterizes the underrepresented class in the training data is often different from 

the characteristic feature distribution for the same class in the test data [40].   

 
TargetP Dataset 

Loc TargetP EpiLoc MultiLoc EarlyText SherLoc 
Plant (Sens Spec MCC) 

ch 0.85 0.69 0.72 0.92 0.53 0.68 0.88 0.76 0.78 0.78 0.74 0.72 0.93 0.89 0.89
mi 0.82 0.90 0.77 0.89 0.81 0.82 0.87 0.94 0.84 0.90 0.98 0.90 0.95 0.99 0.95
SP 0.91 0.95 0.90 0.89 0.84 0.80 0.93 0.97 0.93 0.77 0.84 0.74 0.95 0.98 0.95
OT 0.85 0.78 0.77 0.84 0.95 0.78 0.92 0.84 0.86 0.67 0.52 0.50 0.95 0.87 0.89
Acc 0.853 (±0.035)  0.862 (±0.004)  0.897 (±0.016)  0.812 (±0.026)  0.947(±0.015)  
Avg 0.856 (n/a)  0.883 (±0.001)  0.902 (±0.02)  0.781 (±0.032)  0.944 (±0.016)  

Non-Plant (Sens Spec MCC) 
mi 0.89 0.67 0.73 0.92 0.84 0.86 0.91 0.77 0.81 0.91 0.78 0.81 0.97 0.88 0.91
SP 0.96 0.92 0.92 0.93 0.86 0.84 0.95 0.92 0.91 0.92 0.83 0.82 0.98 0.96 0.96
OT 0.88 0.97 0.82 0.88 0.95 0.81 0.91 0.97 0.86 0.87 0.95 0.79 0.95 0.99 0.93
Acc 0.900 (±0.007) 0.901 (±0.006)  0.925 (±0.012)  0.887 (±0.011)  0.962 (±0.008)  
Avg 0.907 (n/a)  0.908 (±0.003)  0.928 (±0.011)  0.898 (±0.016) 0.967 (±0.009)  

 
Table 6.1.1:  Prediction performance of TargetP, EpiLoc, MultiLoc, EarlyText, and SherLoc on the 
TargetP dataset.  Both location-specific (Sens, Spec, MCC) and overall results (Acc and Avg) are 
shown.  Highest values appear in bold.  Standard deviations (denoted ±) are provided for Acc and 
Avg where available. 

 
 

Specifically, the small amount of data affects EpiLoc’s performance on 

chloroplast proteins through the feature selection process.  The benefit of including more 

data in the feature selection process is evident in EarlyText’s superior specificity on 

proteins from the chloroplast.  As discussed in Chapter 5, EarlyText differs from EpiLoc 

in that it selects features from the whole dataset, as opposed to just 80% as for EpiLoc.  
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In some cases EarlyText benefits from the inclusion of the additional data, as it is able to 

select more terms that better characterize proteins in the test set. 

EarlyText also significantly outperforms EpiLoc with respect to specificity on 

mitochondrial plant proteins.  This improved performance appears to be a result of 

EpiLoc’s altered feature selection process (the setting of specific thresholds for each 

dataset, the inclusion of locations only from the organism being considered, and the use 

of 80% of the dataset) relative to EarlyText.  As Table 6.1.1 shows, EarlyText’s 

specificity on mitochondrial proteins is much higher for plant than for non-plant proteins; 

the inclusion of the chloroplast improves the classifier’s specificity for the mitochondria.  

The dramatic drop in EarlyText’s performance from plant to non-plant mitochondrial 

proteins suggests that many of the non-plant proteins that are misclassified as 

mitochondrial by EarlyText are instead misclassified as Other for plant proteins (as is 

reflected in EarlyText’s very low specificity on Other proteins in Plant).  Note that, with 

respect to all location-specific scores on Other proteins, the inclusion of the chloroplast 

proteins causes EarlyText’s performance to decline drastically from non-plant to plant 

proteins.  On the other hand, EpiLoc’s performance on mitochondrial proteins and on 

Other proteins is similar for both plant and non-plant proteins.  As the main difference 

between EpiLoc and EarlyText is the feature selection process, this is most likely the 

cause for the difference in performance on both mitochondrial and Other plant proteins 

between the two systems.  Further research is required to determine exactly which 

difference in the feature selection process is causing EarlyText’s improved specificity on 

mitochondrial plant proteins and its worsened performance on Other proteins. 
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Although EarlyText appears to benefit in a few cases from using extra data, 

overall, EpiLoc clearly outperforms EarlyText on the TargetP dataset.  Two of the 

changes made to EpiLoc’s feature selection process – the setting of specific thresholds 

for each dataset and the inclusion of locations only from the organism being considered – 

compensate for any advantage EarlyText may have over EpiLoc.  EpiLoc’s sensitivity, 

specificity, and MCC are at least equal to, and in most cases better than, those of 

EarlyText (excluding specificity for mitochondrial proteins and for chloroplast proteins).  

Moreover, EpiLoc’s sensitivity is much higher than EarlyText’s for chloroplast proteins, 

and the two systems’ sensitivity is nearly the same – a 0.01 difference – for mitochondrial 

proteins.  Finally, EpiLoc’s accuracy and average sensitivity is slightly better than 

EarlyText’s for non-plant proteins, and much better for plant proteins.   

While EpiLoc’s results are good, SherLoc’s performance on the TargetP dataset is 

even better.  SherLoc’s accuracy and average sensitivity significantly exceed those 

produced by any other system to which it is compared for both plant and non-plant 

proteins.  Moreover, with the exception of specificity for Other proteins, SherLoc’s 

sensitivity, specificity, and MCC are higher than those of the other systems to which it is 

compared.  SherLoc is clearly the best performing system on the TargetP dataset.  

SherLoc’s results also demonstrate the usefulness of integrating text with sequence data 

for protein location prediction.  The improved performance of the integrated system over 

both of its components, MultiLoc and EarlyText, demonstrates that text can be used to 

improve the prediction capability of a sequence-based classifier. 
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6.1.2 Results for the PLOC Dataset 

The results of EpiLoc and of SherLoc on the PLOC dataset, along with those of 

MultiLoc, EarlyText and PLOC, are shown in Table 6.1.27.  EpiLoc’s performance is 

comparable to that of the PLOC classifier, while SherLoc outperforms all other systems 

to which it is compared. 

 
PLOC Dataset 

Loc PLOC EpiLoc MultiLoc EarlyText SherLoc
  Sens Plant (Sens Spec MCC)

go 0.15 0.76 0.38 0.53 0.55 0.08 0.20 0.88 0.41 0.60 0.81 0.34 0.52
cs 0.59 0.83 0.31 0.50 0.80 0.21 0.40 0.86 0.25 0.46 0.85 0.34 0.53
va 0.25 0.67 0.17 0.32 0.65 0.19 0.34 0.70 0.11 0.26 0.83 0.28 0.48
er 0.47 0.68 0.32 0.45 0.78 0.69 0.73 0.73 0.26 0.42 0.84 0.73 0.78
pe 0.25 0.82 0.58 0.68 0.72 0.29 0.44 0.75 0.50 0.61 0.83 0.62 0.71
ch 0.72 0.88 0.80 0.82 0.66 0.72 0.66 0.86 0.77 0.80 0.84 0.83 0.82
mi 0.57 0.76 0.86 0.79 0.67 0.65 0.62 0.76 0.86 0.79 0.85 0.84 0.83
ex 0.78 0.69 0.66 0.63 0.84 0.87 0.83 0.66 0.57 0.55 0.87 0.92 0.88
cy 0.72 0.55 0.61 0.50 0.60 0.68 0.57 0.40 0.54 0.37 0.78 0.75 0.72
pm 0.92 0.78 0.85 0.78 0.83 0.96 0.87 0.71 0.83 0.71 0.89 0.98 0.92
nu 0.90 0.80 0.91 0.80 0.75 0.88 0.75 0.77 0.90 0.77 0.88 0.94 0.88
Acc 0.782 (± 0.009) 0.743 (±0.005) 0.736 (±0.007) 0.687 (±0.007) 0.851 (± 0.011) 
Avg 0.579 (± 0.021) 0.748 (±0.013) 0.713 (±0.028) 0.735 (±0.018) 0.855 (± 0.012) 

    Animal (Sens Spec MCC) 
go 0.15 0.76 0.51 0.62 0.51 0.07 0.17 0.88 0.46 0.64 0.83 0.31 0.51
cs 0.59 0.84 0.32 0.51 0.75 0.25 0.43 0.86 0.27 0.48 0.80 0.22 0.41
ly 0.62 0.89 0.32 0.53 0.77 0.36 0.35 0.81 0.33 0.50 0.81 0.52 0.64
er 0.47 0.72 0.30 0.45 0.81 0.63 0.71 0.75 0.27 0.43 0.88 0.69 0.78
pe 0.25 0.85 0.55 0.68 0.74 0.31 0.46 0.79 0.50 0.62 0.81 0.64 0.71
mi 0.57 0.79 0.85 0.80 0.69 0.73 0.68 0.75 0.86 0.78 0.86 0.85 0.83
ex 0.78 0.74 0.68 0.66 0.83 0.87 0.83 0.70 0.58 0.57 0.91 0.91 0.90
cy 0.72 0.53 0.63 0.50 0.65 0.75 0.64 0.49 0.58 0.44 0.80 0.79 0.75
pm 0.92 0.79 0.85 0.78 0.81 0.97 0.86 0.73 0.83 0.72 0.89 0.98 0.91
nu 0.90 0.81 0.90 0.80 0.78 0.87 0.76 0.78 0.90 0.78 0.87 0.95 0.88
Acc 0.796 (± 0.009) 0.743 (±0.002) 0.760 (±0.007) 0.702 (±0.007) 0.864 (± 0.008) 
Avg 0.579 (± 0.021) 0.773 (±0.0012) 0.736 (±0.039) 0.755 (±0.027) 0.845 (± 0.036) 

 
Table 6.1.2:  Prediction performance of PLOC, EpiLoc, MultiLoc, EarlyText, and SherLoc on the PLOC 
dataset.  Overall results (Acc and Avg) are shown for all systems.  For location-specific results, only 
sensitivity is presented for PLOC (as was done in its corresponding publication), while for all other systems 
sensitivity, specificity, and MCC are each displayed.  As presented in its corresponding publication, 
PLOC’s location-specific results are averaged over all three organisms (animal, plant, fungal).  Highest 
values appear in bold.  Standard deviations (denoted ±) are provided for Acc and Avg where available. 

                                                 
7 Results for fungal proteins are reported in Table B.2 in Appendix B. 
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The performance of EpiLoc and of PLOC on the PLOC dataset is quite different, 

yet still indicates that EpiLoc is an effective method for predicting protein subcellular 

location.  EpiLoc’s overall accuracy is slightly lower than that of the PLOC system for 

both animal and plant proteins.  However, EpiLoc’s average sensitivity is significantly 

higher than PLOC’s for both organisms.  Furthermore, EpiLoc’s sensitivity is higher than 

PLOC’s for all locations except for the four with the largest number of associated 

proteins (ex, cy, pm, and nu)8.  Whereas PLOC primarily works well on over-represented 

locations for which a large number of proteins is known (ex, cy, pm, nu, all have at least 

860 proteins), EpiLoc performs well even for locations with relatively few associated 

proteins (pe, er, ly, cs, go, all have at most 125 proteins).  The one location, for which 

EpiLoc’s performance, with respect to sensitivity, is notably worse than its performance 

on other locations, is the cytoplasm. 

EpiLoc’s performance on cytoplasmic proteins is poor according to all measures 

(Sens, Spec, and MCC).  It is better than that of EarlyText, but worse than that of both 

sequence based classifiers (MultiLoc and PLOC).  The relatively poor performance of the 

text-based classifiers appears to stem from a lack of terms that characterize the location.  

Unlike organelles that have very specific functions, the cytoplasm has a less defined role, 

as it acts as a medium in which reactions that serve a variety of functions take place.  The 

non-specific role of the cytoplasm is reflected in the abstracts associated with it, as very 

few distinguishing terms are selected from them;  over the five different splits of the 

PLOC dataset, on average only 13 and 21 terms are associated with the cytoplasm for 

plant and animal proteins, respectively.  This number of terms is the smallest compared to 

                                                 
8 The PLOC publication does not report specificity or MCC. 
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all other locations, and comprises only 1.0% and 1.5%, respectively, of the total number 

of terms selected for representing plant and animal proteins.  Moreover, the abstracts 

associated with the cytoplasm are also the source of the fewest distinguishing terms for 

the MultiLoc dataset, which is discussed in Section 6.1.3.  With so few terms to 

characterize the cytoplasmic proteins, both EpiLoc and EarlyText perform poorly on 

them.  

The specificity of both EpiLoc and EarlyText is also low for those locations that 

have fewer than 115 associated proteins (go, cs, ly, and er,).  The poor specificity of the 

two systems is likely caused by the small number of proteins associated with the 

locations; the machine learning methods are not given enough information to adequately 

“learn” how to classify the proteins.   

Overall, EpiLoc clearly outperforms EarlyText on the PLOC dataset.  EpiLoc’s 

accuracy and average sensitivity are higher than EarlyText’s, and EpiLoc typically scores 

higher according to most measures with respect to individual locations (47 out of a total 

of 63 calculated scores).  These results further suggest that EarlyText’s benefit from 

including all the data during feature selection (as discussed in Section 5.3) is minimal.  

The only location for which EarlyText significantly outperforms EpiLoc is the Golgi 

apparatus, which has the fewest associated proteins, and the large improvement is limited 

to sensitivity.  Aside from the Golgi apparatus, any significant benefit EarlyText has over 

EpiLoc for classifying proteins is negated by the changes we have made to the feature 

selection process of EpiLoc. 

Although EpiLoc’s performance is very good, once again, it is not as good as that 

of SherLoc.  SherLoc’s accuracy and average sensitivity exceed those of all the systems 
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to which it is compared.  Moreover, for almost all locations, its sensitivity, specificity, 

and MCC are the highest.  SherLoc’s results on the PLOC dataset are also better than 

those of its individual components, MultiLoc and EarlyText. This improvement further 

demonstrates that integrating text with sequence data improves prediction performance.   

6.1.3 Results for the MultiLoc Dataset 

Table 6.1.3 displays the results of MultiLoc, EpiLoc, EarlyText, and SherLoc when 

applied to the MultiLoc dataset9.  Both SherLoc and EpiLoc improve upon MultiLoc on 

its own dataset, and SherLoc, again, performs better than the other systems. 

Overall, EpiLoc performs better than MultiLoc when applied to the MultiLoc 

dataset.  For both plant and animal proteins, EpiLoc’s accuracy and average sensitivity 

are higher than MultiLoc’s, and EpiLoc’s sensitivity, specificity, and MCC are also 

higher for the majority of the locations.   

 EpiLoc’s accuracy and average sensitivity significantly exceed those of 

EarlyText.  Moreover, EpiLoc’s sensitivity, specificity, and MCC are higher than 

EarlyText’s for all but 3 of the 57 location-specific measurements.  For the MultiLoc 

dataset, EpiLoc’s results show similarities to its results on the two previous datasets, 

TargetP and PLOC.  EpiLoc’s performance on locations with very few associated 

proteins (the chloroplast and the lysosome in this case) is not as good as its performance 

on those locations with many associated proteins.  Moreover, EpiLoc’s results for the 

cytoplasm are not as good as for other locations with a similar number of associated 

proteins (for example, the plasma membrane).   

 

                                                 
9 Results for fungal proteins are reported in Table B.1 in Appendix B. 
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MultiLoc Dataset 

Loc MultiLoc EpiLoc EarlyText SherLoc 
 Plant (Sens Spec MCC) 

va 0.70 0.20 0.36 0.73 0.29 0.45 0.59 0.15 0.29 0.83 0.29 0.48 
pe 0.71 0.34 0.47 0.88 0.74 0.80 0.88 0.71 0.79 0.85 0.59 0.70 
go 0.75 0.41 0.54 0.85 0.55 0.67 0.82 0.42 0.57 0.84 0.61 0.70 
er 0.72 0.54 0.61 0.72 0.64 0.67 0.73 0.55 0.62 0.82 0.63 0.71 
ch 0.88 0.85 0.85 0.89 0.75 0.81 0.89 0.70 0.78 0.94 0.91 0.92 
mi 0.85 0.79 0.80 0.82 0.81 0.80 0.80 0.80 0.78 0.90 0.88 0.88 
nu 0.82 0.75 0.75 0.82 0.81 0.79 0.80 0.72 0.72 0.89 0.85 0.85 
ex 0.68 0.81 0.70 0.84 0.82 0.80 0.74 0.80 0.73 0.84 0.90 0.84 
pm 0.74 0.89 0.77 0.85 0.91 0.85 0.80 0.91 0.82 0.84 0.96 0.87 
cy 0.68 0.85 0.70 0.64 0.78 0.63 0.53 0.75 0.54 0.81 0.91 0.82 

Acc 0.746 (± 0.008) 0.790 (± 0.002) 0.731 (±0.011) 0.851 (± 0.011) 
Avg 0.752 (± 0.009) 0.805 (± 0.005) 0.760 (±0.023) 0.855 (± 0.012) 

 Animal (Sens Spec MCC) 
ly 0.69 0.36 0.48 0.86 0.39 0.57 0.75 0.32 0.47 0.86 0.55 0.68 
pe 0.71 0.31 0.44 0.90 0.77 0.82 0.93 0.60 0.74 0.89 0.68 0.77 
go 0.71 0.43 0.53 0.88 0.62 0.73 0.86 0.40 0.57 0.87 0.65 0.74 
er 0.68 0.56 0.60 0.74 0.59 0.65 0.74 0.48 0.58 0.82 0.67 0.73 
mi 0.88 0.82 0.83 0.82 0.82 0.80 0.80 0.79 0.77 0.93 0.91 0.91 
nu 0.82 0.73 0.73 0.84 0.81 0.80 0.84 0.71 0.73 0.89 0.83 0.84 
ex 0.79 0.83 0.77 0.80 0.82 0.77 0.76 0.78 0.72 0.86 0.90 0.86 
pm 0.73 0.90 0.76 0.85 0.90 0.84 0.80 0.91 0.81 0.85 0.95 0.87 
cy 0.67 0.85 0.68 0.68 0.79 0.65 0.51 0.77 0.53 0.83 0.91 0.82 

Acc 0.746 (± 0.01) 0.792 (±0.008) 0.725 (±0.007) 0.862 (± 0.009) 
Avg 0.741 (± 0.025) 0.818 (±0.005) 0.775 (±0.015) 0.868 (± 0.015) 

 
Table 6.1.3:  Prediction performance of MultiLoc, EpiLoc, EarlyText, and SherLoc on 
the MultiLoc dataset.  Both location-specific (Sens, Spec, MCC) and overall results (Acc 
and Avg) are shown.  Highest values appear in bold.  Standard deviations (denoted ±) are 
provided for Acc and Avg where available. 

 
 

SherLoc’s results are also similar to those it displayed on the two other datasets; 

its results are better than those of any other classifier to which it is compared.  In terms of 

overall accuracy, average sensitivity, and the vast majority of location-specific 

measurements, SherLoc produces the highest values for the MultiLoc dataset.  SherLoc’s 

performance also provides quantitative evidence as to the benefit of integrating text with 

sequence data.  An independent t-test [51] indicates that the improved performance 

values of SherLoc, as compared to EarlyText and MultiLoc, are highly statistically 
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significant (p << 0.05) for almost all subcellular locations.  There are only two 

exceptions. The Golgi apparatus, where there is no significant difference in sensitivity 

with respect to EarlyText for plant and animal proteins, and the peroxisome, where 

EarlyText outperforms SherLoc for plant and animal proteins. 

6.1.4 Systems Comparison Conclusion 

Overall, the above results demonstrate that EpiLoc, as a standalone classifier, performs at 

a level similar to, and in some cases better than, that of other state-of-the-art classifiers.  

We note that EpiLoc’s performance on both the TargetP and the MultiLoc datasets is 

better than it is on the PLOC set.  As the criteria used for selecting proteins for the PLOC 

dataset were not as strict as those employed for the MultiLoc and TargetP datasets (see 

Section 4.1), the resulting protein distribution among locations, and thus the distribution 

of the associated text, is quite different between the datasets.  As such, a lower Z-score 

threshold, as shown in Table 5.2.2, was required to select a sufficient number of features 

(only about 1,250 were actually chosen) for the PLOC dataset. These terms are fewer and 

less distinguishing, and using them to represent the PLOC proteins results in EpiLoc’s 

relatively lower performance on this dataset.  

Furthermore, we have demonstrated, through EpiLoc’s improved performance 

over EarlyText, that although there is some benefit to using the entire dataset for feature 

selection, the benefit is marginal and is minimized by making the changes to the feature 

selection process as is already done in EpiLoc.  The fact that EpiLoc consistently 

outperforms its predecessor, EarlyText, also suggests that by integrating EpiLoc into the 

SherLoc system, we may  not only produce results as good as those reported here for 
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SherLoc, but may also be able to further improve on these results (the new integration 

will be examined in future work). 

 Even before integrating EpiLoc (rather than EarlyText) into the combined system, 

the results shown in Tables 6.1.1 – 6.1.3 clearly demonstrate that the integrated classifier, 

SherLoc, significantly outperforms earlier prediction systems.  The results demonstrate a 

significant improvement in the prediction of subcellular location through the integration 

of sequence- and text-based classifiers.  For each dataset, SherLoc’s performance is much 

better than that of either of its components, MultiLoc and EarlyText.   

 Our results clearly show the complementary nature of EarlyText and MultiLoc.  

The sequence-based method, MultiLoc, performs well on those proteins that rely on an 

N-terminal sequence for location prediction, such as proteins from the chloroplast and 

mitochondria. The text-based system, EarlyText, complements MultiLoc with its superior 

performance on proteins whose sequence localization signals are not as clear.  Such 

proteins include those located in the peroxisome, and proteins from the secretory pathway 

locations.  SherLoc’s performance is clearly good on the commonly used datasets. To 

examine its performance in experiments that do not involve cross-validation, we applied 

it to proteins that have only recently been assigned a subcellular location.  These proteins 

were represented, and their locations predicted, using text that precedes the determination 

of their location. 

6.2 Diff48 Results 

We ran the two systems, EpiLoc and SherLoc [47], on the new dataset Diff48.  We also 

ran SherLoc on the new dataset, Unknown.  As the locations of the approximately 19,000 

proteins in the Unknown set have not yet been experimentally determined, the predicted 
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locations are not reported here but can be found at:  

http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/sherloc_information.  In the 

section that follows, we focus on the results of running SherLoc and EpiLoc on the Diff48 

dataset. 

 As was shown in Table 4.2.1, the Diff48 dataset does not uniformly represent all 

subcellular locations.  Several locations are not represented at all within the dataset (go, 

pe, ly, pm), and a few have only 1-3 proteins each (ch, va, er).  The results from the 

locations with 1-3 proteins are not shown here, as the sample size is too small to merit 

analysis.  Instead, we concentrate on locations with a minimum of 20 proteins.  It is 

important to note that the results reported here are obtained on a very small dataset with a 

very different data distribution from that used in the 5-fold cross-validation study. 

Consequently, the results shown in Table 6.2.1 cannot be directly compared to those 

shown in Tables 6.1.1-6.1.3.  

The results from running both SherLoc and EpiLoc on the Diff48 set, presented in 

Table 6.2.1, are very promising.  Overall, SherLoc and EpiLoc predict the location of the 

proteins in Diff48 with an accuracy of approximately 0.71 and 0.66, respectively.  For 

  

  Diff48 Dataset 

Loc SherLoc EpiLoc 

  (Sens Spec) 
ex 0.79 0.99 0.87 0.97 
mi 0.95 0.75 0.67 0.64 
cy 0.79 0.59 0.59 0.56 
nu 0.56 0.85 0.47 0.74 
Acc 0.71 0.66 

 
Table 6.2.1:  Results from running SherLoc and EpiLoc on the Diff48 
dataset.  Results are only shown for locations that have more than 20 
associated proteins in the dataset. 
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both systems, the accuracy is lower than their respective accuracy on the cross-validation 

data. 

SherLoc performs very well on the extracellular and the mitochondrial proteins, 

but less well on the cytoplasmic and the nuclear proteins.  SherLoc’s specificity on 

extracellular proteins exceeds all previously reported predictive results, including its own, 

on cross-validation data.  The system’s sensitivity on extracellular proteins is only 

slightly lower than the same measure on cross-validation data.  For mitochondrial 

proteins, SherLoc’s performance compares favorably to its performance on cross-

validation data.  The classifier predicts the location of these proteins with a sensitivity 

that exceeds any sensitivity reported by a classifier that assigns proteins to more than four 

locations.  SherLoc’s specificity on mitochondrial proteins is slightly lower than its 

demonstrated specificity on cross-validation data, but still remains high. 

SherLoc’s sensitivity on cytoplasmic proteins is similar to its performance on 

cross-validation data, as is its specificity on nuclear proteins.  However, SherLoc’s 

specificity on cytoplasmic proteins, and its sensitivity on nuclear proteins, is considerably 

lower than that reported for cross-validation data.  The lower performance on the two 

measurements is caused by a well-known problem in distinguishing between proteins 

from the two locations.  The majority of misclassified nuclear proteins are classified as 

cytoplasmic, and vice versa. Specifically, 50 of the 54 misclassified nuclear proteins are 

classified as cytoplasmic, and 10 of the 19 misclassified cytoplasmic proteins are 

classified as nuclear.  If we were to view the cytoplasm and the nucleus as a single class, 

as TargetP does, the sensitivity and specificity of SherLoc for the location would rise to 
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above 0.90.  However, our goal for SherLoc is to predict as specific a location as possible 

for each protein, and therefore we do not consider such a combination. 

EpiLoc’s results, while not as good as those obtained on cross-validation data, are 

still quite promising.  The text-based system’s specificity and sensitivity on extracellular 

proteins are higher than those obtained on cross-validation data.  For the mitochondria, 

EpiLoc’s results are quite a bit lower than those for cross-validation data.  However, as 

the mitochondria has so few associated proteins, these results are unlikely to represent the 

performance for a larger set of proteins. EpiLoc’s performance on nuclear and 

cytoplasmic proteins shares a similar pattern with SherLoc; EpiLoc’s sensitivity for the 

cytoplasm and specificity for the nucleus are similar to its cross-validation results, while 

the system’s specificity for the former and sensitivity for the latter are quite a bit lower.  

EpiLoc, too, performs poorly when distinguishing between proteins from the two 

locations; 33 of the 59 misclassified cytoplasmic proteins are classified as nuclear, and 15 

of the 37 misclassified nuclear proteins are classified as cytoplasmic.  If, like TargetP, we 

were to consider the two locations as one, EpiLoc’s sensitivity and its specificity for the 

single location would rise to 0.76 and 0.93, respectively. 

 The results of running SherLoc on the Diff48 set indicate that we can expect 

SherLoc to perform well on proteins not included in the training set.  They further 

suggest that EpiLoc, too, should yield quite good results when used to predict a protein’s 

subcellular location.  Although some of the results of the two systems on Diff48 are not 

as good as those reported on cross-validation data (which is expected given the small 

dataset), these results still confirm that the systems can be applied successfully to data 

outside the cross-validation setting.  We expect the actual prediction performance to be 
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closer to the one obtained on the cross-validation data when the systems are applied to a 

larger set of proteins.  For EpiLoc, these results also show that by using text that predates 

a confirmed subcellular location, location can indeed be predicted.  

To allow SherLoc and EpiLoc to classify the proteins with which they were 

presented, textless proteins were excluded from the Diff48 dataset.  However, in order to 

act as a fully functional prediction system, the text-based component of both systems 

must be able to predict the location of textless proteins.  In the next section, we examine 

the effectiveness of using HomoLoc and PubLoc to represent textless proteins.  

6.3 HomoLoc, PubLoc, and DiaLoc Results 

In this section, we evaluate the possibility of using HomoLoc and PubLoc to handle 

textless proteins for the EpiLoc classifier, as described in Section 4.3.  Although we have 

yet to extensively test DiaLoc, we also provide an example of its usage. 

6.3.1 HomoLoc and PubLoc 

In order to select a method for handling textless proteins, we first apply HomoLoc and 

PubLoc to the 499 animal proteins and the 609 plant proteins10 in the MultiLoc dataset 

that are textless.  We present the results of predicting the location of these proteins, which 

are represented by each of the two methods, using an EpiLoc classifier trained on 

proteins in the MultiLoc dataset that do have associated text.  For comparison, we also 

show the results of assigning text to the proteins using the simpler versions of HomoLoc 

and PubLoc, denoted SimpHom and SimpPub, respectively.  SimpHom takes text only 

from the top homolog of a protein, instead of from the top three as is done in HomoLoc, 

                                                 
10 Results for fungal proteins are reported in Table B.3 in Appendix B. 
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and SimpPub takes text from the three most recent abstracts returned by a PubMed search 

for a protein, as opposed to taking the five most recent as is done in PubLoc.  Table 6.3.1 

displays the results for the four different methods.   

. 
MultiLoc Textless Proteins 

Loc HomoLoc SimpHom PubLoc SimpPub 

  Plant (Sens Spec MCC) 
va 0.64 0.09 0.20 0.50 0.07 0.14 0.54 0.18 0.29 0.39 0.14 0.20 
pe 0.46 1.00 0.67 0.36 0.73 0.50 0.52 0.65 0.57 0.62 0.65 0.62 
go 0.60 1.00 0.77 0.50 0.83 0.64 0.25 0.40 0.31 0.00 0.00 0.00 
er 0.66 0.92 0.77 0.63 0.71 0.65 0.61 0.48 0.51 0.55 0.45 0.46 
ch 0.88 0.80 0.80 0.83 0.79 0.77 0.29 0.78 0.42 0.30 0.73 0.41 
mi 0.84 0.97 0.89 0.63 0.89 0.72 0.59 0.64 0.57 0.56 0.69 0.58 
nu 0.75 0.93 0.79 0.76 0.81 0.71 0.70 0.92 0.76 0.68 0.85 0.70 
ex 0.68 0.52 0.58 0.59 0.37 0.44 0.50 0.23 0.30 0.46 0.20 0.26 
pm 0.74 0.98 0.84 0.66 0.90 0.75 0.59 0.78 0.64 0.56 0.71 0.59 
cy 0.62 0.77 0.63 0.51 0.77 0.56 0.70 0.47 0.43 0.64 0.45 0.38 

Acc 0.731 0.658 0.574 0.544 
Avg 0.686 0.597 0.529 0.475 

  Animal (Sens Spec MCC) 
ly 0.80 0.57 0.67 0.60 0.60 0.60 1.00 0.36 0.60 1.00 0.31 0.55 
pe 0.46 1.00 0.67 0.36 0.89 0.56 0.52 0.61 0.55 0.67 0.61 0.62 
go 0.90 0.11 0.29 0.80 0.10 0.25 0.38 0.38 0.36 0.25 0.50 0.35 
er 0.69 0.73 0.69 0.66 0.52 0.55 0.61 0.59 0.57 0.52 0.57 0.51 
mi 0.91 0.94 0.91 0.67 0.92 0.76 0.59 0.70 0.59 0.56 0.70 0.57 
nu 0.80 0.95 0.82 0.76 0.83 0.71 0.73 0.91 0.75 0.73 0.86 0.73 
ex 0.73 0.70 0.70 0.59 0.59 0.57 0.41 0.21 0.24 0.41 0.20 0.24 
pm 0.68 0.94 0.77 0.63 0.93 0.74 0.59 0.76 0.63 0.56 0.63 0.54 
cy 0.74 0.86 0.74 0.71 0.81 0.69 0.70 0.60 0.51 0.63 0.58 0.46 

Acc 0.762 0.685 0.644 0.618 
Avg 0.745 0.643 0.614 0.592 

 
Table 6.3.1:  Prediction performance of HomoLoc, SimpHom, PubLoc, and SimpPub on the 
textless proteins of the MultiLoc dataset (499 animal proteins and 609 plant proteins).  Both 
location-specific (Sens, Spec, MCC) and overall results (Acc and Avg) are shown.  Highest values 
appear in bold.   

 
 

The results shown in Tables 6.3.1 clearly indicate that HomoLoc produces the 

best results among the four methods.  Its accuracy and average sensitivity greatly exceed 
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those produced by SimpHom, PubLoc, and SimpPub.  Moreover, HomoLoc generates the 

highest scores for 47 out of the 57 location-specific plant and animal scores. 

PubLoc does not perform as well as HomoLoc for associating text with textless 

proteins.  We note that the current version of PubLoc uses a simple criterion to select 

abstracts to be associated with a protein – the five abstracts most recently entered into 

PubMed that are returned by a search for the protein’s name and its corresponding gene’s 

name separated by the “OR” Boolean operator.  A more complex method of scoring 

returned abstracts might improve PubLoc’s performance.  One approach might be to rank 

the returned abstracts according to the number of times each of the two names occurs in 

an abstract.  While the current version of PubLoc does improve on SimpPub, the results 

of classifying proteins using PubLoc are not good enough to justify using it instead of 

HomoLoc to handle textless proteins.  For the EpiLoc system, PubLoc would only be 

used if no suitable homologs with associated text could be found for a protein. 

HomoLoc is the best performing method, among the methods we have tried, on 

the MultiLoc textless proteins.  Therefore, we select it as our preferred method for 

handling textless proteins, and compare its performance to that of EpiLoc.  To do so, we 

use HomoLoc to classify the same set of proteins from the MultiLoc dataset as classified 

by EpiLoc; that is, proteins that do have associated text in their Swiss-Prot entry.  To 

apply HomoLoc to these proteins, we ignore the text in a protein’s Swiss-Prot entry, and 

instead use the text associated with the protein’s homologs.  The results of classifying 

these proteins, after using both HomoLoc and EpiLoc to associate text with them, are 

shown in Table 6.3.2. 
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HomoLoc’s performance on the MultiLoc dataset is very similar to that of 

EpiLoc.  The accuracy of HomoLoc is slightly higher than that of EpiLoc for both plant 

and animal proteins.  The systems’ average sensitivities are identical on plant proteins, 

and nearly the same on animal proteins.  Moreover, for six of the locations (va, mi, nu, 

ex, pm, cy), the location-specific scores of EpiLoc and of HomoLoc all differ by less than 

0.05.  As for the other five locations (pe, ly, ch, er, go), no location-specific measure 

differs by more than 0.11 between EpiLoc and HomoLoc, and several of the measures 

 

 

MultiLoc Dataset 

Loc HomoLoc EpiLoc 
 Plant (Sens Spec MCC) 

va 0.77 0.27 0.45 0.73 0.29 0.45
pe 0.77 0.68 0.72 0.88 0.74 0.80
go 0.87 0.64 0.74 0.85 0.55 0.67
er 0.79 0.71 0.74 0.72 0.64 0.67
ch 0.81 0.79 0.79 0.89 0.75 0.81
mi 0.78 0.83 0.79 0.82 0.81 0.80
nu 0.86 0.82 0.82 0.82 0.81 0.79
ex 0.85 0.81 0.80 0.84 0.82 0.80
pm 0.89 0.91 0.87 0.85 0.91 0.85
cy 0.66 0.79 0.65 0.64 0.78 0.63

Acc 0.803 (± 0.005) 0.790 (± 0.002) 
Avg 0.805 (± 0.005) 0.805 (± 0.005) 

 Animal (Sens Spec MCC) 
ly 0.84 0.49 0.63 0.86 0.39 0.57
pe 0.80 0.69 0.74 0.90 0.77 0.82
go 0.90 0.72 0.80 0.88 0.62 0.73
er 0.77 0.67 0.71 0.74 0.59 0.65
mi 0.79 0.84 0.80 0.82 0.82 0.80
nu 0.87 0.84 0.83 0.84 0.81 0.80
ex 0.83 0.83 0.79 0.80 0.82 0.77
pm 0.89 0.91 0.87 0.85 0.90 0.84
cy 0.72 0.80 0.67 0.68 0.79 0.65

Acc 0.812 (± 0.010) 0.792 (±0.008) 
Avg 0.822 (± 0.005) 0.818 (±0.005) 

 
Table 6.3.2:  Prediction performance of HomoLoc and EpiLoc on the MultiLoc 
dataset.  Both location-specific (Sens, Spec, MCC) and overall results (Acc and Avg) 
are shown.  Standard deviations (denoted ±) are provided for Acc and Avg. 
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differ by less than 0.05. 

Overall, HomoLoc’s performance is, in fact, slightly better than EpiLoc’s.  

HomoLoc’s improved performance is likely to be a result of the large amount of text that 

the method associates with each protein.  HomoLoc utilizes the abstracts associated with 

a protein’s three most similar homologs, whereas EpiLoc uses only the abstracts 

associated with the protein itself.  Having more abstracts, originating from the three close 

homologs of the protein, provides a larger sample of representative terms for the protein 

than the single set of abstracts referenced by the protein’s single Swiss-Prot entry.  

As stated in Section 4.1, our evaluation of EpiLoc does not include the textless 

proteins from each of the TargetP, PLOC, and MultiLoc datasets.  Consequently, when 

applied to the three datasets, EpiLoc predicts the location of 91.4%, 85.8%, and 89.7% of 

the proteins, respectively. We note that if we apply HomoLoc (as described in Section 

3.5.1) to assign text to the textless proteins, EpiLoc predicts the location of 100% of the 

proteins, while maintaining its high accuracy (for example, an overall accuracy of 0.81 on 

the MultiLoc dataset).  

Based on the above results, we believe that HomoLoc is an effective method for 

handling textless proteins.  The results indicate that using HomoLoc will lead to 

subcellular location predictions that are likely to be as reliable as those made when using 

the primary method of EpiLoc to associate text with proteins.  In fact, given that for the 

testing of HomoLoc we excluded text directly associated with a test protein when 

representing it, HomoLoc may be even more effective than reported here.  Therefore, 

HomoLoc may even warrant consideration as the primary method for associating text 

with all proteins. 



CHAPTER 6.  RESULTS  101 

 

Together, PubLoc and HomoLoc can support text-based representation for most 

proteins.  HomoLoc is the preferred method to be used to associate text with a textless 

protein, while PubLoc should only be used if no suitable homologs with associated text 

exist.  In situations that do not involve the large-scale annotation of proteins, DiaLoc may 

be used to obtain text for a textless protein.  

6.3.2 DiaLoc Example 

A proper evaluation of DiaLoc requires a study over a prolonged period of time, in which 

researchers will use the web-interface to enter text and evaluate the results.  Thus we 

have not yet quantitatively tested the performance of DiaLoc for assigning text to textless 

proteins.  Here we only demonstrate DiaLoc by example, and do not formally evaluate it.   

For our example we use DiaLoc to predict the location of the protein histone H1, 

a nuclear protein involved in the structure of DNA.  For the “expert” text describing the 

protein, we use the description of the protein found at the Wikipedia website [53].  Such a 

Wikipedia entry has the high-level description we expect to obtain from an expert who 

has some knowledge about the protein, but is still searching for more details.  From the 

Wikipedia [53] website11, we obtain the following text to describe the protein: 

Histone H1 is one of the 5 main histone proteins involved in the 
structure of chromatin in eukaryotic cells. A variant of the histone H1 
protein is the histone H5, which has a similar structure and function. 
Featuring a central globular domain and long C and N terminal tails H1 
is involved with the packing of the 'beads on a string' structure into the 
'30nm solenoid' structure. H1 is present in half the amount of the other 
four histones. This is because unlike the other histones, H1 does not 
make up the nucleosome 'bead'. Instead, it sits on top of the structure, 
keeping in place the DNA that has wrapped around the nucleosome. 
Specifically, the H1 protein binds to the linker DNA (approximately 50-
60 nucleotides in length) region between the histone beads, helping 
stabilize the zig-zagged 30nm chromatin fiber. 

                                                 
11 Downloaded December 18, 2006 from:  http://en.wikipedia.org/wiki/Histone_H1. 

http://en.wikipedia.org/wiki/Histone
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Chromatin
http://en.wikipedia.org/wiki/Nucleosome
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We remove from this text any word whose first five letters are nucle.  This removal 

ensures that these words, which may be viewed as indicators of a nuclear protein, are not 

included in the protein’s text vector (note that terms such as “nucleotide” are thus also 

removed).  We then enter the text in the DiaLoc web-interface, and select Animal as our 

source of the protein, as shown in Figure 6.3.1. 

 

 
 
Figure 6.3.1:  The first page of the DiaLoc web-interface.  The text from the Wikipedia website 
pertaining to the histone H1 protein has been entered, and any words with the first five letters nucle 
have been removed. 

 
 

Upon pressing the predict button, the DiaLoc web server presents the page shown 

in Figure 6.3.2.  As the figure shows, DiaLoc correctly predicts the location of the protein 
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as the nucleus with a probability of 0.5661; this is a strong prediction, as there are nine 

different locations the probability distribution is divided amongst.  This example 

demonstrates that the DiaLoc web server is a functional program and can be used to 

predict a protein’s subcellular location. 

 

 

Figure 6.3.2:  The prediction page of the DiaLoc web-interface.  DiaLoc assigns Histone H1 
to the nucleus with a probability of 0.5661. 

 
 

By using the three modules HomoLoc, PubLoc, and DiaLoc, to handle textless 

proteins for the EpiLoc system, we create a text-based prediction system that not only 

produces accurate results, but can also provide a subcellular location prediction for 

almost any protein.  Based on the results presented in this thesis, we believe that the 

predictions of subcellular location for newly discovered proteins made by EpiLoc will be 
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quite reliable.  These predictions should be able to serve as a guide for researchers, in 

order to speed up and improve the research of other protein properties. 
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Chapter 7 

 

Conclusion and Future Work 

We introduced in this thesis a new text-based system, EpiLoc, for predicting protein 

subcellular location.  We also described, SherLoc [19, 47], an integration of an early 

version of the EpiLoc system with the previously developed sequence-based classifier, 

MultiLoc [20].  Both EpiLoc and SherLoc have been compared to other state-of-the-art 

classifiers using their respective datasets.   Moreover, we have reported the results of 

applying both of these classifiers to the newly formed dataset, Diff48, to test their 

effectiveness outside of the cross-validation setting.  For the EpiLoc classifier we have 

also developed three alternative approaches for assigning text to textless proteins.  For 

two of these methods, PubLoc and HomoLoc, we have performed experiments measuring 

their reliability when applied to textless proteins.  For the third method, DiaLoc, we have 

demonstrated its utility through an example.    
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 7.1 Summary of Contributions 

The work presented in this thesis demonstrates the following contributions to the 

prediction of protein subcellular location: 

1. We have produced a text-based system that predicts subcellular location as 

effectively as, and often better than, other state-of-the-art systems.  Moreover, we 

have demonstrated that EpiLoc may be effectively applied to proteins not 

included in cross-validation studies.  Furthermore, HomoLoc has been shown to 

be as effective as the primary method of EpiLoc for assigning text to proteins.  By 

using HomoLoc, PubLoc and DiaLoc, our system can associate text with 

practically any protein, and predict its location.     

2.  In collaboration with the group that developed the MultiLoc classifier [20, 19, 

47], we have demonstrated that SherLoc significantly outperforms all previous 

state-of-the-art prediction systems.  SherLoc was compared with the MultiLoc, 

PLOC [38], and TargetP [15] systems using their own datasets, and produced the 

best results.  Additionally, the performance of SherLoc was validated by its 

application to the set of proteins with newly assigned locations, Diff48.  Overall, 

SherLoc demonstrated unprecedented performance for predicting a protein’s 

subcellular location. 

3. We have demonstrated that a text-based system can be used to improve the 

performance of a sequence-based system.  SherLoc showed a statistically 

significant improvement in performance over each of its components.  Our results 

demonstrate, for the first time, that an integrated text- and sequence-based 
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approach to a biological problem can achieve a quantitative and significant 

improvement over a system that uses biological data alone. 

 

7.2 Future Work 

There are several natural extensions to this work.  The first is the integration of the 

current version of EpiLoc into the SherLoc system.  As was discussed in Section 6.1, 

EpiLoc outperforms its predecessor, EarlyText.  Incorporating EpiLoc into SherLoc has 

the potential to further improve upon SherLoc’s performance. 

 SherLoc’s performance, with or without the integration of EpiLoc, should be 

validated further.  We have predicted the location for the Unknown set of proteins, which 

currently have no assigned location.  Experimentally determining the location of these 

proteins should be used to validate their predicted location.  This could provide further 

evidence concerning the reliability and usability of the SherLoc system.  In the interim, 

the current predictions can serve as clues for researchers interested in discovering a 

protein’s functional characteristics. 

 Experiments should also be performed to determine the effectiveness of DiaLoc.  

This will require the involvement of a biologist who is working with a set of proteins of 

unknown location.  The biologist will need to enter information concerning each protein 

into DiaLoc, and then determine if the predicted location is correct.  This should be done 

on proteins of unknown location, so that no bias towards a certain location appears in the 

biologist’s description of each protein. 

 A further extension to this work is the expansion of EpiLoc and SherLoc to 

predict the intraorganelle location of a protein.  Several locations within the cell can be 
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divided into subcompartments.  For instance, the mitochondria consists of an inner and an 

outer membrane, the area that the inner membrane surrounds (the matrix), and the cristae 

(folds within the inner membrane).  Expanding the system to offer more precise location 

predictions would provide users with further insight regarding the protein’s function. 

 The good performance of both EpiLoc and SherLoc has already been 

demonstrated.  Undertaking further experimentation, as described above, is expected to 

improve and validate the systems as useful prediction tools. 
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Glossary 

EarlyText   Early version of the EpiLoc predictor that is integrated with MultiLoc to 
form the SherLoc classifier. Presented in this thesis. 

 
EpiLoc Text-based predictor of subcellular location presented in this thesis. 
 
DiaLoc Method for handling textless proteins; text about a textless protein is obtained 

from the scientist researching it. Presented in this thesis. 
 
HomoLoc   Method for handling textless proteins.  Associates with a textless protein the 

abstracts of its three closest homologs. Presented in this thesis. 
  
MultiLoc Sequence-based predictor of subcellular location that uses amino acid 

composition data, N-terminal sequence data, and sequence motif data to 
represent proteins [20]. 

 
PLOC Sequence-based predictor of subcellular location that uses amino acid 

composition data to represent proteins [38]. 
 
PubLoc Method for handling textless proteins; uses a PubMed search to retrieve five 

abstracts to be associated with a textless protein. Presented in this thesis. 
 
SherLoc Integrated text- and sequence based predictor of subcellular location.  

SherLoc integrates the MultiLoc classifier with the EarlyText classifier [19, 
47]. Presented in this thesis and in co-authored earlier publications. 

 
SimpHom   Simple version of HomoLoc, associates with a textless protein the abstracts 

of its single closest homolog, as opposed to its three closest homologs. 
Presented in this thesis. 

 
SimpPub Simple version of PubLoc, retrieves three abstracts to be associated with a 

textless protein as opposed to five abstracts. Presented in this thesis. 
 
TargetP  Sequence-based predictor of subcellular location that uses N-terminal 

sequence data to represent proteins [15]. 
 
Textless protein   A protein for which a term-vector cannot be made when using the 

primary method of EpiLoc. 
 
 Z-Test method   Feature selection method that uses the Z-test [51] to determine if the 

probability of a term being associated with one location is statistically 
significantly different from the probability of the term being associated with 
any other location. 
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Appendix A 

 
Stop Word List 
 

a be ec hers make only since through whereupon 

about became ed herself many onto so throughout wherever 

above because effected him may or some thru whether 

across become eg himself me other somehow thus which 

after becomes either his meanwhile others someone to while 

afterwards becoming else how mg otherwise something together whither 

again been elsewhere however might our sometime too who 

against before enough hr ml ours sometimes toward whoever 

al beforehand et ie mm ourselves somewhere towards whom 

all being etc if mo out still try whose 

almost below ever ii more over studied type why 

alone beside every iii moreover own sub ug will 

along besides everyone in most oz such under with 

already between everything inc mostly per take unless within 

also beyond everywhere incl mr perhaps tell until without 

although both except indeed much pm th up wk 

always but find into must precede than upon would 

am by for investigate my presently that us wt 

among came found is myself previously the used yet 

amongst cannot from it namely pt their using you 

an cc further its neither rather them various your 

analyze cm get itself never regarding themselves very yours 

and come give j nevertheless relate then via yourself 

another compare go jour next said thence was yourselves 

any could gov journal no same there we yr 

anyhow de had just nobody seem thereafter were  

anyone dealing has kg noone seemed thereby what  

anything department have last nor seeming therefore whatever  

anywhere depend he latter not seems therein when  

applicable did hence latterly nothing seriously thereupon whence  

apply discover her lb now several these whenever  

are dl here ld nowhere she they where  

around do hereafter letter of should this whereafter  

as does hereby like off show thorough whereas  

assume during herein ltd often showed those whereby  

at each hereupon made on shown though wherein  
 

Table A.1:  The set of stop words removed during text processing. 
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Appendix B 
 
Fungal Protein Results 

MultiLoc Dataset 

Loc MultiLoc EpiLoc EarlyText SherLoc 
 Fungal (Sens Spec MCC) 

va 0.76 0.24 0.42 0.75 0.25 0.42 0.66 0.13 0.27 0.78 0.26 0.44 
pe 0.68 0.30 0.43 0.87 0.77 0.81 0.90 0.69 0.78 0.88 0.73 0.79 
go 0.71 0.53 0.60 0.86 0.58 0.70 0.81 0.41 0.56 0.87 0.57 0.70 
er 0.71 0.59 0.63 0.72 0.60 0.65 0.72 0.55 0.61 0.80 0.69 0.74 
mi 0.88 0.82 0.83 0.83 0.82 0.80 0.81 0.80 0.79 0.95 0.90 0.92 
nu 0.81 0.74 0.73 0.83 0.79 0.78 0.81 0.72 0.72 0.90 0.82 0.84 
ex 0.73 0.81 0.73 0.85 0.82 0.80 0.76 0.78 0.72 0.82 0.88 0.82 
pm 0.76 0.89 0.78 0.86 0.91 0.85 0.80 0.91 0.81 0.84 0.96 0.87 
cy 0.68 0.85 0.69 0.66 0.79 0.63 0.54 0.75 0.54 0.82 0.92 0.82 

Acc 0.749 (± 0.007) 0.790 (±0.007)  0.738 (±0.016) 0.849 (± 0.008) 
Avg 0.747 (± 0.01) 0.802 (±0.005) 0.750 (±0.014) 0.850 (± 0.014) 

 

Table B.1:  Prediction performance of MultiLoc, EpiLoc, EarlyText, and SherLoc on the fungal 
proteins of the MultiLoc dataset.  Both location-specific (Sens, Spec, MCC) and overall results (Acc 
and Avg) are shown.  Highest values appear in bold.  Standard deviations (denoted ±) are provided 
for Acc and Avg where available. 

 
 

PLOC Dataset 
Loc PLOC EpiLoc MultiLoc EarlyText SherLoc 

 Sens Fungal (Sens Spec MCC) 
go 0.15 0.78 0.35 0.52 0.53 0.07 0.18 0.88 0.41 0.60 0.81 0.24 0.44
cs 0.59 0.83 0.29 0.48 0.75 0.29 0.46 0.86 0.25 0.46 0.83 0.23 0.43
va 0.25 0.78 0.18 0.37 0.69 0.19 0.35 0.67 0.10 0.25 0.83 0.28 0.48
er 0.47 0.74 0.25 0.41 0.78 0.72 0.74 0.71 0.25 0.41 0.86 0.71 0.78
pe 0.25 0.85 0.51 0.65 0.74 0.30 0.46 0.77 0.51 0.62 0.80 0.63 0.70
mi 0.57 0.77 0.82 0.77 0.69 0.72 0.67 0.76 0.86 0.79 0.85 0.86 0.84
ex 0.78 0.68 0.58 0.57 0.83 0.88 0.83 0.66 0.57 0.55 0.86 0.91 0.87
cy 0.72 0.36 0.59 0.36 0.64 0.74 0.63 0.43 0.55 0.39 0.78 0.80 0.75
pm 0.92 0.77 0.80 0.74 0.83 0.97 0.87 0.71 0.83 0.71 0.88 0.98 0.91
nu 0.90 0.79 0.87 0.76 0.78 0.87 0.76 0.78 0.90 0.77 0.88 0.94 0.87

Acc 0.795 (± 0.009) 0.687 (±0.011) 0.758 (±0.008) 0.678 (±0.005) 0.854 (± 0.008) 
Avg 0.568 (± 0.019) 0.735 (±0.013) 0.725 (±0.025) 0.724 (±0.016) 0.838 (± 0.028) 

 

Table B.2:  Prediction performance of PLOC, EpiLoc, MultiLoc, EarlyText, and SherLoc on the fungal 
proteins of PLOC dataset.  Overall results (Acc and Avg) are shown for all systems.  For location-specific 
results, only sensitivity is presented for PLOC, while for all other systems sensitivity, specificity, and MCC 
are each displayed.  As presented in its corresponding publication, PLOC’s location-specific results are 
averaged over all three organisms (animal, plant, fungal).  Highest values appear in bold.  Standard 
deviations (denoted ±) are provided for Acc and Avg where available. 
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MultiLoc Textless Proteins 

Loc HomoLoc SimpHom PubLoc SimpPub 

  Fungal (Sens Spec Mcc) 
va 0.71 0.09 0.20 0.57 0.07 0.15 0.46 0.33 0.37 0.39 0.29 0.32 
pe 0.41 0.90 0.60 0.41 0.69 0.52 0.52 0.73 0.61 0.48 0.63 0.53 
go 0.70 0.78 0.73 0.50 0.50 0.49 0.38 0.50 0.43 0.00 0.00 0.00 
er 0.63 0.92 0.75 0.57 0.77 0.64 0.58 0.53 0.52 0.55 0.56 0.52 
mi 0.82 0.98 0.88 0.63 0.93 0.74 0.68 0.75 0.67 0.59 0.75 0.62 
nu 0.76 0.94 0.79 0.72 0.79 0.66 0.65 0.89 0.69 0.68 0.76 0.63 
ex 0.68 0.50 0.56 0.59 0.48 0.51 0.46 0.26 0.30 0.36 0.18 0.20 
pm 0.71 0.96 0.80 0.63 0.85 0.70 0.66 0.84 0.71 0.61 0.74 0.62 
cy 0.65 0.83 0.67 0.59 0.78 0.59 0.71 0.55 0.47 0.60 0.51 0.38 

Acc 0.707 0.628 0.640 0.582 
Avg 0.675 0.579 0.565 0.472 

 

Table B.3:  Prediction performance of HomoLoc, SimpHom, PubLoc, and SimpPub on the 
textless fungal proteins of the MultiLoc dataset.  Both location-specific (Sens, Spec, MCC) 
and overall results (Acc and Avg) are shown.  Highest values appear in bold.   

 


