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Abstract

Identifying single nucleotide polymorphisms (SNPs) that are involved in common and com-

plex diseases, such as cancer, is a major challenge in current molecular epidemiology.

Knowledge of such SNPs is expected to enable timely diagnosis, effective treatment, and,

ultimately, prevention of human disease. However, the tremendous number of SNPs on the

human genome, which is estimated at more than eleven million, poses challenges to obtain

and analyze the information of all the SNPs.

In this thesis we address the problem of selecting representative SNP markers for sup-

porting effective disease-gene association studies. Our goal is to facilitate the genotyping

and analysis procedure, associated with such studies, by providing effective prioritization

methods for SNP markers based on both their allele information and functional signifi-

cance. However, the problem of SNP selection has been proven to be NP-hard in general,

and current selection methods impose certain restrictions and use heuristics for reducing the

complexity of the problem. We thus aim to develop new heuristic algorithms and systems

to advance the state-of-the-art, while relaxing the restrictions. To address this challenge,

we formulate several SNP selection problems and present novel algorithms and a database

system based on the two major SNP selection approaches: tag SNP selection and functional

SNP selection. Furthermore, we describe an innovative approach to combine both tag SNP

selection and functional SNP selection into one unified selection process. We demonstrate
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the improved performance of all the proposed methods using comparative studies.
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Chapter 1

Introduction

Identifying genetic variations that underlie the etiology of common and complex diseases is

of primary interest in current molecular epidemiology, medicine, and pharmarcogenomics.

Nevertheless, our understanding of the genetic etiology of human disease is still limited

due to the enormous number of genetic variations on the human genome, as well as the

complex interplay of multiple genes and environmental factors underlying disease.

In this dissertation we address the challenge of selecting representative genetic variation

markers, called SNPs, for supporting disease-gene association studies. Our goal is to facil-

itate the genotyping and analysis procedure associated with such studies, through prioritiz-

ing SNP markers based on their allele information and functional significance. However,

the problem of SNP selection has been proven NP-hard in the general case, and current se-

lection methods impose certain restrictions and use heuristics for reducing the complexity

of the problem. We thus aim to develop new systems and heuristic algorithms that ad-

vance the-state-of-the-art. To address this challenge, we formulate several SNP selection

problems, present novel algorithms to address the problems, and demonstrate the improved

performance of the algorithms using comparative studies. In this chapter, we begin with a

1



CHAPTER 1. INTRODUCTION 2

brief overview of the dissertation work.

1.1 Representative SNP Selection

Understanding the genomic differences in the human population is one of the primary

challenges of current genomics research [100, 191, 60, 49]. The human genome can be

viewed as a sequence of 3.3 billion letters over the nucleotide-alphabet {A,C, G, T}; this

sheer amount of data requires massive computational analysis for deciphering the genetic

blueprint for human life. In more than 99 percent of the positions on the genome, the

same nucleotide is shared across the population. However, people possess a unique genetic

composition in about one percent of their genome. Those genetic variations include differ-

ent nucleotide occurrences, called single nucleotide polymorphisms (SNPs - pronounced

‘snips’), deletion/insertion of one or more nucleotides, or variations in the number of mul-

tiple nucleotide repetitions. Thus, differences in human traits, as obvious as physical ap-

pearance or as subtle as susceptibility to disease, may originate from these variations in the

human DNA.

In particular, much current interest is focused on the search for genetic variations that

can affect an individual’s susceptibility to common and complex diseases and response to

medical treatment [122, 148, 93, 25, 180, 45, 51, 165]. Simple Mendelian diseases (such

as Huntington disease or Sickle Cell Anemia) are caused by an abnormal alteration of a

single gene. However, most current common diseases (such as cancer, heart disease and

many others) are known to be affected by a combination of multiple mutated genes, along

with certain environmental factors. Thus, these conditions are often referred to as complex

diseases. To identify the relations among mutations in multiple genes, at a statistically sig-

nificant level, it is necessary to obtain genetic information from a large population [20].
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Thus, instead of family-based studies, which have been successfully used for studying sim-

ple Mendelian diseases, large-scale population-based association studies are typically used

for identifying the genetic variations underlying common and complex human diseases.

Such association studies typically involve single nucleotide polymorphisms (SNPs),

as they are the most common form of genetic variations. The number of SNPs on the

human genome is estimated at more than eleven million1 [167], and, as such, SNPs can

represent an individual’s genetic variability at the finest level of detail [166]. However, the

tremendous number of SNPs makes it neither practical nor feasible to obtain and analyze

the information of all the SNPs on the human genome. Thus, selecting a subset of SNPs that

is sufficiently informative to conduct association studies but still small enough to reduce

the experimental and analysis overhead, to which we refer as representative SNP selection,

has become an important step toward effective disease-gene association studies.

1.2 Thesis Statement

The primary goal of this research is to develop new SNP selection methods that improve

upon currently available ones, and as such, to advance the state-of-the-art in the area. In

particular, this dissertation introduces the following methods, all of which have shown

improved performance over existing state-of-the-art methods through comparative studies:

1. A new tag SNP selection method based on Bayesian networks [107],

2. A new scoring scheme for prioritizing SNPs based on their potential deleterious func-

tional effects [109, 110, 111],
1As of May 2009, dbSNP build 130 [167] provides information about 17,804,034 SNPs including dele-

tions/insertions. Among the SNPs, 6,573,584 SNPs have been validated, while 7,344,853 SNPs occur within
gene regions.
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3. The first multi-objective optimization framework that combines tag SNP selection

and functional SNP selection into one unified selection process [108], and

4. An additional multi-objective optimization framework based on the Pareto optimality

for selecting functionally informative tag SNPs [106].

Methods 1 and 2 are based on two major SNP selection approaches called tag SNP selection

and functional SNP selection, respectively. Methods 3 and 4 are proposed to support both

tag SNP selection and functional SNP selection within one unified selection framework. In

the following sections, we briefly introduce the key ideas of each selection method.

1.2.1 Tag SNP Selection using Bayesian Networks

Our first SNP selection method [107] is based on the tag SNP selection approach, which

is motivated by the non-random association among SNPs, called linkage disequilibrium

(LD) [21, 137, 38, 58, 163, 85]. When high LD exists between SNPs, the nucleotide

information of one can usually be inferred from that of the others. Thus, we can select

a relatively small subset of SNPs that still retains most of the nucleotide information of

the original set. The selected SNPs are called tag SNPs, while the remaining, unselected

SNPs are called tagged SNPs. Under the tag SNP selection approach, possible association

between a disease phenotype and the unselected tagged SNPs is assumed to be indirectly

captured through the selected tag SNPs.

In recent years, numerous methods have been proposed for tag SNP selection, and

we introduce the state-of-the-art in Section 3.1. The utility of current tag SNP selection

methods has been empirically demonstrated by simulation studies [62, 90, 91, 193, 17] or

by association studies for many human diseases [152, 120, 13, 51, 80]. However, several

pitfalls still exist in current tag SNP selection methods. For instance, the performance
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of current tag SNP selection methods is limited by certain restrictions such as the small-

bounded location [7] or the fixed number of predictive tag SNPs [21, 67, 112]. Moreover,

most methods can only be applied to bi-allelic2 SNPs or require an additional imputation-

procedure as pre-processing.

We aim to address these limitations and to improve the performance of currently avail-

able predictive tag SNP selection methods. That is, our method is neither limited to bi-

allelic SNPs, nor requires an additional imputation-procedure. Moreover, we allow the

number or the location of predictive tag SNPs to vary for each tagged SNP, which im-

proves prediction performance over that of state-of-the-art predictive methods. To reduce

the complexity of the SNP selection problem while accommodating these variabilities, both

the dependence and the conditional independence relationships between SNPs are exploited

using the framework of Bayesian networks. A comparative study based on multiple SNP

datasets demonstrates the improved predictive power of the new method over existing state-

of-the-art methods [107].

1.2.2 Functional SNP Selection using an Integrative Scoring System

Our second SNP selection method [109, 110, 111] is based on the functional SNP selection

approach, which aims to directly select a subset of SNPs that are likely to have deleterious

functional effects, and as such, more likely to be involved in disease [162, 16, 56, 87, 104,

109]. For example, SNPs occurring in exonic regions may radically change the amino acid

composition of a translated protein. As such, they are highly likely to cause functional

distortions of that protein, and are therefore more likely to underlie disease [132]. An-

other example is SNPs occurring in regulatory regions, such as transcription factor binding

2“Bi-allelic” means that people possess only one of two different nucleotides among {a, g, c, t} at a posi-
tion in which a SNP occurs. We provide basic genetic concepts in Chapter 2.
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sites. The SNPs can alter the binding affinity of transcription factors, and as such, can

deleteriously affect gene expression, tissue specificity, and cellular activity of the regulated

protein [26]. The key step in functional SNP selection is therefore to effectively assess

the putative deleterious effects of SNPs, so that SNPs can be prioritized according to their

functional significance.

Indeed, a variety of web services and public databases have been introduced to prioritize

SNPs by their putative deleterious effects on major bio-molecular functions. (we provide

a literature review in Section 3.2.) Yet, such tools and systems still suffer from several

limitations. For example, many of them focus on only a single biological function, such as

either protein coding or splicing regulation (but not both). As a result, researchers need to

spend much time and effort to separately apply multiple tools, and interpret/integrate their

often conflicting predictions. Moreover, most tools only classify SNPs into qualitative

subgroups (such as either ‘deleterious’ or ‘neutral’), but do not quantify the functional

significance of SNPs. As such, it is not straightforward to select a specific number of the

most functionally significant SNPs without additional ranking information.

In this thesis, we propose a new integrative scoring system for assessing the putative

deleterious functional effects of SNPs. The system combines the assessment results from

multiple independent computational tools, while taking into account the certainty of each

prediction as well as the reliability of different tools. The main contributions of this work

include:

1. presenting a new integrative scoring approach for quantifying the functional signifi-

cance of SNPs within a probabilistic framework;

2. demonstrating the utility of this new approach based on known disease-related SNPs [110];
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3. showing improved performance with respect to state-of-the-art methods for func-

tional SNP prioritization [111]; and

4. developing a new public web-based database service, F-SNP, that provides the as-

sessed functional information [109].

1.2.3 Combining Tag SNP Selection and Functional SNP Selection

Finally, we propose two multi-objective optimization algorithms for combining both tag

SNP selection and functional SNP selection into one unified selection process [108, 106].

As of yet, the identification of predictive tag SNPs and of functionally significant SNPs

have been considered as two distinct problems. Consequently, current systems that support

both tag SNP selection and functional SNP selection [184, 73, 30] address each selection

problem independently; that is, they separately perform tag SNP selection and function-

based SNP selection, and combine the two selected sets as a last step.

We hypothesize that simultaneously identifying SNPs that are both informative and

carry a deleterious functional effect is possible by taking a multi-objective optimization

approach. We also hypothesize that the new approach improves upon the separate op-

timization approach (currently employed by other systems), in terms of both tagging-

informativeness and functional significance of the selected SNP set. The main contribu-

tions of this part of the work include:

1. formulating the SNP selection problem as a multi-objective optimization problem;

2. introducing two new heuristic algorithms to address the problem; and

3. demonstrating their improved performance with respect to existing systems through

comparative studies.
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In conclusion, we expect the new methods, introduced throughout the thesis, to pro-

vide advanced SNP selection framework for facilitating disease-gene association studies,

in terms of improved tagged SNP prediction accuracy, enhanced way of quantifying the

biological significance of SNPs, and finally, integration of two major SNP selection criteria

into one unified selection process. The ultimate application of this research is the support

of timely diagnosis, personalized treatments, and targeted drug design, through facilitating

reliable identification of SNPs that are involved in the etiology of common and complex

diseases.

1.3 Thesis Organization

This chapter has introduced the representative SNP selection problem, and has outlined

the goal and major contributions of this dissertation. The rest of the thesis is organized

as follows: Chapter 2 provides biological background relevant to genetic variation studies.

Chapter 3 provides an overview of major SNP selection approaches, and summarizes re-

lated work based on each selection approach. The following five chapters present our SNP

selection systems and algorithms, developed throughout the dissertation work. Specifically,

Chapter 4 describes a new tag SNP selection method using Bayesian networks. Chapter 5

introduces a web-based public database service for providing functional information about

SNPs and its classification system for supporting functional SNP selection. Chapter 6

presents an integrative scoring system for quantitatively assessing the deleterious functional

effects of SNPs. Chapter 7 describes our first multi-objective SNP selection algorithm that

combines tag SNP selection and functional SNP selection into one unified selection pro-

cess, using a weighted sum of a single objective function, while Chapter 8 presents our

second multi-objective SNP selection system based on the game-theoretic notion of Pareto
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optimality. Finally, Chapter 9 concludes the dissertation work and outlines possible direc-

tions for future research.



Chapter 2

Biological Background for Genetic

Variation Studies

This chapter introduces biological background concerning genetic variation studies. In

particular, we focus on defining basic concepts in molecular epidemiology and genetics

that are relevant to the problem of SNP selection. Genetics and molecular epidemiology

investigate the potential contribution of genetic and environmental risk factors affecting the

etiology of disease [139]. Thus, they provide the basis for common and complex disease-

gene association studies and for the selection of SNP markers for these studies [201].

2.1 SNPs, Haplotypes, Genotypes, and Phenotypes

As presented in Chapter 1, there are several types of genetic variations on the human

genome. In this thesis work, we focus on single nucleotide polymorphisms (SNPs), which

are the substitutions of single nucleotides at a specific position on the genome, observed in

at least 1% of the human population. The nucleotide at a position in which a SNP occurs is

10
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called an allele. The allele with the dominant occurrence within a population is called the

major allele, while those occurring less frequently are called the minor alleles. For exam-

ple, if 80 percent of a population has the nucleotide A at a certain position on the genome

while 20 percent of the population has the nucleotide T at the same position, then A is the

major allele for the SNP, and T is the minor allele. Generally, when a SNP occurs in at least

a relatively large percentage of a population (typically around 5-10%), it is considered a

common SNP. To date, millions of common SNPs have been identified and are accessible

in public databases, such as dbSNP [167] or Ensembl [78].

Several other terms related to SNPs and to disease-gene association studies are locus,

markers, haplotypes, genotypes, and phenotypes. Suppose that we have chromosome sam-

ples from six individuals. Three of them have lung cancer and the other three do not. Using

the DNA sequences of the chromosome samples, we aim to identify a set of SNPs that is

likely to be associated with lung cancer. Due to experimental cost and time, only a limited

region of the chromosome, which was previously suggested to be related to lung cancer by

other molecular experiments, is examined. The chromosomal location of the target region

is referred to as the locus. A locus can be as large as a whole chromosome or as small as

a part of a gene. In this example, SNPs are used as markers, which are a specific type of

DNA sequences that are used in association studies to identify the genetic traits of diseases.

Let us look at the chromosome samples in detail. All species that reproduce sexually

have two sets of chromosomes: one inherited from the father and the other inherited from

the mother. Thus, for each SNP on the chromosome, every individual in our sample also has

two alleles, one on the paternal chromosome and the other on the maternal chromosome.

For each SNP, these two alleles can either be identical or be different from each other. When

the alleles are both the same, the SNP is referred to as homozygous for the individual. When
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Figure 2.1: Haplotypes, genotypes, and phenotypes.

they are different, the SNP is referred to as heterozygous.

For instance, suppose that the target locus contains six SNPs, and each SNP has only

two different alleles (that is, SNPs are assumed here to be bi-allelic). The allele information

is as shown in Figure 2.1-a. The major allele of the SNP is colored gray, while the minor

is colored black. Each individual has two sets of allele information for the six SNPs. A set

of consecutive SNPs present on the same chromosome is referred to as a haplotype [36].

Notice that, in the above example, there are 12 haplotypes stemming from the six pairs of

chromosomal samples, where each pair is associated with one individual.

Several bio-molecular methods can directly identify the haplotype information from

chromosomes, but due to high cost and lengthy procedure time, these methods are limited

to 10 to 20 kilobase pairs of DNA [102]. For large-scale association studies (typically

from hundreds to thousands of individuals), high-throughput bio-molecular methods are

typically used to identify the alleles of the target locus for each individual. The main
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limitation of current high-throughput methods lies in their lack of ability to distinguish the

source chromosome of each allele. Typically, such methods simply associate the two alleles

with the SNP position, but do not determine which of the two chromosomes gave rise to

which allele. The combined allele information of a target locus is called a genotype, and

the experimental procedure obtaining the genotype information is called genotyping.

Figure 2.1-b displays the genotype information for our example. When the combined

allele information of the SNP consists of two major alleles, it is colored gray. SNPs with

two minor alleles are colored black, and with one major and one minor allele are colored

white. The number of genotypes is six, the same as the number of individuals.

While haplotypes and genotypes represent the allele information of a target locus on

chromosomes, a phenotype is the physical, observed manifestation of a genetic trait. In

this example, the phenotype of an individual is either lung cancer or no lung cancer. In

general, the individuals carrying the disease are referred to as cases, while the ones not

known to carry the disease are referred to as controls. Figure 2.1-c displays the phenotype

information for our sample.

2.2 Linkage Disequilibrium and Block Structure of the

Human Genome

One interesting feature of a haplotype is the non-random association among the SNPs com-

prising it, called linkage disequilibrium (LD) [61]. As mentioned earlier, humans possess

two copies of each chromosome: paternal and maternal. Each of these two chromosomes is

generated by recombination of the parents’ own two copies of chromosomes, and is passed

by inheritance to the offspring. Figure 2.2 illustrates this recombination and inheritance
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Figure 2.2: Recombination and inheritance.

process.

Theoretically, recombination can occur at any position along the two chromosomes any

number of times. Thus, a SNP on one chromosome can originate from either copy of the

parents’ two chromosomes with an equal probability, and the origin of one SNP is not

affected by the origin of the others. This characteristic of independence among SNPs is

called linkage equilibrium.

Consider two SNPs, SNP1 and SNP2. Let |SNP1| and |SNP2| denote the number of

alleles that the SNPs, SNP1 and SNP2 have, respectively. Let s1i denote the ith allele of

SNP1, and s2j denote the jth allele of SNP2, where i = 1, ..., |SNP1| and j = 1, ..., |SNP2|.
Under linkage equilibrium, the joint probability of two alleles, s1i and s2j , to occur is

expected to be equal to the product of the alleles’ individual probabilities, since SNP1 and

SNP2 are independent. Thus, under the independence assumption:

∀i,j Pr(s1i, s2j) = Pr(s1i) · Pr(s2j). (2.1)

When Equation 2.1 does not hold, that is, when the two alleles are not independent, we con-

sider them to be in a state of linkage disequilibrium (LD). When the dependence between
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two SNPs is high1, the two SNPs are considered to be in a state of high LD.

In general, SNPs within close physical proximity are assumed to be in a state of high

LD. That is, the probability of recombination increases with the distance between two

SNPs [36]. Thus, SNPs within close proximity tend to be passed together from an ancestor

to his/her descendants. As a result, their alleles are often highly correlated with each other,

and the number of distinct haplotypes involving these SNPs is much smaller than expected

under the independence assumption.

Recently, large-scale LD studies [137, 38, 58] have been conducted to understand the

comprehensive LD structure of the human genome. The results strongly support the hy-

pothesis that genomic DNA can be partitioned into discrete regions, known as blocks, such

that recombination has been very rare (i.e., high LD) within the block, and very common

(i.e., low LD) between the blocks. As a result, high LD exists between SNPs within a block,

and the number of distinct haplotypes consisting of the SNPs is strikingly small across a

population. This observation is referred to as the block structure of the human genome. At

this point, there is no agreed upon way to define blocks on the genome [163, 42]. However,

there seems to be no disagreement that the human genome indeed has the block structure

regardless of our ability to uniquely identify the blocks.

High LD among SNPs within close physical proximity, along with the limited number

of haplotypes due to the block structure of the human genome, has provided the basis for

tag SNP selection, which we introduce in detail in Chapter 3. We conclude this chapter

by introducing the concept of haplotype analysis and the need for computational haplotype

phasing in the next section.

1The absolute threshold differs in each LD measure. For details, refer to LD review articles [85, 40]
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2.3 Haplotype Analysis and Phasing

The ultimate goal of disease-gene association studies is to identify a set of DNA variations

that is highly associated with a specific disease. Haplotype, genotype, or single-SNP infor-

mation can be used for examining the association of genetic variation with a target disease.

For simplicity, when haplotype information is used for examining its association with a

target disease phenotype, we refer to the disease-gene association study as haplotype anal-

ysis. Single-SNP analysis and Genotype analysis refer to the studies that use single-SNP

information and genotype information, respectively.

Haplotype analysis has several advantages compared to single-SNP analysis and geno-

type analysis. Single-SNP analysis cannot identify the association between variations and

a disease in cases where a combination of several SNPs on one chromosome (i.e., a haplo-

type) is required to affect the phenotype of an individual [193, 38, 2]. Figure 2.3 exemplifies

this case. All and only the three individuals with lung cancer share the haplotype CTTCTA,

marked by a solid box in Figure 2.3-a. Thus, we can conclude that the lung-cancer pheno-

type is likely to be associated with the haplotype CTTCTA. However, if we examine each

of the six SNPs individually, no direct association is found between any one of them and

the lung-cancer phenotype. For example, both individuals with lung cancer and individuals

with no lung cancer have the allele C or the allele G on the first SNP, the allele T or the

allele A on the second SNP, and so on.

Genotypes do not contain information about the source chromosome, known as phase,

thus they often hide the obvious association between a haplotype and a target disease. For

example, in Figure 2.3-a, each individual with lung cancer (i.e., case) has two haplotypes;

one haplotype is CTTCTA, which is associated with the lung cancer phenotype, while the

other one is unique for each case. Although all cases share the exact same haplotype



CHAPTER 2. BIOLOGICAL BACKGROUND 17

C T A

SNP1 SNP2 SNP3

C T A

C T A

G A T

C T T

C T T

C T T

C T T

a) Haplotypes

C/C T/T A/A

C/G A/T T/T

C/C T/T T/T

C/G A/T A/T

c) Genotypesb) Phenotypes

no lung cancer

no lung cancer

no lung cancer

lung cancer

G T A

SNP4 SNP5 SNP6

G T A

C T A

G A T

G T A

C T A

C T A

C T A

individual 1

individual 2

individual 3

individual 4

individual 5

C T A

C T T

G T A

C T A
individual 6

G/G T/T A/A

C/G A/T A/T

C/C T/T A/A

C/G A/T A/T

C/C T/T A/T C/G T/T A/A

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

lung cancer

lung cancer

G A T G A T

C T A C T A
C/C T/T A/T C/G T/T A/A

identical

all different

Figure 2.3: Difference between haplotype analysis and genotype analysis.

CTTCTA, their genotypes, in Figure 2.3-c, are all distinct due to their unique haplotype.

Worse, the genotype of individual 6, who does have lung cancer, is identical to that of

individual 3, who does not have lung cancer. Thus, we cannot identify a specific genotype

that is highly associated with lung cancer, and as a result, miss the real association between

the haplotype CTTCTA and lung cancer.

Despite its advantages, the use of haplotype analysis has been limited, due to the high

cost and lengthy procedure time of bio-molecular methods for directly obtaining the hap-

lotype information. However, a computational procedure, called haplotype phasing, ad-

dresses this problem, and greatly promotes the use of haplotype information in disease-

gene association studies [14, 52, 10, 12, 27, 43]. Numerous computational and/or statis-

tical methods have been developed for addressing the problem of haplotype phasing, and

have been widely used for disease-gene association studies (for review, refer to the work

by Lee [105], Niu [134], or Salem et al. [157]).
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In summary, a typical disease-gene association study consists of SNP selection, haplo-

type phasing, and statistical association tests along with genotyping experiments. Initially,

SNP selection algorithms are used to select a small subset of SNPs on the haplotypes, ei-

ther based on the tag SNP selection approach or based on the functional SNP selection

approach, which we briefly introduced in Chapter 1 and discuss in more detail in Chapter

3. Then, genotyping of selected individuals from a target population is performed, and their

haplotypes are inferred from the obtained genotypes using haplotype phasing algorithms.

Finally, statistical association tests are performed on the haplotype information, to identify

the association of a haplotype or a set of haplotypes with a target disease.



Chapter 3

Literature Review of the Related Work

This chapter reviews the state-of-the-art in current SNP selection approaches. The surveyed

methods are grouped into three major categories that support: (1) tag SNP selection; (2)

functional SNP selection; and (3) both tag SNP selection and functional SNP selection. In

each of the following sections, we first give a brief introduction of each approach, present

current state-of-the-art methods based on the selection approach, and conclude with a dis-

cussion of open problems and future directions.

3.1 Tag SNP Selection

Tag SNP selection was motivated by linkage disequilibrium (LD) among SNPs. As intro-

duced in Section 2.2, LD refers to the non-random association among SNPs within close

physical proximity. When high LD exists between SNPs, their allele information is highly

correlated, and as such the SNPs can act as representatives for each other with respect to

their allele information.

Thus, given a large set of SNPs in a candidate region and the maximum number, k,

19
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of SNPs that can be selected, tag SNP selection aims to find a subset of no more than k

SNPs whose allele information can best retain the allele information of all the SNPs in the

candidate region. This way, the loss of information, incurred by not using all the SNPs

in association studies can be reduced. The selected SNPs are called tag SNPs, while the

remaining, unselected SNPs are called tagged SNPs.

Formally, we define the problem of tag SNP Selection as follows: Let V = { SNP1 , ...,

SNPp } be a set of p SNPs in a candidate region, and D = {h1, ..., hn} be a data set of n

haplotypes, where each haplotype hi consists of the consecutive allele information of the p

SNPs, SNP1, ..., SNPp . For simplicity, we represent hi ∈ D as a vector of size m whose

vector element is 0 when the allele of a SNP is major and 1 when it is minor. (Recall

that the nucleotide with the dominant occurrence within a population is called the major

allele for a SNP, while the others are called the minor alleles.) Suppose that the maximum

number of SNPs that can be selected is k, and a function f(T ′|D) evaluates how well the

allele information of SNPs in subset T ′ ⊂ V retains the allele information of all SNPs in

V based on the haplotype data D.

The tag SNP selection problem can then be stated as follows:

Problem : Tag SNP Selection.

Input : A set of SNPs V ;
A set of haplotypes D;
The maximum number of tag SNPs k.

Output : A set of tag SNPs T = argmax
T ′ s.t. T ′ ⊂ V & |T ′| ≤ k

f(T ′|D) .

In brief, to solve the tag SNP selection problem, one needs to find an optimal subset of

SNPs, T , of size ≤ k based on the given evaluation function f(T ′|D), among all possible

subsets of the original SNPs.

Researchers have proposed a variety of objective functions, f(T ′|D), to best represent
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Figure 3.1: Tag SNP selection based on limited haplotype diversity. A subset of SNPs
are selected such that the selected SNPs can distinguish common haplo-
types.

the allele information of haplotypes in D using SNPs in T ′, and have tried to identify the

subset of SNPs that optimizes the function f . We group here the surveyed algorithms for

tag SNP selection into three categories based on the approach they take to measure the

allele information of haplotypes: (1) haplotype diversity; (2) pairwise association among

SNPs; and (3) tagged SNP prediction. In the following sections, we introduce each of them.

3.1.1 Haplotype Diversity

Recent observation of the block structure of the human genome [137, 38, 58, 84] demon-

strates that the human genome can be partitioned into discrete blocks such that within each

block, a small number of common haplotypes (i.e., 3-5 haplotypes) are shared by most

of the population (i.e., 80-90%). Based on this assumption, early tag SNP selection re-

search aimed to find a subset of SNPs that can capture the limited haplotype diversity in

the original data.
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Figure 3.1 illustrates how a set of tag SNPs can be selected based on the limited diversity

of haplotypes. Suppose that our sample consists of eight haplotypes with four SNPs, as

shown in Figure 3.1-a. The major allele of a SNP is coded as 0 in light gray, and the

minor allele is shown as 1 in dark gray. Since each allele must be either major or minor,

the possible number of distinct haplotypes consisting of four SNPs is 24. However, the

observed number of distinct haplotypes in the sample is only 3 as shown in Figure 3.1-

b. Therefore, information about 2 SNPs may be sufficient to uniquely identify the limited

number of distinct haplotypes. In principle, we can try every possible combination of two

SNPs to quantify how well they can distinguish the diverse haplotypes in the original data.

Then, the pair that provides the most distinguishing power is selected as tag SNPs.

A variety of haplotype diversity measures were proposed. Some [137, 89] use the

number of haplotypes that are uniquely distinguishable by the candidate subset T ′ as a

measure of the haplotype diversity captured by T ′. For example, in Figures 3.1-c and

3.1-d, SNP1 and SNP4 successfully partition all 8 haplotypes into 3 different groups, while

SNP1 and SNP3 put only 4 of the haplotypes into a truly distinct set ( the other 4 haplotypes

are placed together despite their differences ). Thus, the haplotype diversity captured by

the subset {SNP1, SNP4} is 8, while for {SNP1, SNP3}, this measure is only 4.

Johnson et al. [84] define the haplotype diversity not captured by the candidate subset T ′

(that is, the residual haplotype diversity of T ′) as the number of allele differences between

every haplotype pair in the same group based on T’. If the candidate subset T ′ successfully

partitions all distinct haplotypes into different groups as shown in Figure 3.1-c, its residual

haplotype diversity will be 0. Otherwise, originally distinct haplotypes will be placed in the

same group, as shown on the bottom of Figure 3.1-d, which makes its residual haplotype

diversity greater than 0. Thus, T ′ with the smallest residual haplotype diversity is selected
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as the set of tag SNPs.

Another popular haplotype diversity measure is Shannon’s Entropy (H) [86, 6, 1, 68].

Let n′ be the number of distinct haplotypes in the haplotype data set D, and pi be the relative

frequency of the ith distinct haplotype. The haplotype diversity of D can be computed as

its Entropy H:

H(D) = −
n′∑

i=1

pi log2 pi.

Like other methods introduced earlier, for each candidate tag SNP set T ′, haplotypes are

partitioned into groups so that the ones in the same group share the same alleles at the SNPs

included in the subset T ′. The entropy of the data set D is measured based on this partition.

The haplotypes that are placed in the same group are considered identical. The number of

distinct haplotypes, n′, thus becomes the number of groups, and the relative frequency of

the ith distinct haplotype, pi, is estimated as the ratio between the number of haplotypes

in the ith group and the total number of haplotypes. The more groups the candidate subset

T ′ recognizes, the larger the entropy of the data set D based on the grouping. Thus, the

candidate set T ′ with the largest entropy is selected as the solution.

The methods introduced above [137, 19, 89, 84, 29, 86, 6, 1, 68] exhaustively examine

all subsets of the original SNP set V , limiting their applicability to only a small number

of SNPs. To overcome this problem, several heuristics and efficient search methods were

proposed using: a greedy algorithm [199], a branch-and-bound rule [41], dynamic pro-

gramming [194, 193, 192, 195, 197, 197, 196], and principal component analysis (PCA)

[75, 112, 123].

Haplotype diversity-based methods are intuitive and straightforward. However, to en-

sure that haplotype diversity is indeed limited, block-partitioning must first be conducted

on the target locus, and tag SNP selection is done block by block. The possible limitation



CHAPTER 3. LITERATURE REVIEW OF THE RELATED WORK 24

of this block-dependent approach lies in the possibility that the union of the optimal sets

of tag SNPs from each block might not be the optimal set of tag SNPs for a whole re-

gion [62]. Furthermore, as discussed in Section 2.2, regions of low linkage disequilibrium

exist between blocks [36]. Thus, certain regions of the target locus may demonstrate a large

number of diverse haplotypes, deeming the above methods impractical. In addition, as of

yet there is no agreed upon way to define blocks on the genome. Thus, the selection of tag

SNPs depends on the block-partitioning method used [163, 41, 46].

3.1.2 Pairwise Association

Pairwise association-based methods rely on the idea that a set of tag SNPs should be the

smallest subset of available SNPs that are capable of predicting a disease-causal variant

on the genomic region [62, 19, 182, 21, 4, 91, 146]. However, the disease-causal variant

is generally the one we are looking for, and is not known ahead of time. Thus, pairwise

association between SNPs is used as an estimate for the predictive power with respect to

the disease locus.

In principle, a set of tag SNPs is selected such that all SNPs on the locus are highly

associated with at least one of the tag SNPs. This way, although the SNP that is relevant to

a disease phenotype may not be selected as a tag SNP, the association of the target disease

with that SNP can be indirectly deduced from the tag SNP that is highly associated with

the unselected SNP. In most studies, non-random association of SNPs (that is, linkage dis-

equilibrium (LD)), introduced in Section 2.2, is used to estimate the pairwise association.

Byng et al. [19] first proposed to use cluster analysis for pairwise association-based

tag SNP selection. The original set of SNPs is partitioned into hierarchical clusters, where

SNPs within the same cluster have at least a pre-specified level, σ, (typically σ > 0.6-0.8)
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of pairwise LD with at least one of the other SNPs. After clustering is performed, they

recommend to select one SNP from each cluster based on practical feasibility such as ease

of genotyping, importance of physical location, or significance of the SNP mutation.

Others [182, 21, 4] proposed that a tag SNP should be selected as the one whose pair-

wise LD is greater than the fixed level, σ, with respect to all the other SNPs in the cluster.

To identify the tag SNPs, minimax clustering [4] and greedy binning algorithm [182, 21]

were proposed.

In minimax clustering, the minimax distance between two clusters Ci and Cj is de-

fined as Dminimax(Ci, Cj) = min
s∈(Ci∪Cj)

(Dmax(s)), where Dmax(s) is the maximum distance

between the SNP s and all the other SNPs in the two clusters. Initially, every SNP consti-

tutes its own cluster. The two closest clusters (according to the minimax distance) are then

merged iteratively. The merging stops when the smallest distance between two clusters is

larger than pre-specified level σ. Finally, the SNP that defines the minimax distance for

each merged cluster is selected as the cluster representative.

The greedy binning algorithm works as follows: First, it examines all pairwise LD

relationships between SNPs, and for each SNP, counts the number of other SNPs whose

pairwise LD with the SNP is greater than a pre-specified level σ. The SNP that has the

largest counting number is then clustered together with its associated SNPs, and becomes

the tag SNP for the cluster. This procedure is iterated with the remaining SNPs until all the

SNPs are clustered. The SNPs whose pairwise LD is not greater than σ with respect to any

other SNPs are considered singleton clusters.

All pairwise association-based methods have a complexity of O(cnp2), where the num-

ber of clusters is c, the number of haplotypes is n, and the number of SNPs is p. Thus,
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Figure 3.2: Pairwise linkage disequilibrium (LD) among SNPs and multi-SNP depen-
dencies.

in general, they run faster than the methods based on haplotype diversity, and do not re-

quire a prior block-partitioning procedure. Arguably, pairwise association-based methods

are currently the most widely used tag SNP selection methods.

The major shortcoming of pairwise association-based methods lies in their lack of abil-

ity to capture multi-SNP dependencies [7] and in a tendency to select more tag SNPs

than other methods [91, 163, 62, 17]. Figure 3.2 illustrates this weakness of pairwise

association-based methods.

Suppose that our sample consists of four haplotypes with six SNPs, as shown in Figure

3.2-a. If we measure pairwise LD between the SNPs using one of the most commonly

used LD measures, correlation coefficient r2 [62], no two SNPs have pairwise LD greater

than 0.5, as shown in Figure 3.2-b. Thus, pairwise association-based methods will select

all six SNPs as tag SNPs. However, as shown in Figure 3.2-c, the allele of SNP3, SNP4,

SNP5, and SNP6 can be perfectly represented by the alleles of SNP1 and SNP2. Thus, if we

consider multi-SNP dependencies, only two SNPs, namely SNP1 and SNP2, are sufficient

to represent all the six SNPs. The next tag SNP selection approach, referred to as tagged

SNP prediction-based, uses this multiple SNP dependencies to represent unselected tagged

SNPs.
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3.1.3 Tagged SNP Prediction

Tagged SNP prediction-based methods consider tag SNP selection as a reconstruction prob-

lem of the original haplotype data using only the allele information of the selected tag

SNPs. Thus, they aim to select a set of tag SNPs that can predict the unselected (i.e.,

tagged) SNPs with the least error. Unlike the pairwise association-based methods, intro-

duced in the previous section, tagged SNP prediction-based methods use multiple tag SNPs

to predict the allele information of unselected, tagged SNPs. Therefore, these methods also

present a prediction rule for tagged SNPs along with the selected set of tag SNPs.

Bafna et al. [7, 65] first proposed to select tag SNPs based on their accuracy in predict-

ing the tagged SNPs. Let Et
i,j be the event that haplotypes hi and hj have a different allele

at SNP t, and ET
i,j be the event that haplotypes hi and hj have a different allele at some SNP

in T . To measure how well a set of SNPs, T = {SNP1, ...,SNPk}, can predict the SNP, t,

Bafna et al. define a measure called informativeness as:

I(T, t) = Pri6=j(E
T
i,j|Et

i,j).

Figure 3.3: Majority vote in tagged SNP prediction-based methods.
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Based on the proposed measure, an optimal subset of SNPs that can best predict the re-

maining ones is identified using dynamic programming. Bafna et al. restrict the predictive

tag SNPs of each tagged SNP to those that are within a relatively close physical proximity

w to the predicted SNP. However, the exponential complexity O(nk2w) of the proposed

dynamic programming algorithm needs to be reduced.

Recently, Halperin et al. [67] proposed a polynomial time dynamic programming algo-

rithm, but, in principle, their improvement results from fixing the number of tag SNPs for

each tagged SNP to be 2. Halperin et al. also proposed a prediction rule for tagged SNP

alleles based on a majority vote. Figure 3.3 illustrates the prediction procedure.

Suppose that our sample consists of six haplotypes with five SNPs, and SNP1 and SNP2

are selected as tag SNPs as shown in Figure 3.3-a. We call this sample the tag SNP selection

sample. As discussed in Section 2.3, genotyping is conducted to obtain the allele informa-

tion of the selected tag SNPs for studied individuals. To predict the ungenotyped alleles

(that is, the tagged SNPs) in this new sample, first, the haplotypes whose tag SNP alleles

are the same as those of the new haplotype are identified in the tag SNP selection sample.

In Figure 3.3-b-1, these haplotypes are marked by a solid box. Each tagged SNP in the new

haplotype is assigned the allele that occurs most often in the haplotypes identified above,

as shown in Figure 3.3-b-2. As a result, this majority-vote-rule tends to assign common

alleles rather than rare ones to a new haplotype.

Unlike pairwise association-based methods, tagged SNP prediction-based methods use

multi-SNP dependencies to select the set of tag SNPs. As a result, the number of selected

tag SNPs is often smaller than that selected by pairwise association-based methods [8]. In

addition, all dynamic programming methods [7, 66, 67] guarantee to find a global optimum

with respect to the given measure.
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However, the effectiveness of these methods is still limited by some restrictions such

as the small-bounded location or the fixed number of tag SNPs. Moreover, tagged SNP

prediction-based methods do not reduce the number of SNPs to be examined in subsequent

association studies. That is, after the selected tag SNPs are genotyped, the alleles of the

tagged SNPs are reconstructed using the alleles of the tag SNPs, and disease-gene asso-

ciation is examined using the reconstructed full haplotype data. Therefore, these methods

may not be appropriate for large-scale association studies.

3.1.4 Discussion

The feasibility of tag SNP selection has been empirically demonstrated by simulation stud-

ies [62, 90, 91, 193, 17] and by association studies [152, 120, 13, 51, 80]. Most importantly,

Zhang et al. [193] demonstrate that tag SNP selection shows little loss of power1 in sub-

sequent association studies. Based on 1000 simulated data sets, the average difference in

power between a whole set of SNPs and a set of tag SNPs whose size is 1/4 of the original

SNP set is only 4 percent. Other studies also suggest that tag SNP selection can yield about

2-50 fold savings in the genotyping efforts.

However, several pitfalls still exist:

1) Most tag SNP selection algorithms focus on covering common haplotypes or com-

mon SNPs rather than rare ones [201]. Common variations are of interest because many

common human diseases have been explained by common DNA variations rather than by

rare ones [45, 144, 91]. Furthermore, practically, a much larger sample size is needed

to identify rare haplotypes [100]. However, it is still an open question whether common

variations or rare ones influence the susceptibility to common and complex disease [36].

1The power of association tests is the probability that the test rejects the false null hypotheses [135].
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2) Many algorithms require haplotype data rather than genotype data. When only geno-

type data are available, Haplotype Phasing is performed on the genotype data, and the iden-

tified haplotype information is used. However, Haplotype Phasing may lead to incorrect

resolution. To address this, some statistical algorithms produce multiple solutions along

with their uncertainty [116], or the distribution of haplotype pairs for each genotype rather

than a single resolved pair [201]. Until now, no tag SNP selection methods consider this

uncertainty of inferred haplotype data.

3) All the algorithms described above assume that the set of tag SNPs selected from

a given sample will work well to characterize another sample from the same population.

However, the effectiveness of tag SNPs is known to depend on the sample size, allele

frequencies, and the SNP density in the haplotype/genotype dataset that is used to select the

tag SNPs [126]. Moreover, sufficient number of individuals should be sampled and used

in the dataset on which tag SNP selection is performed to ensure that selected tag SNPs

work well to characterize other samples. For example, Goldstein et al. [62] reported that at

least 100 chromosomes, that is, 200 haplotypes, should be used for tag SNP selection when

the number of SNPs on the target genomic locus is about 20. Therefore, tag SNP selection

should be applied only when a sufficient number of individuals can be sampled. In addition,

methods that can avoid over-fitting of the given data set are needed when sample data are

insufficient.

3.2 Functional SNP Selection

Functional SNP selection aims to prioritize SNP markers based on their functional signifi-

cance [174, 162, 16, 56, 87, 104, 26, 11]. As introduced in Chapter 1, a significant fraction

of genetic pathology is likely attributable to the deleterious effects of SNPs on protein
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function or through alterations in the regulation of genes [148].

For instance, DNA binding properties of transcription regulatory proteins [26], molec-

ular structures of pre-mRNAs [95], signal transduction activities of transmembrane recep-

tors [166], subcellular localization of proteins [83], kinetic parameters of enzymes [149],

and conformation of structural proteins [132] are all susceptible to perturbation by SNPs.

In other words, some SNPs are highly likely to disrupt major bio-molecular functions of

genomic regions where they occur, and as such, are more likely to underlie the genetic basis

of human disease [166]. Directly genotyping and analyzing these possibly disease-causal

SNPs is expected to increase the chance of finding biologically plausible associations, while

reducing false positive or false negative findings in association studies [149, 174].

The key issue in functional SNP selection is therefore the effective assessment of pu-

tative deleterious effects of SNPs, so that SNPs can be prioritized according to their func-

tional significance. Indeed, since the initial sequencing of the human genome, numerous

public databases have been introduced to provide functional annotation about SNPs [167,

78, 178, 155, 23, 69, 170, 55, 128, 168]. A variety of computational tools have been also

developed to predict the potential functional effects of SNPs with respect to major bio-

molecular functions, such as protein coding or transcriptional regulation [132, 147, 153,

88, 189, 9, 53, 175, 172, 129, 44, 156, 74, 94, 140, 203, 145, 186, 15, 50, 187, 22, 200,

63, 92, 119, 158, 121, 202, 159, 99, 3, 76, 114, 143]. More recent systems have focused

on integrating heterogeneous biological databases and prediction tools for SNPs in order

to comprehensively analyze the functional significance of SNPs [32, 31, 30, 188, 24, 181].

Here, we group the surveyed methods into three categories according to the way in

which they provide the functional information about SNPs: (1) providing functional anno-

tation; (2) predicting potential functional effects; and (3) integrating existing databases/tools
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for comprehensive function-assessment. In the following sections, we introduce the meth-

ods within each category.

3.2.1 Providing Functional Annotation

Public SNP databases, such as dbSNP [167] and Ensemble [78], are the simplest form

of resources that can be used for selecting functionally significant SNPs. Along with the

primary information about SNPs (such as allele information and chromosomal location),

the databases provide functional annotation for SNPs. In particular, the annotation called

“the functional type of SNPs” designates “a bio-molecular function of the genomic region

where each SNP occurs as well as the phenotypic consequence of the SNP mutation to an

encoded protein, if available” [78].

Currently used functional types of SNPs and their meaning are as follows:

• Non-synonymous SNPs (also known as missense mutation) - SNPs that are located

in protein coding regions and lead to an amino acid change in an encoded protein

sequence.

• Synonymous SNPs (also known as silent mutation) - SNPs that are located in protein

coding regions, but do not result in a change of an amino acid sequence.

• Frameshift variations (also known as nonsense mutation) - SNPs that are located in

protein coding regions, and result in a frameshift 2.

• Stop lost (also known as nonsense mutation) - SNPs that are located in protein coding

regions, and result in the loss of a stop codon.

2Frameshift mutation (also called a framing error) is a genetic mutation caused by insertion or deletion
of nucleotides, which can disrupt the reading frame, resulting in a completely different translation from the
original [167].
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• Stop gained (also known as nonsense mutation) - SNPs that are located in protein

coding regions, and result in the gain of a stop codon. As a result, these SNPs lead

to a curtailed protein sequence.

• Essential splice site - SNPs that are located in the first two or the last two base pairs

of an intron.

• Splice site - SNPs that are located in 1-3 base pairs into an exon or 3-8 base pairs into

an intron.

• Upstream variations - SNPs that are located within a 5 kb (kilo base) upstream region

of the 5-prime end of a transcript.

• Regulatory region variations - SNPs that are located in regulatory regions, annotated

by Ensembl or dbSNP.

• 5-prime UTR variations - SNPs that are located in the 5-prime untranslated region

(UTR).

• Intronic variations - SNPs that are located in an intron.

• 3-prime UTR variations - SNPs that are located in the 3-prime UTR.

• Downstream variations - SNPs that are located within a 5 kb downstream region of

the 3-prime end of a transcript.

• Intergenic variations - SNPs that are located more than 5 kb either upstream or down-

stream of a transcript.

Other SNP databases also provide similar functional annotation as described above.

The GeneSNPs database [178] provides a graphical view of SNP data, and uses multiple
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colors to designate the different functional types of SNPs. The SNPper database [155]

allows users to search SNPs based on their functional type, while the MutDB [128] database

provides functional annotations relevant to a protein structure. The PicSNP database [23]

provides a search interface to select non-synonymous SNPs based on the function of the

gene in which the SNPs are located. Other databases such as OMIM (Online Mendelian

Inheritance in Man) [69], HGMD (Human Gene Mutation Database) [170], HGVBase [55],

and MutationView [168] provide information about SNPs that have been already identified

as disease-associated or disease-causing based on the literature.

These annotation-based SNP databases are typically used for selecting SNPs based on

the importance of their genomic region. For example, SNPs in protein coding regions,

splice sites, or regulatory regions are considered to be more important than ones in introns

or intergenic regions. In particular, much focus has been given to SNPs occurring in pro-

tein coding regions with phenotypic consequences, such as non-synonymous SNPs and the

SNPs leading to stop gain or stop loss. These SNPs are most likely to damage the func-

tion of an encoded protein, and their deleterious effects are relatively easier to verify with

bio-molecular experiments [127].

Still, the relative risk3 of phenotypes generated from the same functional type of SNPs

varies greatly. In particular, the relative risk stemming from non-synonymous SNPs is

known to vary, from extremely low to very high, depending on their location on protein

domains or on the extent of sequence conservation of the genomic location among mul-

tiple species [174]. However, none of the annotation-based databases provide users with

possibly different phenotypic effects of SNPs of the same functional type.

To address this limitation, computational tools and web-services have been developed

3Relative risk refers to the ratio of the risk of having the phenotype among individuals with a particular
exposure, genotype or haplotype to the risk among those without that exposure, genotype, or haplotype [70].
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to further prioritize the SNPs occurring in functionally important genomic regions. Typi-

cally, the tools predict the putative deleterious effects of SNPs with respect to major bio-

molecular functions. We introduce such prediction systems in the following section.

3.2.2 Predicting Functional Effects

In this section, we review publicly available computational tools that assess the putative

deleterious functional effects of SNPs. Specifically, we focus on the impact of SNPs with

respect to the following three major bio-molecular functional categories: 1) protein coding;

2) splicing regulation; and 3) transcriptional regulation.

Protein Coding SNPs in protein coding regions have been most extensively studied due

to their direct impact on the function of an encoded protein [127]. In particular, numerous

tools have been developed to predict the putative deleterious effects of non-synonymous

SNPs that cause an amino acid substitution of a translated protein; The substitution may

affect protein folding, proper activity of binding or interaction sites, solubility, structure,

or stability of the protein [149]. To estimate these effects, current tools mainly rely on

structural features of protein domains or evolutionary properties derived from sequence

homology.

SIFT (Sorting Intolerant From Tolerant) [132] and PolyPhen (Polymorphism Pheno-

typing) [147] are the two most widely used tools for assessing the functional impact of

non-synonymous SNPs. The SIFT tool takes a comparative genomics and evolutionary ap-

proach. It assumes that amino acid positions that play a critical role in protein function are

conserved across the protein family and across evolutionary history. It thus uses multiple
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alignment information of protein sequences to estimate whether an amino acid substitu-

tion would be tolerated or deleterious to protein function. Using SIFT, about 25 percent of

non-synonymous SNPs available in dbSNP have been predicted to disrupt protein function.

In addition to employing an evolutionary approach similar to SIFT, PolyPhen uses the

structural features of proteins. It maps the position of a substituted amino acid onto the

3D structure of a protein, and examines whether the substitution is likely to destroy the hy-

drophobic core of the protein, solvent accessibility, beta strands or active sites, electrostatic

interactions, interactions with ligands, or other structural features of the protein. Based

on the structural parameters as well as the sequence-based profile analysis of homologous

sequences, PolyPhen presents empirically derived rules to predict non-synonymous SNPs

that possibly damage protein function.

Other web-based tools for examining non-synonymous SNPs include: SNPeffect [153],

LS-SNP [88], SNPs3D [189], nsSNPAnalyzer [9], PMUT [53], PARSESNP [175], and

TopoSNP [172]. The SNPeffect tool examines the possible deleterious effects of SNPs

with respect to protein stability, integrity of functional sites, protein phosphorylation and

glycosylation, subcellular localization, protein turnover rates, protein aggregation, amyloi-

dosis and chaperone interaction. LS-SNP uses data on protein sequences, functional path-

ways and comparative protein structure models to predict positions where non-synonymous

SNPs destabilize proteins, interrupt domain-domain interaction, or impact protein-ligand

binding. SNPs3D is another resource for inferring the deleterious effects of non-synonymous

SNPs, using structural, systems biology and evolutionary information. The remaining tools

are also based on the similar structural or sequence-based features, but employ different

machine-learning methods, such as Random Forests [9], Neural Networks [53], Decision

Trees [161], Support Vector Machines [88, 189], or Hidden Markov Models [172].
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Splicing Regulation If SNPs occur within a splice site, noncoding introns may not be

spliced out of a transcribed sequence, or exons may be removed from the transcribed se-

quence. This inadvertent exon skipping or intron retention will result in an unstable mRNA

transcript, and furthermore, can lead to the loss of the protein function. SNPs may also

occur within exonic splicing enhancers or silencers (ESEs/ESSs). ESEs and ESSs are typi-

cally 6-8 consecutive nucleotide sequences in an exonic region, where various components

of the splicing machinery localize to splice pre-mRNAs. Like the SNPs occurring in splice

sites, those within ESEs or ESSs can result in deleterious intron retention or exon skipping.

To identify SNPs occurring within splice sites, primary databases of SNPs like db-

SNP [167] or Ensemble [78] can be used. There are also public databases that are specif-

ically designed to provide information about splicing regulation. For example, ASD (al-

ternative splicing database) provides computationally and experimentally proven data on

alternative splicing. Its data include alternatively spliced introns/exons, splicing regula-

tory elements, splicing signals, expression states, and SNP-mediated splicing. Similar re-

sources include ASAP [94], HOLLYWOOD [74], HMAASE [203], GeneSplicer [140],

MaxEntScan [186] and NetGene2 [15].

Several studies have directly examined the phenotypic effects of SNPs on mRNA splic-

ing. Nalla and Rogan [129] studied the effects of sequence changes that alter mRNA splic-

ing in human diseases. Based on information theory, they designed a system to evaluate

changes in the specificity of splice sites called Automated Splicing Mutation Analysis. This

system can detect cryptic splice sites and associated splicing regulatory sites activated by

SNPs. Sahashi et al. [156] proposed an algorithm to predict splicing consequences of SNPs

affecting the 5’ splice site, while Houdayer et al. [76] examined the performance of six

computational tools for predicting disruption/creation of splice site consensus sequences
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by SNPs. Most recently, Divina et al. [44] have proposed a computational method based

on a multivariate logistic discrimination to predict cryptic splice-site activation and exon

skipping induced by SNPs. Their web-based service, CRYP-SKIP (available at http://cryp-

skip.img.cas.cz/) provides the probability of altered splicing patterns, the location of pre-

dicted cryptic splice sites and their intrinsic specificity.

There are also web-based services for predicting potential splicing enhancers and si-

lencers within exonic regions. These services include RESCUE-ESE [50, 187], PESX [200],

ESEfinder [22], and ESRSearch [63]. The RESCUE-ESE tool is based on statistical anal-

ysis of exonic splicing regulator sequences; It searches 8-mer sequences that occur more

often in exons than in introns. It also searches 8-mers that are enriched in weak splice site

flanking regions compared to strong splice site regions. The PESX tool uses similar sta-

tistical analysis, but it focuses on comparing the frequency of 8-mer sequences in internal

non-coding exons versus un-spliced pseudo exons. The ESEfinder tool focuses on exonic

splicing enhancer (ESE) motifs that have been identified through biological experiments,

while the ESRSearch tool employs a comparative genomics method based on sequence

conservation between human and mouse.

Transcriptional Regulation If SNPs occur within transcriptional regulatory regions (such

as transcription factor binding sites, CpG islands, and microRNAs), they may alter the bind-

ing affinity of the regions, remove the recognition sites, or create new binding sites for other

regulatory proteins. All of these alterations can lead to changes in the level, timing, and

localization of gene expression [145]. Recent studies have also reported that SNPs occur-

ring in transcriptional regulatory regions have modified gene expression, and thus underlie

the genetic basis of several disease phenotypes, including cancer [160] and autoimmune

diseases [177].
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To identify SNPs that can alter gene expression, databases that provide information

of experimentally verified transcriptional regulatory regions can be used. Such databases

include TRANSFAC [121], JASPAR [158], and TRRD [99]. The TRANSFAC database

provides information on transcription factors and their experimentally proven binding sites

and regulated genes. The TRANSFAC database covers a wide variety of species from yeast

to human, and arguably, is the most widely used database for studying transcriptional reg-

ulation of genes. The JASPAR database is a catalog of a curated, non-redundant set of

transcription factor binding profiles. These profiles have been derived from experimentally

defined transcription factor binding sites for multicellular eukaryotes, obtained from the

literature. The TRRD database provides information about structural and functional orga-

nization of transcription regulatory regions for eukaryotic genes. Like the other databases,

only experimentally verified information is included in TRRD.

In contrast, web-based computational tools, such as Consite [159], Promolign [202],

TFSearch [3], rVISTA [114], HGVbase [55], MAPPER [119], rSNP Guide [143], and

Match [92] focus on predicting potential, un-identified regulatory elements. These tools

obtain the sequence information about experimentally verified transcriptional regulatory re-

gions, from databases like TRANSFAC, JASPAR, or TRRD, and apply various techniques

to identify genomic regions with similar sequences to the proven regulatory regions. The

prediction-based tools also search non-protein-coding regions that are conserved across

multiple species as putative regulatory elements. As discussed previously, the basic as-

sumption is that the conserved genomic sequences have been retained due to their func-

tional importance rather than merely by a chance [11, 54].
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3.2.3 Integrating Heterogeneous Functional Information

In the previous sections, we introduced a variety of databases and prediction tools for

assessing the putative deleterious effects of SNPs with respect to a single bio-molecular

function. In this section, we review systems that provide more comprehensive functional

information about SNPs by integrating heterogenous biological databases and prediction

tools. The integrative systems enable users to prioritize functionally significant SNPs with-

out applying separate tools. PupaSuite [30], SNP Function Portal [181], SNPnexus [24],

and FastSNP [188] are among the publicly available integrative systems.

The PupaSuite [30] service aims to prioritize functional SNPs for large-scale associ-

ation studies. Given a list of SNPs, it first examines the functional type of the genomic

regions where the SNPs occur. For non-coding regions, it uses a variety of tools to se-

lect SNPs occurring in: 1) transcription factor binding sites; 2) canonical splice sites; 3)

exonic splicing enhancers; and 4) triplex-forming oligonucleotide sequences 4. In case of

SNPs occurring on coding regions, it uses the PMUT [53] and SNPeffect [153] programs

to identify nonsynonymous SNPs with potential deleterious effects. PupaSuite also identi-

fies SNPs on genomic regions that are conserved between human and mouse, based on the

assumption that these regions are likely to be functional.

The other systems take a similar approach to that of PupaSuite; They use a variety

of prediction tools and databases to provide comprehensive functional information about

SNPs, mainly focusing on protein coding, splicing regulation and transcriptional regula-

tion. Briefly, the SNP Function Portal service provides functional annotations in six major

4Triplex-forming oligonucleotide sequences in the human genome are targets for triplex formation. As
they are mostly found in regulatory regions, especially in promoter zones, triplex-forming oligonucleotide
sequences have been suggested to involve in gene expression [81].
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categories including genomic elements, transcription regulation, protein function, path-

way, disease and population genetics. The SNPnexus service integrates five major SNP

databases to provide functional information about SNPs. It also provides information on

potential regulatory elements or structural variations as well as genetic diseases related to

SNPs.

The FastSNP service integrates 11 external web servers to prioritize SNPs according

to their phenotypic risks and putative functional effects. Following the SNP prioritization

approach proposed by Tabor et al. [174], this service estimates the relative risk of functional

changes by SNPs using a quantitative ranking scheme. It classifies SNPs into 13 categories

of putative phenotypic risks, each of which is assigned a risk rank between 0 (which means

no known effect) and 5 (which means very high risk). Therefore, SNPs can be prioritized

based on their relative risk of functional changes using the risk rank. Bhatii et al. [11] also

proposed a similar ranking strategy for prioritizing functionally significant SNPs. However,

a publicly available service is not provided.

3.2.4 Discussion

Functional SNP selection has two major merits compared to tag SNP selection. First, most

known disease-relevant mutations are attributable to changes in the function of a protein,

gene expression, or mRNA splicing [34, 170, 69]. As such, it is likely that SNPs affecting

the risk of disease phenotypes (but not yet identified) are also ones with deleterious func-

tional effects. It is therefore biologically plausible to study SNPs that have the potential to

deleteriously affect molecular processes in search for disease-causal variants.

Second, as previously discussed, effectiveness of tag SNPs is known to depend on the
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haplotype/genotype dataset that is used to select the tag SNPs [126]. However, the func-

tional significance of SNPs does not depend on any specific haplotype/genotype dataset. In

the same context, functional SNP selection does not require prior genotyping of SNPs as

tag SNP selection does.

We also note that functional SNP selection methods are applicable not only to prior

selection of SNP markers but also to post evaluation of SNP markers after association with

disease is identified. Once association signal is detected in association studies, both in silico

and bio-molecular experiments are needed to confirm biologically relevant variations on

the genomic locus [11]. Tabor et al. [174] also emphasized that the biological plausibility

of association and its consistency with established knowledge about disease etiology are

important evaluation criteria for genetic association studies for complex disease traits.

Nevertheless, functional SNP selection also has several pitfalls. First, functional SNP

selection is based on the ability of the function-assessment tools used for predicting func-

tional candidate genes and variants. However, our knowledge and understanding concern-

ing the genetic mechanism of disease and the bio-molecular function of genomic regions

are still limited. As such, there could be many SNPs with deleterious functional effects that

cannot be captured by current prediction tools. Moreover, when a large range of possible

risk factors are available for testing and analysis, it is not straightforward to assess the exact

biological impact of SNPs.

Second, Mendelian disease-relevant SNPs tend to have severe impact on the function

of the protein [147, 176, 190], while complex disease-associated SNPs may not. Indeed,

Thomas and Kejariwal [176] suggested that on average, the molecular effects of SNPs in

complex disease might be more subtle than the severe functional changes associated with

most Mendelian disease SNPs. This issue is further complicated as some complex diseases
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are associated with SNPs with severe impact [173, 125]. Therefore, it is still an open

question whether we need to focus on SNPs with modest deleterious effects or on ones

with the most deleterious effects for studying complex diseases.

3.3 Supporting Both Tag SNP Selection and Functional

SNP Selection

Currently, there are only a limited number of systems that support both tag SNP selection

and functional SNP selection. Namely, these systems are TAMAL [73], SNPselector [184],

and SNPLogic [142]. They share the same goal: selecting an optimal set of SNP markers

for genetic association studies. All of the systems also emphasize the importance of both

tag SNP selection and functional SNP selection approaches for prioritizing SNPs. The sys-

tems also take a similar integrative approach; instead of developing their own prioritization

method, they aim to serve as a comprehensive resource for SNP selection by integrating a

variety of existing databases and publicly available tools.

The TAMAL service identifies haplotype tag SNPs and functional SNPs. To select

haplotype tag SNPs, it uses Gabriel’s method [58] or the TAGGER method [39]. In the

case of functional SNPs, users can choose SNPs leading to an amino acid change (that

is, non-synonymous SNPs), altering splice sites, or occurring in promoter regions, regions

with regulatory potential, or transcription factor binding sites. SNPs occurring in conserved

genomic regions across human, chimpanzee, rat, mouse, and chicken can be identified, as

well. A major limitation of TAMAL is that it only allows users to input gene symbols to

select SNPs. Therefore, SNPs in intergenic regions cannot be assessed. Moreover, only a

single tool is used to examine the functional effects of SNPs with respect to each functional
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category.

The SNPselector service takes a list of gene names or genomic regions as input, and

prioritizes SNPs based on their tagging ability, SNP allele frequencies, and functional sig-

nificance. To select tag SNPs, it calculates a linkage disequilibrium (LD) score for each

SNP, similar to the LD-based SNP selection approach by Carlson et al. [21]. It also assigns

a function score between 1.0 and 0.6 to each SNP; A higher score is assigned to SNPs

affecting gene transcript structure or protein product such as non-synonymous SNPs and

SNPs affecting canonical splice sites. However, SNPselector does not examine the possi-

bly different functional effects of non-synonymous SNPs, and thus cannot prioritize them

further. This is a major limitation that needs to be addressed, as discussed in Section 3.2.1.

The SNPLogic service has been most recently developed. It integrates functional in-

formation about SNPs from diverse resources, mainly focusing on SNPs occurring within

transcription factor binding sites, splicing sites, microRNAs and evolutionarily conserved

regions. It also provides information on biological pathways, gene ontology terms and

OMIM disease terms relevant to SNPs. Another distinguishing feature of SNPLogic is

that it enables users to define their own scoring scheme for SNPs. Users can designate

scoring conditions for maximum 6 features that the SNPLogic service provides, and select

SNPs based on the defined scoring function. The SNPLogic service also provides informa-

tion on whether selected SNPs are covered by commercial SNP arrays (such as ParAllele,

Affymetrix and Illumina).

All of the services provide a user-friendly web service interface, contain a comprehen-

sive collection of functional information about SNPs, and enable tag SNP selection as well.

However, they consider tag SNP selection and functional SNP selection separately. That

is, they separately conduct tag SNP selection and functional SNP selection, and present the
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two selected sets as a last step. A major shortcoming of such approach is that, in addition

to the ad-hoc nature of the combination, the number of selected SNPs can be much larger

than necessary.



Chapter 4

Improved Tag SNP Selection using

Bayesian Networks

This chapter introduces our tag SNP selection method using the framework of Bayesian net-

works. We first provide the motivation for the proposed method in Section 4.1. In Section

4.2, we formulate the problem of tag SNP selection in terms of optimizing prediction ac-

curacy, and introduce the basic notation used throughout this chapter. Section 4.3 provides

the necessary background on Bayesian networks, focusing on the concepts most relevant

to our algorithm. Section 4.4 describes the proposed selection and haplotype reconstruc-

tion algorithms, and Section 4.5 reports the evaluation results. Section 4.6 summarizes our

findings and outlines future directions.

46
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4.1 Motivation and Objectives

We propose a new tag SNP selection method that aims to optimize the prediction accuracy

for unselected tagged SNPs. As stated in Section 3.1.3, this prediction-based selection ap-

proach has several advantages over other tag SNP selection approaches that are based on

haplotype diversity or pairwise association. First, unlike haplotype diversity-based selec-

tion methods (introduced in Section 3.1.1), prediction-based methods do not depend on the

block structure of the human genome. Thus, they neither require prior block partitioning

nor rely on the limited diversity of haplotypes. Furthermore, prediction-based methods use

a combination of several tag SNPs to predict each tagged SNP. Therefore, they typically

select a smaller number of tag SNPs than pairwise association-based methods (introduced

in Section 3.1.2) [8].

However, despite their advantages, current prediction-based methods [112, 164, 71, 66,

7, 67] still suffer from several limitations. First, they can only be applied to bi-allelic SNPs

(i.e., SNPs taking only two different nucleotides among {a, g, c, t} at the SNP position).

While most SNPs are indeed bi-allelic, there are SNPs that can take on more than two

nucleotides. While these cases may be rare, it is still desirable to impose as few restrictions

as possible on tag SNP selection [136].

Second, the performance of current prediction-based methods is limited by certain re-

strictions, such as the small-bounded location or the fixed number of tag SNPs that can be

used for predicting each tagged SNP. Although SNPs within close physical proximity are

assumed to be in a state of high linkage disequilibrium (LD), recent studies have reported

that the levels of LD vary across chromosomal regions [38, 151]. Therefore, as noted by

Bafna et al. [7], “. . . it is neither efficient nor desirable to fix the neighborhood in which tag

SNPs are selected”. Moreover, it is realistic to assume that a different number of tag SNPs
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may be needed for predicting each tagged SNP.

Finally, most of current prediction-based methods require the haplotype – rather than

the genotype – information of tag SNPs in order to predict the allele information of tagged

SNPs for newly-genotyped samples. However, reliable haplotype information of tag SNPs

may not be available. As noted in Section 2.3, obtaining haplotype information requires a

separate haplotype phasing procedure, which refers to a computational/statistical procedure

that deduces haplotype information from genotype information. However, as pointed by

Halperin et al. [67], the accuracy of haplotype phasing based only on tag SNPs is limited

due to the reduced linkage disequilibrium (LD) among tag SNPs. Therefore, it is reasonable

to assume that reliable haplotype data are not available in the case of newly-genotyped

samples.

We aim to address some of these restrictions and to improve the prediction performance

of currently available predictive tag SNP selection methods. In the next section, we intro-

duce the basic notations used throughout this chapter, and formally define the problem of

predictive tag SNP selection.

4.2 Problem Definition

Suppose that we are given p SNPs on the target genomic region. Our goal is selecting a

set of at most k tag SNPs ( k < p ) on the genomic region that maximizes the prediction

accuracy for the remaining, unselected tagged SNPs. To formally define this problem of

predictive tag SNP selection, we first introduce basic notation. We represent each SNP as

a discrete random variable, Xi (i = 1, ..., p), whose possible values are the 4 nucleotides,

{ a, g, c, t }. Let D be a dataset consisting of n haplotypes, h1, ..., hn, each containing

the allele information for the p candidate SNPs, X1, ..., Xp. The set D can be viewed as
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an n by p matrix. Each row, Di−, in D corresponds to haplotype hi, while each column,

D−j , corresponds to the allele information for SNP Xj in the n haplotypes. Dij denotes

the allele information for the jth SNP in the ith haplotype.

As introduced in Section 2.1, a haplotype represents the allele information of con-

tiguous SNPs on a single chromosome, while a genotype represents the combined allele

information of the SNPs on a pair of chromosomes. Thus, the allele information of hap-

lotypes takes on values from { a, g, c, t }, while that of genotypes takes on values from

{ a/a, a/g, a/c, a/t, ..., t/c, t/t }. When the combined allele information of a pair of

haplotypes, hj and hk, comprises the genotype gi, we say that hj and hk resolve gi. For

example, the two haplotypes hj =( a, g, a, c ) and hk =( a, c, c, a ) resolve the genotype

gi=( a/a, c/g, a/c, a/c ). We also refer to haplotypes hj and hk as the complementary

mates of each other to resolve gi, and consider them to be compatible with gi.

We now define a prediction function within a probabilistic framework. Given the set V

of random variables corresponding to the p SNPs, V ={X1, ..., Xp} , let the set T consist

of q selected tag SNPs, T={Xt1 , ...Xtq} (T ⊂ V ). To predict the allele of a SNP Xj ∈ V

given the alleles of the tag SNPs in T , we use the posterior probability of Xj conditioned

on the set T , Pr(Xj | Xt1 , ...Xtq). That is, the allele whose conditional probability is the

highest given the alleles of the predictive tag SNPs is taken to be the allele of the tagged

SNP. When multiple maximum probability solutions exist, the most common allele of Xj

is selected. To capture the idea that the predicted allele value can be either correct or

incorrect, we introduce the following prediction indicator function Ip :

Definition 4.1. Prediction Indicator Function : Given a set of p candidate SNPs, V =

{X1, ..., Xp}, a predictive tag SNP set, T = {Xt1 , ..., Xtq}, a SNP, Xj ∈ V , and a haplo-

type, Di−, a prediction indicator function Ip(Xj, T, Di−) is defined as:
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Ip(Xj, T, Di−) =





1 : if Xj ∈ T or

Dij == argmax
x∈{a,g,c,t}

Pr(Xj = x |Xt1 = Dit1 , ..., Xtq = Ditq) ;

0 : otherwise .

For a tag SNP Xj ∈ T, the function Ip(Xtl , T,Di−) is defined to be 1, because the allele

information of a tag SNP is already correctly known. In other cases, Ip(Xtl , T, Di−) obtains

the value 1 only if the predicted allele value is the same as the one in the given haplotype

dataset D . We note that the prediction of each tagged SNP depends on the values of the

tag SNPs, but not on other predicted tagged SNPs. Hence, prediction can be applied in any

order. Using this prediction indicator function, we next formally define our objective.

Definition 4.2. Maximally Predictive Tag SNP Set: Given a set of p SNPs, V =

{X1, ..., Xp}, a constant k (k < p), and a prediction indicator function Ip, a maximally

predictive tag SNP set, T = {Xt1 , Xt2 , ..., Xtq}, for a set of haplotypes D is defined as a

subset T of V , (T ⊂ V ), satisfying the following two criteria:

1) |T | ≤ k, and

2) T = argmax
T ′⊂V

p∑
j=1

n∑
i=1

Ip(Xj, T ′, Di−).

That is, given the set V of random variables corresponding to the p SNPs, V={X1, ..., Xp},

we need to find a subset T ⊂ V , such that the size of T ( i.e., |T | ) is not greater than some

pre-specified constant k, and the allele values of the SNPs in T can best predict the values

of the remaining unselected ones, V − T , based on the function Ip. Our tag SNP selection

method utilizes the framework of Bayesian networks to effectively compute the posterior

probability term in the function Ip and to select a set of predictive tag SNPs. In the next
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section, we briefly introduce the necessary background on Bayesian networks.

4.3 Bayesian Networks: Preliminaries

A Bayesian network (BN) is a graphical model describing joint probability distributions

based on conditional independencies among its variables [82]. Given a finite set of random

variables, V = {X1, ..., Xp}, a Bayesian network has two components: a directed acyclic

graph, G, and a set of conditional probability parameters, Θ = {θ1, ..., θp}. Each node in

the graph G corresponds to a random variable Xj . An edge between two nodes represents

a direct dependence between the two random variables, and the absence of an edge repre-

sents conditional independence between the variables. Using the conditional independence

encoded in the structure of the BN [82], the joint probability distribution of the random

variables in V can be computed as the product of their conditional probability parameters:

Pr(V ) =
p∏

j=1

θj =
p∏

j=1

Pr(Xj|parent(Xj)),

where parent(Xj) denotes the parent nodes of Xj .

The BN formalism enables the computation of the posterior probability of a target vari-

able based on the observed value of other variables. This computation process is typi-

cally referred to as BN inference. Suppose that we have observed the discrete values of

q variables, Xt1 = e1, ..., Xtq = eq, in a BN. Based on this information, the conditional

probability of Xj can be computed from the joint probability of V by marginalizing over

all unobserved variables except Xj , denoted by M = V − {Xj, Xt1 , ..., Xtq} [82]. Let

m denote any of the possible instantiation of the random variables in M . The posterior
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probability of Xj can thus be calculated as:

Pr( Xj = x |Xt1 = e1, ..., Xtq = eq )

=

∑
m

Pr(M = m, Xj = x, Xt1 = e1, ..., Xtq = eq)

Pr(Xt1 = e1, ..., Xtq = eq )

=

∑
m

∏
Xk∈V

Pr(Xk|parent(Xk))
∗

Pr(Xt1 = e1, ..., Xtq = eq )
, (4.1)

where the summation is over all possible combinations of values m assigned to all the

unobserved variables in M , while the value of every observed variable, Xti , is set to ei and

the value of Xj is set to x in Pr(Xk|parent(Xk))
∗.

The Markov blanket is another central concept involved in Bayesian networks. The

Markov blanket of a variable Xj includes the parents of Xj , the children of Xj , and the

other parents of Xj’s children [82]. In a BN, Xj is conditionally independent of all other

variables given its Markov blanket. This conditional independence typically speeds up the

calculation of the posterior probability, Pr( Xj | Xt1 = e1, ..., Xtq = eq ), since when the

Markov blanket of Xj is observed, only this information needs to be taken into account for

computing the conditional distribution of Xj .

Numerous BN inference algorithms have been developed to compute this posterior

probability exactly or approximately. We use the Generalized Variable Elimination al-

gorithm implemented in JavaBayes [35] to compute the posterior probability used in our

prediction indicator function Ip.

To use the BN inference algorithm, we must first identify the structure (G) and pa-

rameters (Θ) of the BN representing the haplotype data D. This process is referred to as

BN learning. Structure learning aims to find the graph structure G which maximizes the
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conditional probability of G given the data D, as follows:

G = argmax
G′

Pr(G′|D) = argmax
G′

Pr(D|G′) · Pr(G′)
Pr(D)

= argmax
G′

Pr(D|G′) · Pr(G′).

We use the Minimum Description Length (MDL) score [103] to reflect the above proba-

bilistic scoring. In the same vein, parameter learning in a BN aims to find Θ that maximizes

the conditional probability of Θ given the data D, Pr(Θ|D). We use a maximum-likelihood

approach to estimate Θ. We refer to the work by Jensen [82] or by Neapolitan [130] for

more details about structure and parameter learning for Bayesian networks.

4.4 Methods for Tag SNP Selection

We present a new tag SNP selection method that selects a set of tag SNPs based on their

accuracy in predicting tagged SNPs. To identify a predictor-predictee relationship among

SNPs, the proposed method utilizes conditional independencies among SNPs in the frame-

work of Bayesian networks (BNs). We thus call our tag SNP selection method BNTagger.

In the following sections, we provide the details of the proposed method.

4.4.1 Overview

BNTagger aims to select a set of tag SNPs that can best predict the unselected tagged

SNPs. However, finding this set of tag SNPs in the general case has been proven to be

NP-complete [7]. To effectively identify a set of highly predictive SNPs, T , we use several

heuristics, utilizing the framework of Bayesian networks (BNs) and the conditional inde-

pendence captured in it. Bayesian networks have been previously used for haplotype block

partitioning [64] and haplotype phasing [183], but to the best of our knowledge, this is the
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Figure 4.1: A Bayesian network of SNPs and examples of prediction accuracy values.
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first time that they are applied to address the problem of tag SNP selection.

Figure 4.1 provides a simple example for how BNTagger utilizes the conditional inde-

pendencies among SNPs to select tag SNPs. The sample here consists of ten haplotypes

with four SNPs each (Figure 4.1.a); the BN structure that represents conditional indepen-

dencies among the four SNPs, along with the probability parameters, is found via BN

structure and parameter learning, respectively, and shown in Figure 4.1.b. For simplicity,

the conditional probabilities are shown only for alleles occurring in the sample. The other

probabilities are considered here to be zero.

To select tag SNPs given this Bayesian network, BNTagger uses a sequential greedy

search. It first starts with an empty tag SNP set T , and sequentially examines the prediction

accuracy for each SNP (node), Xj , averaged over the n haplotypes, based on the current

set, T . If the prediction accuracy for SNP Xj , is smaller than a pre-specified threshold,

BNTagger adds Xj into T as a new tag SNP, because Xj is not well-predicted by the

current tag SNPs in T . Clearly, the order in which SNPs are evaluated is very important,

since it can directly affect the selected set of tag SNPs and their prediction performance.

Unlike other methods that sequentially examine SNPs in the order of their chromosomal

location, BNTagger examines the SNPs according to the topological order (from parents

to children) in the BN. For example, in Figure 4.1.b, BNTagger first examines the root X4,

then its children X3, X1, and so on. Thus, when the prediction accuracy for each SNP Xj

is evaluated given T , selected tag SNPs in the current set T are always non-descendants

of Xj . In particular, when the parents of Xj are selected as tag SNPs in T , there are two

advantages in following the topological order of BNs:

First, the parent-child relation in the BN encodes the direct dependence between the

parents and the child node; that is, the state of a child node depends primarily on the
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information of its parents. For example, Figure 4.1.c shows the prediction accuracy1 for

SNP X3 assuming that each of the other SNPs, X1, X2, or X4 is used as a single tag SNP, as

well as when no tag SNPs are used. All the prediction accuracies are higher when tag SNP

information is used than when it is not. Moreover, the best prediction accuracy is achieved

when the parent of X3, namely X4, is used as a predictor.

Second, as shown in Definition 4.1, BNTagger calculates the prediction accuracy for

each SNP Xj using the posterior probability of Xj given the allele information of the tag

SNPs. To calculate this posterior, the product of the conditional probabilities in the BN

must be computed as is shown in Equation (4.1). However, if the set of tag SNPs contains

no descendants of Xj – which is always true due to our SNP evaluation order following

the topological order of BNs – and the parents of Xj are already in the set of tag SNPs,

the posterior probability, Pr( Xj |Xt1 , ..., Xtq ), is the same as the conditional probability

parameter associated with Xj , Pr( Xj |parent(Xj) ), due to the conditional independence

encoded in the BN structure.

The simplification is derived as follows: Suppose that the current tag SNP set, T =

{Xt1 , ..., Xtq }, is divided into two mutually exclusive subsets; one is referred to as parent−
Tag(Xj), which consists of the parents of the SNP Xj in T , and the other is referred to as

remainingTag(Xj), which consists of the remaining tag SNPs in T . That is,

T = parentTag(Xj) ∪ remainingTag(Xj) .

When all parents of the SNP Xj are selected as tag SNPs (i.e., parent(Xj) = parentTag(Xj) ),

1The prediction indicator function Ip (Definition 4.1) is used in the equations in Figure 4.1.c.
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Pr( Xj |Xt1 , ..., Xtq )

= Pr( Xj | parentTag(Xj), remainingTag(Xj) )

= Pr( Xj | parentTag(Xj) )

= Pr( Xj | parent(Xj) ).

The value of this conditional probability parameter of Xj is a pre-calculated parameter,

stored as a component of the BN. Therefore, the computation procedure of the prediction

accuracy using Ip is much simplified. For instance, in Figure 4.1.c, the best prediction

accuracy for the SNP X3 is simply the maximum of its conditional probability parameters,

Pr(X3|X4), shown in Figure 4.1.b.

To summarize, the conditional independence structure and the conditional probability

parameters in the BN guide BNTagger to find a set of highly predictive tag SNPs, and

expedite the evaluation procedure. We note though that in order to use the BN components,

BNTagger must first learn the structure and the parameters of the BN. Once the BN is

constructed and the tag SNPs are selected, we also provide a prediction framework for

newly-genotyped samples; as mentioned earlier, the main purpose of prediction-based tag

SNP selection is to predict the allele information of unselected tagged SNPs based on that

of the selected tag SNPs.

In conclusion, BNTagger consists of three stages:

1. Identification of the conditional independence relations among SNPs;

2. Selection of tag SNPs using two heuristics; and

3. Reconstruction of haplotype information for newly-genotyped samples.
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Figure 4.2: Outline of tag SNP selection and reconstruction in BNTagger.
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In the first stage, BN learning is used to identify a graph structure, G, and a set of con-

ditional probability parameters, Θ, that best explain the given haplotype data, D. In the

second stage, a heuristic search is applied to the identified BN model to find a set of tag

SNPs. The third stage provides the haplotype reconstruction framework for subsequent

association studies. These three stages are depicted in Figure 4.2, and are further described

in the following sections.

4.4.2 Identification of Conditional Independence Relations among SNPs

To use a Bayesian network as described above, its structure and parameters must first be

learned. We implemented the Sparse Candidate algorithm [57], which accelerates BN

learning by restricting the parents of each node to a small subset of candidates. To select

candidate parents for each node, we use the non-random association among SNPs, known

as linkage disequilibrium (LD). Disease-gene association studies are typically based on

the assumption that there is high LD between a disease allele and adjacent SNPs [36],

thus LD is widely used for quantifying relationships between SNPs in population genetics.

Numerous LD measures have been proposed and been widely used. Among them, we use

the multi-allelic2 extension of Lewontin’s linkage disequilibrium (LD) measure, D′ [72],

which is one of the most commonly used measures for multi-allelic SNPs [5]. We explain

it here in detail.

Let X1 be an m-allelic SNP, and X2 be an n-allelic SNP. Let f 1
i be the relative frequency

of the ith allele for SNP X1, while f 2
j be the relative frequency of the jth allele for SNP X2.

Let f 12
ij be the relative joint frequency of the ith allele occurring for SNP X1 and the jth

allele occurring for SNP X2 (where i = 1, .., m and j = 1, .., n). Formally, the multi-allelic

2Most LD measures assume SNPs to have only two different alleles. Multi-allelic LD measures extend
these bi-allelic LD measures, by allowing SNPs to have more than two different alleles.
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extension of Lewontin’s LD, D′, is defined as:

D′ =
m∑

i=1

n∑
j=1

f 1
i ·f 2

j |
f12

ij −f1
i ·f2

j

Dmax
|,

where Dmax is the maximum value among the products of two relative frequencies of SNP

X1 and X2, f 1
i · f 2

j (i = 1, .., 4; j = 1, .., 4). In principle, D′ measures the difference

between the observed (f 12
ij ) and the expected frequency of haplotypes under independence

assumption (f 1
i ·f 2

j ), normalizes the difference (f 12
ij − f 1

i ·f 2
j ) by the maximum LD (Dmax),

and weighs the result by the expected joint frequency under independence (f 1
i ·f 2

j ).

Using the measure D′, BNTagger first selects candidate parents for SNP Xj from the set

V−{Xj}, whose pairwise linkage disequilibrium with Xj , as measured by D′, is in the top

γ percent (here, γ = 10). The search for the optimal graph structure is performed using

greedy hill climbing with random restarts. The learned network is then used for selecting

better candidate parents for the next iteration, as proposed by Friedman et al. [57]. After

N iterations (N=25,000), we select the graph structure with the best MDL score [103].

The conditional probability parameters Θ = {θ1, ..., θp} are computed using maximum-

likelihood estimation given the identified structure and the data.

4.4.3 Selection of Predictive Tag SNPs

Given the SNP-independence structure and the parameters of the BN constructed in the

previous stage, we now identify a set of tag SNPs, T , for the haplotype data, D. We let a

different combination of tag SNPs in T can be used to predict each tagged SNP. We thus

identify a subset of predictive tag SNPs for each tagged SNP Xj , and denote this set by

TXj
⊂ T .

As was demonstrated earlier, given the haplotype data, D, and the current set of tag
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SNPs, T , we sequentially examine the prediction accuracy for each SNP, Xj . If the pre-

diction accuracy for the SNP Xj is smaller than a pre-specified threshold, α, Xj is added

to the set of tag SNPs, T . Otherwise, Xj is considered as a tagged SNP, and the current

tag SNP set, T , is kept as its candidate set of predictive tag SNPs, TXj
. We refer to this

procedure as sequential search. When a new tag SNP is added to T during the sequential

search, we re-evaluate the prediction accuracy for previously examined tagged SNPs using

the updated T . If the prediction accuracy for the re-examined tagged SNP is increased by

using the new set T , the candidate set of predictive tag SNPs associated with Xj is updated

to the new T . We refer to this procedure as revising search.

To summarize, BNTagger sequentially identifies a global set of tag SNPs, T , based

on their prediction accuracy, and iteratively updates the predictive set of tag SNPs, TXj
,

for each tagged SNP, Xj . To efficiently conduct these procedures, BNTagger uses two

heuristics, as described below. The first heuristic is a SNP evaluation order that follows the

topological order captured in the BN structure. BNTagger topologically sorts the nodes in

the BN, which yields the levels of nodes as defined below, and conduct sequential search

following this topological order.

Definition 4.3. Level A level of a node Xj in a Bayesian network is recursively defined as:

level(Xj) =





1 : if parent(Xj) = φ ;

max
Xk∈parent(Xj)

(level(Xk)) + 1 : otherwise .

The sequential search is conducted in the order of the levels from low to high. This way,

the level of tag SNPs in T is never greater than that of the currently examined node. As

mentioned before, there are two advantages to this ordering when parents are tag SNPs: (1)

The value of child nodes depends primarily on the information of their parents, and as such
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parents tag SNPs are good predictors of their children SNPs; and (2) the child’s posterior

probability can be obtained directly from the network’s conditional probability parameters.

The second heuristic is used for expediting the identification of predictive tag SNPs for

each tagged SNP. That is, if the current set of tag SNPs, T , shows a prediction accuracy

greater than a pre-specified threshold, β, for SNP Xj , we do not re-evaluate it any more.

We formally define the current tag SNP set, T , as the prediction blanket of Xj , and use

it as the final set of predictive tag SNPs for Xj . This second heuristic stems from an

empirical observation that typically when the prediction accuracy for a tagged SNP, Xj ,

given the current set T , is sufficiently high, new tag SNPs do not significantly improve the

accuracy. This phenomenon was also observed by Ackerman et al. [1]. Thus, we assume

that it is unnecessary to examine the effect of every new tag SNP on the tagged SNPs that

are already well-predicted. The loss in accuracy is typically negligible. Moreover, the

potential overfitting of predictive tag SNP selection to the training data D is also reduced.

Formally, we define the prediction blanket as follows:

Definition 4.4. Prediction Blanket Given a prediction indicator function, Ip, and a con-

stant β, the current set of tag SNPs, T = {Xt1 , ..., Xtq}, is defined as the prediction blanket

of Xj if the average prediction accuracy for Xj , over all haplotypes Di−, given T is greater

than β, that is:

[
1

n

n∑
i=1

Ip( Xj, T, Di−) ] > β.

As a matter of fact, in a Bayesian network, re-evaluation can be avoided whenever TXj
is

the Markov blanket of Xj , as information about newly-added tag SNPs does not affect the

posterior probability of Xj given its Markov blanket. However, it is unlikely that all par-

ents, all children, and all spouses of Xj (i.e., the complete Markov Blanket of Xj) will be

included in the current tag SNP set T , unless T is very large. Thus, our prediction blanket
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can be viewed as a relaxed version of the Markov blanket in the context of prediction. Our

selection algorithm is summarized in Tables 4.1 and 4.2.

4.4.4 Reconstruction of Newly-Genotyped SNP Information

The ultimate purpose of prediction-based tag SNP selection is to reconstruct the infor-

mation for all SNPs on the haplotype in newly-genotyped samples (for instance, in new

association studies), using only the selected tag SNPs. We propose a practical framework

for this reconstruction. Our reconstruction algorithm takes genotype data of tag SNPs as

input, infers their resolving haplotypes (as defined in the first paragraph of Section 4.2),

predicts the alleles of tagged SNPs using the Bayesian network model built in stage I, and

outputs the haplotype information of all SNPs.

Let us elaborate the reconstruction procedure. Suppose that our tag SNP set T , which is

identified in stage II, consists of q SNPs, that is, T = {Xt1 , ..., Xtq}. Let g = (xt11/xt12 , ...,

xtq1/xtq2) be a new genotype, consisting of the combined allele information of the q tag

SNPs. To deduce the complete haplotype information corresponding to the genotype g,

we first select the most common haplotype in D, whose tag SNP information is compatible

with g. The complementary mate of the haplotype can then be automatically constructed. If

we cannot find any haplotype compatible with g in D, we create a new haplotype whose al-

leles are assigned as the major allele for each heterozygous tag SNP. Let h′n be the new hap-

lotype, and h′ni
be its ith element (where i = 1, ..., q). Given g = (xt11/xt12 , ..., xtq1/xtq2),

h′ni
is defined as:

h′ni
=





xti1 : if xti1 = xti2 ;

argmax
x∈{xti1 xti2}

Pr(Xti = x) : otherwise .
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Table 4.1: BNTagger: haplotype tagging SNP selection algorithm - sequential search

D: training data ( n haplotypes with p SNPs )
Ip: a prediction indicator function
V : a set of p SNPs {X1, X2, .., Xp}
T : a set of tag SNPs {Tt1 , ..., Ttq}

// predefined constants
α: accuracy threshold for tag SNPs
β: accuracy threshold for prediction blanket

level[Xj]: the level of Xj in the BN
status[Xj]: the status of Xj

accuracy[Xj]: the prediction accuracy for Xj

prediction blanket[Xj]: the prediction blanket for Xj

Main SequentialSearch ( D, Ip ) {
T = φ;
∀j status[Xj]=‘unchecked’;
∀j accuracy[Xj]=0;

L = max
j

level[Xj];

for each (level 1 ≤ l ≤ L)
for each (node Xj whose level is l)

accuracy= 1
n

n∑
i=1

Ip( Xj , T, Di− );

if (accuracy < α) // add this node as an tag SNP
status[Xj] = ‘tag SNP’;
T = T ∪ {Xj};
call RevisingSearch( level[Xj ] );

else if (accuracy > β) // the prediction blanket of Xj is found
status[Xj] = ‘blanket found’;
prediction blanket[Xj] = T ;

else // store T as a candidate set of predictive tag SNPs
status[Xj] = ‘tagged’;
prediction blanket[Xj] = T ;
accuracy[Xj] = accuracy;

}
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Table 4.2: BNTagger: haplotype tagging SNP selection algorithm - revising search

D: training data ( n haplotypes with p SNPs )
Ip: a prediction indicator function
V : a set of p SNPs {X1, X2, .., Xp}
T : a set of tag SNPs {Tt1 , ..., Ttq}

// predefined constants
α: accuracy threshold for tag SNPs
β: accuracy threshold for prediction blanket

level[Xj]: the level of Xj in the BN
status[Xj]: the status of Xj

accuracy[Xj]: the prediction accuracy for Xj

prediction blanket[Xj]: the prediction blanket for Xj

Function RevisingSearch (L) {
for each (node Xk whose level[Xk] ≤ L and status[Xk]==‘tagged’)

accuracy= 1
n

n∑
i=1

Ip( Xk, T, Di− );

if(accuracy > β)
status[Xj] = ‘blanket found’;
prediction blanket[Xk] = T ;

else if (accuracy > accuracy[Xk])
prediction blanket[Xk] = T ;
accuracy[Xk] = accuracy;

}
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The prior probability, Pr(Xti), can be computed using our Bayesian network model. Again,

the complementary mate of the new created haplotype can then be automatically con-

structed. In either case, the inferred two haplotypes for g are separately used for predicting

the alleles of each tagged SNP. We refer to this procedure as incremental haplotype recon-

struction.

The principle of incremental haplotype reconstruction is based on Clark’s parsimony

approach [28]. That is, it tries to resolve an ambiguous genotype using one of the already

identified haplotypes. Moreover, rather than picking any compatible haplotype, it selects

the most common one, since common haplotypes are the most likely candidates under the

random mating3 assumption. Our haplotype reconstruction for the tag SNP genotype thus

follows the widely-used maximum parsimony approach. However, it differs from conven-

tional algorithms in utilizing the existing haplotype information of all previously known

SNPs, rather than directly phasing the genotype information of tag SNPs. We believe that

utilizing this prior haplotype information is necessary. As noted by Halperin et al. [67],

haplotype phasing based only on the set of tag SNPs is not as reliable as haplotype phasing

based on the original set of SNPs, due to the reduced linkage disequilibrium between tag

SNPs.

Once the haplotype information of tag SNPs is deduced, we use the same prediction rule

introduced in Section 4.2 to predict the tagged SNPs. That is, the allele whose conditional

probability is the highest given the alleles of the tag SNPs is taken to be the allele for each

tagged SNP. When multiple solutions exist, the most common allele of the tagged SNP is

selected.
3Random mating involves individuals pairing by chance, not according to their genotypes or pheno-

types [70] .



CHAPTER 4. TAG SNP SELECTION USING BAYESIAN NETWORKS 67

4.5 Experiments and Results

We conduct a comparative study to evaluate the performance of BNTagger compared to

three state-of-the-art prediction-based methods: Eigen2htSNP [112], Block-free method [65,

7] and STAMPA [67]. In the following sections, we first summarize the experimental set-

ting of the comparative study, and report the experimental results.

4.5.1 Evaluation Methods

We compare the performance of our method with that of three state-of-the-art predictive

tag SNP selection methods: 1) The Eigen2htSNP method based on principal component

analysis (PCA) [112]; 2) The Block-free method based on dynamic programming [65, 7];

and 3) The STAMPA method based on dynamic programming [67]. The problem of SNP

selection has features similar to the problem of data reduction or compression, which has

been widely addressed in computer science and engineering. One such method is principal

component analysis (PCA). Lin and Altman [112] applied PCA for selecting tag SNPs with

two heuristic options: varimax and greedy, and predicted each tagged SNP using one tag

SNP whose correlation coefficient with the tagged one is the highest. Bafna et al. [7] and

Halldórsson et al. [65] tested the Block-free method with two window sizes: 21 and 13,

and used the majority vote of tag SNPs to predict each tagged SNP. Halperin et al. [67] also

relied on the majority vote of tag SNPs for prediction, but unlike the previous two methods,

they used the genotype data of tag SNPs rather than haplotype data.

All these methods aim to select a set of highly predictive tag SNPs for unselected,

tagged SNPs. Therefore, they have all been evaluated using prediction accuracy. Accord-

ingly, we use here prediction accuracy as the evaluation measure. We note that previously
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the published results [67, 65, 7, 112] were all based on different datasets. To compare

BNTagger with each of these methods, we obtained the dataset used to test each method,

preprocessed it as described in the respective publication, and applied our algorithm to it.

For evaluation, we use the same evaluation procedure used by each of the compared meth-

ods, utilizing leave-one-out cross validation for the Block-free and the STAMPA meth-

ods [67, 65, 7] and 10-fold cross validation for Eigen2htSNP [112], as described in the

respective publications. As Lin et al. [112] did not provide their 10-fold split, we ran the

complete 10-fold cross validation procedure 10 times, each using a randomized 10-way

split, to ensure robustness. In all cases, the average prediction accuracy is used as the ulti-

mate evaluation measure. The prediction performance values of the compared methods for

each dataset were directly taken from the respective publications [67, 65, 7, 112].

4.5.2 Test Data

Three public datasets, ACE (angiotensin converting enzyme) [154, 112], LPL (human

lipoprotein lipase) [133, 7, 65], and IBD5 (inflammatory bowel disease 5) [38, 112, 67]

were used for evaluation. These datasets were previously used to test the three compared

methods, as reported in their respective publications. We first analyzed the genetic charac-

teristics of each dataset based on: gene diversity, linkage disequilibrium, and recombination

rate. Gene diversity refers to the probability that two haplotypes chosen at random from

the sample are different [131], and it is is calculated as:

gene diversity (D) = (n/(n− 1)) · (1−
h∑

i=1

p2
i ),

where D is a haplotype dataset, n is the total number of haplotypes in D, h is the number of
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distinct haplotypes in D, and pi is the relative frequency of the ith distinct haplotype in D.

Linkage disequilibrium (LD) between SNPs is estimated by the multi-allelic extension of

Lewontin’s LD, D′ [72] (as introduced in Section 4.4.2), where the statistical significance

of the standardized LD parameter is calculated using the χ2 test with one degree of freedom.

The recombination rate of each dataset is measured by the method proposed by Hudson et

al. [79].

The first dataset ACE [154] contains 78 SNPs within a genomic region of 24Kb on

chromosome 17q23. Genotyping was done from 11 individuals. This dataset was used by

Lin and Altman to test Eigen2htSNP [112]. Following their procedure, among the 78 orig-

inal SNPs only 52 bi-allelic nonsingletons are analyzed. Partially due to the small number

of SNPs and small sample size, this dataset shows high average LD (0.78) and relatively

low gene diversity (0.876). The recombination rate is also relatively low (19.38%).

The second dataset LPL [133], which was used by Bafna et al. [7] and by Halldorsson

et al. [65] to test the Block-free method, contains 88 SNPs spanning 5.5Kb on chromo-

some 19q13.22. Genotyping was performed over 71 individuals. Following the analysis

performed by Bafna et al. [7], we analyze only 87 bi-allelic SNPs. This dataset has high

gene diversity (0.99) and low average LD (0.55), because it consists of haplotypes from

three different populations. The four-gamete test shows 55.95% recombination or recur-

rent mutation.

The third dataset, IBD5 [38] contains 103 SNPs on chromosome 5q31, spanning 500Kb.

Genotyping was performed over 129 father-mother-child trios from a European population.

This dataset was used by Halperin et al. and by Lin and Altman to test the STAMPA [67]

and the Eigen2htSNP [112] methods, respectively. Lin and Altman. [112] analyzed data

from all 387 individuals using PHASE [171] for haplotype phasing. Halperin et al. [67]
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Table 4.3: Summary of test datasets

Data SNP Haplotype Haplotype Gene Average Average
No No Phasing Diversity LD (Std) Recombination

ACE [112] 52 22 PHASE 0.876 0.78 (0.34) 19.38%
LPL [133] 87 142 known 0.991 0.55 (0.35) 55.95%

IBD5-1 [112] 103 774 PHASE 0.981 0.53 (0.27) 94.3%
IBD5-2 [38] 103 258 GERBIL 0.724 0.41 (0.23) 99.6%

analyzed data of only 129 individuals using GERBIL [96] for haplotype phasing. Thus, fol-

lowing both of these two procedures, we created two separate datasets from IBD5, denoted

as IBD5-1 (corresponding to Lin and Altman’s) and IBD5-2 (corresponding to Halperin’s).

Both these sets have low linkage disequilibrium and high recombination rates. The sum-

mary statistics of all datasets is given in Table 4.3.

4.5.3 Test Results

We summarize the performance of BNTagger compared with that of the three state-of-the-

art tag SNP selection methods in Figure 4.3. We also compute the p-value of the difference

in performance, using the Wilcoxon-ranksum test with 5% significance level. Overall, BN-

Tagger consistently outperforms other methods on all datasets. Most importantly, improve-

ment in prediction performance is most notable when the number of selected tag SNPs is

small, the average linkage disequilibrium in a dataset is relatively low, and the gene diver-

sity is high. This is a major advantage of BNTagger, since most tag SNP selection methods

have been known to suffer in those cases [36, 84, 6, 4, 21]. In other words, BNTagger

retains its good performance even in what are considered to be hard cases.

The prediction performance of Eigen2htSNP [112] is compared with ours using two
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(a) ACE (Angiotensin Converting Enzyme)
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(c) IBD5-1 (Inflammatory Bowel Disease 5)
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(d) IBD5-2 (Inflammatory Bowel Disease 5)

Figure 4.3: Prediction performance of BNTagger and the compared methods for test datasets.
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datasets: ACE and IBD5-1. For the first dataset, ACE, Eigen2tag SNP-varimax shows

performance comparable to ours (see Figure 4.3(a); p-values are 0.2933 for varimax and

4.88x 10−2 for greedy), but in the case of IBD5-1, its performance is considerably lower

than ours, as shown in Figure 4.3(c) (p-values are 1.9489 x 10−6 for varimax and 1.5707x

10−8 for greedy). The prediction performance of the Block-free method [7, 65] is compared

with ours using the LPL dataset. Their prediction accuracy substantially increases with the

number of selected tag SNPs, as shown in Figure 4.3(b), but the difference in performance

between our method and the Block-free method is significant when the number of tag SNPs

is smaller than 30 (p-values are 4.2 x 10−3 for window 21, and 1.2552 x 10−9 for window

13). The prediction accuracy of STAMPA is compared with ours using the dataset that

Halperin et al. [67] used, IBD5-2, as shown in Figure 4.3(d). Again, BNTagger outperforms

STAMPA (p-value=0.7 x 10−2), and the difference is significant as the number of tag SNPs

gets smaller (below 60).

Overall, as shown in Figure 4.3, our method uses a small fraction of SNPs as tag SNPs

(2.9%-11.5%) to achieve 90% prediction accuracy for all datasets: 4 tag SNPs among 52

SNPs (7.7%) for dataset ACE, 10 among 87 (11.5%) for LPL, 4 among 103 (3.9%) for

IBD5-1, and 3 among 103 (2.9%) for IBD5-2. To achieve 95% prediction accuracy, we

need 8.7%-32.7% of the target SNPs: 17 tag SNPs among 52 SNPs (32.7%) for dataset

ACE, 22 among 87 (25.2%) for LPL, 9 among 103 (8.7%) for IBD5-1, and 13 among 103

(12.6%) for dataset IBD5-2. Table 4.4 summarizes the prediction accuracy of BNTagger

with respect to the percentage of the selected tag SNPs.

As can be seen from Table 4.4, BNTagger can be reliably used even when the maximum

number of tag SNPs is very small. This is a major advantage of BNTagger. The explicit

goal of tag SNP selection is to save genotyping overhead, typically aiming at a 10-50 fold
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Table 4.4: Prediction accuracy (in %) of BNTagger

Percentage of Selected tag SNPs
dataset 0% 5% 10% 25% 50%
ACE 66.7 86.5 92.1 93.7 97.4
LPL 77.2 86.6 89.0 95.0 98.3

IBD5-1 73.3 91.2 95.3 98.4 99.6
IBD5-2 83.6 91.9 94.9 98.0 99.0

reduction in the number of target SNPs [136]. Thus, it is especially important to guarantee

good prediction performance when the number of tag SNPs is a small fraction of the total

number of SNPs. We note that, unlike other methods, BNTagger can predict the allele

information of all SNPs even without any tag SNPs. In this case, the posterior probability

of the predicted SNP Xj is the same as the prior probability of Xj . Thus, the prediction

used by the function Ip, as shown in Definition 1, is still applicable even without selecting

any tag SNPs.

4.6 Discussion

We presented BNTagger, a heuristic algorithm that uses the probabilistic framework of

Bayesian networks to effectively identify a set of predictive tag SNPs. BNTagger out-

performs other state-of-the-art predictive methods when compared over their own datasets

and prediction measure. Moreover, its improved performance is especially notable when a

small number of tag SNPs are selected. We believe that two main factors contribute to this

improved performance:

1. We do not restrict the predictive tag SNPs for each tagged SNP to any bounded

location.
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2. We do not fix the number of the predictive tag SNPs for each tagged SNP.

In addition, heuristics based on the conditional independencies among SNPs guide BNTag-

ger to effectively and efficiently find an improved set of tag SNPs in terms of prediction

accuracy.

Another major advantage of BNTagger is that, after the tag SNPs are selected, it can

directly reconstruct the haplotype information of newly-genotyped samples. BNTagger

does not require prior haplotype phasing of tag SNPs, which might not be reliable [67].

Instead, it deduces the haplotype information of the new sample based on the haplotype

training data that was originally used for tag SNP selection. In addition, BNTagger neither

requires SNPs to be bi-allelic, nor does it require prior block-partitioning. Nevertheless, it

shows significant improvement in prediction performance for datasets with high gene di-

versity and relatively low linkage disequilibrium. Thus, we believe that BNTagger provides

a practical and comprehensive framework for tag SNP selection, and can form a reliable

basis for subsequent disease-gene association studies.

Nevertheless, BNTagger has a number of drawbacks. First, the improved performance

of BNTagger comes at the cost of compromised running time. Currently, its running time

varies from dozens of minutes (when the number of SNPs is 52) to 2-4 hours (when the

number is 103). Most of this time is spent on stage I, namely, learning the Bayesian net-

work, rather than on tag SNP selection or on haplotype reconstruction. As BNTagger does

not partition the haplotype data (neither through blocks nor through a sliding-window4), it

considers all SNPs at once. That is, the conditional independence structure among all SNPs

is learned simultaneously, which substantially increases its running time as the number of

SNPs increases. In practice, we argue that based on the clinical importance of disease-gene

4Sliding-window-based algorithms confine the predictive tag SNPs for each tagged SNP to the ones in the
pre-defined neighborhood (i.e., sliding-window) of the tagged SNP [123].
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association studies [36], improved prediction performance takes priority over running time

– when the time is not prohibitively long. Nevertheless, our future research will focus on

improving the speed of BNTagger, while minimizing loss in prediction performance. This

will most likely involve the evaluation of alternative heuristics and optimization criteria.

Second, BNTagger is not applicable to genome-scale genetics studies. As mentioned

previously, BNTagger is build on the framework of Bayesian networks, for which learning

and inference is not yet scalable to the size of a whole genome (such as several hundreds

of thousands of SNPs per each chromosome). To address this scalability issue, we plan

to apply a hierarchical selection approach. For example, SNPs can be first divided into

subgroups with high pairwise linkage disequilibrium using clustering. Tentative tag SNPs

are then selected from each subgroup, and BNTagger can be applied to the SNPs for further

reducing the number of predictive tag SNPs.

Third, BNTagger does not directly set the number of selected tag SNPs. Rather, it

selects tag SNPs based on their prediction accuracy with respect to a predefined threshold

(α). Thus, by adjusting this threshold, the number of selected tag SNPs can be controlled.

We intend to revise our selection algorithm so that the number of tag SNPs can be explicitly

set, if needed.

Finally, we used the multi-allelic extension of Lewontin’s linkage disequilibrium (LD),

D′ [72], to expedite the learning procedure in stage I. We plan to apply other multi-allelic

LD measures, and examine whether different measures affect the learned networks, the

selected set of tag SNPs, and their prediction performance.



Chapter 5

A Classification System for Selecting

Functionally Significant SNPs

In the previous chapter, we have introduced a Bayesian network-based heuristic method for

selecting a set of informative tag SNPs. In this chapter, we describe the web-based pub-

lic database service, F-SNP (Functional Single Nucleotide Polymorphism), for supporting

another major SNP selection approach, called functional SNP selection. F-SNP integrates

functional information about SNPs from a variety of bioinformatics tools and databases,

and classifies a subset of the assessed SNPs as functional. These functional SNPs are likely

to have deleterious effects on major bio-molecular functions, and as such, more likely to

underlie the etiology of disease. We provide the motivation for the F-SNP service in Section

5.1, and describe the database construction procedure in Section 5.2. Section 5.3 provides

statistics on the database contents and describes the web interface to the database. Finally,

we discuss the impact of the proposed work in Section 5.4.

76
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5.1 Motivation and Objectives

We have constructed the F-SNP (Functional Single Nucleotide Polymorphism) database

to facilitate the selection of functionally significant SNP markers for genetic studies. As

discussed in Section 3.2, a variety of web services and public databases have been recently

introduced to prioritize SNPs by their putative deleterious functional effects. These tools

examine the functional category of genomic regions where each SNP occurs (for example,

exons, splice sites, or transcription regulatory sites), and predict the potential corresponding

functional effects that the SNP may have, using a variety of machine-learning approaches

and experimental data. These computational methods, along with other tools in molecular

genetics and epidemiology, are expected to enhance the identification of disease-causing

SNPs underling many common and complex human diseases [149, 174, 148].

Yet, most such tools and systems that prioritize functionally significant SNPs provide

only partial information about the functional significance of SNPs. That is, they examine

the putative deleterious effects of SNPs with respect to only a single biological function,

such as either protein coding or splicing regulation (but not both). Thus, to comprehen-

sively analyze the functional significance of SNPs, researchers must spend much time and

effort to separately apply multiple tools, and interpret/integrate their often conflicting pre-

dictions.

The F-SNP database aims to address this limitation by providing a comprehensive col-

lection of functional information about SNPs. Specifically, F-SNP provides information

about potential deleterious effects of SNPs with respect to the four major bio-molecular

functional categories, namely, splicing regulation, transcriptional regulation, protein trans-

lation, and post-translational modification. Researchers can thus identify SNPs that may

have deleterious effects on protein structure or function, or interfere with proper regulation
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of mRNA transcription or alternative splicing.

Moreover, the F-SNP database aims to provide easy-to-use web interface so that its

users can efficiently retrieve functional information about SNPs via diverse exploration

routes. The following sections describe the construction procedure of the F-SNP database,

provide a brief description of its current contents, and explain the web-based interface.

5.2 Database Construction

The construction procedure for the F-SNP database involves three main steps: 1) integrat-

ing primary databases for SNPs, genes, and human diseases; 2) assessing the functional

effects of SNPs using external function-assessment tools and databases; and 3) identify-

ing functionally significant SNPs using a majority-vote classifier. We further describe the

details of each step in the following sections.

5.2.1 Integrating Primary Databases

SNPs and Genes We downloaded the dataset of 11,811,594 human SNPs and their an-

notations from the dbSNP build 126 [167] and Ensembl release 42 [78] databases. We also

downloaded the list of 38,550 human genes 1 along with their primary information such as

gene symbol, alias names, chromosomal location, and gene type from NCBI Entrez Gene

(downloaded Dec. 12, 2006) [117].

SNP to Gene Mapping To link SNPs with specific genes, SNPs that are located along

the gene region (including 5kb upstream and 5kb downstream) were identified for each

1Entrez Gene is NCBI’s database for gene-specific information, encompassing annotated genomic regions
for tRNA, rRNA, snRNA, scRNA, snoRNA, miscRNA, protein-coding and pseudo genes. As of May 1, 2009,
Entrez Gene provides information about 40,590 genes for human.
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gene. As a result, a total of 4,043,147 SNPs are mapped to 23,630 human genes.

Gene to Disease Mapping From NCBI’s Genes and Disease site (http://www.ncbi.nlm.ni-

h.gov/disease/), we retrieved the list of 85 human genetic disorders, categorized by the 16

body parts that they affect (downloaded Jan. 29, 2007). To link candidate genes with the 85

diseases, we downloaded the dataset of a gene-disease map from NCBI’s OMIM database

(downloaded Jan. 30, 2007) [69]. Accordingly, 2,374 genes were mapped to 85 human

genetic disorders.

5.2.2 Assessing the Functional Effects of SNP

We assess the deleterious effects of SNPs using a variety of existing, publicly available

bioinformatics tools and databases for function assessment. In particular, we focus on the

potential deleterious effects of SNPs with respect to the following four major categories of

biological function:

• Protein Coding: SNPs in protein coding regions may cause a deleterious amino

acid substitution (called non-synonymous or missense SNPs) or interfere with pro-

tein translation by creating a new start/stop codon or frameshift (called nonsense

SNPs);

• Splicing Regulation: SNPs in exonic or intronic splicing regulatory sites may inter-

fere with splicing regulation for pre-mRNAs, resulting in detrimental exon skipping

or intron retention;

• Transcriptional Regulation: SNPs in transcription regulatory regions (such as tran-

scription factor binding sites, CpG islands, microRNAs, etc.) can alter the affinity of

transcription regulators to their binding sites, and thus disrupt proper gene regulation;
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• Post-Translational Modification: SNPs in protein coding regions may alter post-

translational modification sites (such as phosphorylation, o-glycosylation, or tyrosine

sulfation sites), interfering with proper post-translational modification.

Figure 5.1 illustrates the detailed function-assessment process: Each SNP is exam-

ined for deleterious effects with respect to each functional category (that is, protein cod-

ing, splicing regulation, transcriptional regulation, and post-translational modification –

as shown at the top part of the figure). For each category a series of tests is executed to

determine whether the examined SNP has a deleterious functional impact. First the type

of the genomic region (such as exon, intron, splice site, 5’/3’ un-translated regions of a

gene (UTR), or upstream or downstream from a gene) is identified, using data from db-

SNP [167] and Ensembl [78]. Each SNP is then examined based on its genomic location

for its possible deleterious effects along each bio-molecular functional category.

For example, to assess if a SNP has a deleterious effect on protein coding, it first must be

located on a coding region. Ensembl [78] is used to examine if this is a nonsense mutation,

in which case the SNP is considered to be deleterious 2. Otherwise - if the SNP is a

missense mutation, it is further tested by five different tools, PolyPhen [147], SIFT [132],

SNPeffect [153], SNPs3D [189] and LS-SNP [88] to check if the missense mutation is

deleterious. A majority vote among these tools concludes the process, and identifies the

SNP as either having a potentially deleterious functional impact (denoted ‘functional’ in

the figure) or not. We further describe the decision procedure in Section 5.2.3.

When a SNP is located on genomic regions of which the function is currently unspeci-

fied, it is examined by all the tools; As we do not know the function of the region, we need

to examine the putative effects of SNPs with respect to all four bio-molecular functions.
2Nonsense SNPs are often considered to have most deleterious effects; They lead to a premature termina-

tion of amino acid peptides, often resulting in direct loss of protein function [185].
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We note that, to make a robust functional assessment for SNPs, we use multiple, in-

dependent bioinformatics tools that are based on different data, algorithms, or theory for

examining each functional category. The tools, PolyPhen [147], SIFT [132], SNPeffect ver.

2.0 [153], SNPs3D [189], and LS-SNP [88] are used to identify non-synonymous deleteri-

ous SNPs; ESEfinder release 3.0 [22], RescueESE [187], ESRSearch [63], and PESX [200]

are used to identify SNPs in exonic splice regions; The Ensembl database release 42 [78] is

used to identify nonsense SNPs and SNPs in intronic splice sites; TFSearch ver. 1.3 [3] and

Consite [159] are used to identify transcriptional regulatory SNPs in promoter regions; The

Ensembl release 42 [78] and GoldenPath [101] databases are used to identify SNPs in other

transcriptional regulatory regions (such as microRNA, CpGIslands); KinasePhos [77], OG-

PET ver. 1.0 [59], and Sulfinator [124] are used to examine post-translation modification

sites.

In addition to the function assessment tools for SNPs, GoldenPath (downloaded Dec.

2006) [101] is used to identify genomic regions that are conserved across multiple species

(currently: chimpanzee, dog, mouse, rat, chicken, zebrafish and fugu). We use this infor-

mation to filter out possible false-positive predictions of regulatory regions [11], such as

‘transcription factor binding sites’ or ‘exonic splicing sites’ – as shown in the two middle

boxes in Figure 5.1. SNPs occurring in non-conserved regulatory regions are not selected

as functional. This strategy is used because there is a high rate of false positive findings of

regulatory sequences by in silico prediction tools due to the short length of such sequences,

typically 6- to 8-mers [22]. Table 5.1 summarizes the list of the 16 integrated tools and

databases in detail.



CHAPTER 5. FUNCTIONAL SNP SELECTION USING CLASSIFICATION 83

Table 5.1: Integrated bioinformatics tools and databases. For each possible functional
category into which a SNP may be classified, the table provides the tools
that examine this function, and the URL from which the respective tool is
available (as of Feb. 2009). The category Conservedness in the last row is
not a functional category in-and-of itself, but is informative in determining
the effects of SNP on splicing and transcriptional regulation.

Function Tool URL

Protein PolyPhen [147] http://genetics.bwh.harvard.edu/pph/data/index.html

Coding SIFT [132] http://blocks.fhcrc.org/sift/SIFT.html

SNPeffect [153] http://snpeffect.vib.be/index.php

SNPs3D [189] http://www.snps3d.org/modules.php?name=SNPtargets

LS-SNP [88] http://alto.compbio.ucsf.edu/LS-SNP/Queries.html

Ensembl [78] http://www.ensembl.org/index.html

Splicing ESEfinder [22] http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi

Regulation RescueESE [187] http://genes.mit.edu/burgelab/rescue-ese/

ESRSearch [63] http://ast.bioinfo.tau.ac.il/

PESX [200] http://cubweb.biology.columbia.edu/pesx/

Ensembl [78] http://www.ensembl.org/index.html

Transcriptional TFSearch [3] http://www.cbrc.jp/research/db/TFSEARCH.html

Regulation Consite [159] http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/

GoldenPath [101] http://genome.ucsc.edu/

Ensembl [78] http://www.ensembl.org/index.html

Post-Translation KinasePhos [77] http://kinasephos.mbc.nctu.edu.tw/

Modification OGPET [59] http://ogpet.utep.edu/

Sulfinator [124] http://www.expasy.ch/tools/sulfinator/

Conservedness GoldenPath [101] http://genome.ucsc.edu/
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5.2.3 Summarizing the Functional Importance of SNPs

In addition to providing the raw output from the 16 integrated tools stating the functional

effects of SNPs, F-SNP also denotes a subset of the assessed SNPs as functional SNPs;

these are SNPs that are predicted by a majority of the integrated tools to be deleterious

with respect to at least one biological function of a gene or a gene product. To identify

the functional SNPs, we employ a classification method, to which we refer as F-SNP-C

(F-SNP Classification).

The F-SNP-C method works as follows: For each of the four bio-molecular functional

categories, a SNP is assigned into one of three classes: Class 1 indicates irrelevance to

the corresponding biological function; Class 2 indicates that the SNP is relevant to the

biological function, but predicted to be benign or has no evidence of deleterious effects;

Class 3 indicates that the SNP is likely to be deleterious to the function.

For example, SNPs outside a protein coding region are considered to be irrelevant to

protein coding, and as such are assigned to Class 1 with respect to ‘protein coding’. Among

the SNPs within a protein coding region, nonsense SNPs and some missense SNPs are pre-

dicted to have deleterious effects to protein coding (by a majority of the used assessment

tools), and are thus assigned to Class 3; the remaining SNPs within the protein coding

region are assigned to Class 2. Similarly, the SNPs within a highly conserved splice regu-

latory region or transcriptional regulatory region are assumed to be deleterious with respect

to the corresponding regulatory function [11], and are thus assigned to Class 3, while the

SNPs within non-conserved regulatory regions are only relevant to the respective function,

and are thus assigned to Class 2.

We examine the deleterious functional effects of SNPs with respect to four major bio-

molecular functional categories. As a result, four class labels are assigned to each SNP,
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one for each of the four categories of biological function. To assign a single functional

significance class to each SNP, we follow Bhatti et al. [11], and assign the highest class tag

among all four categories as the functional significance class of the SNP.

For example, SNP rs4963 on gene ADD1 is assigned to Class 3 with respect to ‘protein

coding’ and Class 1 with respect to the other functional categories, ‘splicing regulation’,

‘transcriptional regulation’, and ‘post-translational modification’. The functional signifi-

cance class of SNP rs4963 is set to 3 because it is highly significant for the protein coding

function.

Currently, F-SNP denotes the SNPs assigned to Class 3 as functional SNPs. These

SNPs need further investigation in disease-gene studies due to two reasons; i) They are

likely to have deleterious effects with respect to at least one of the major bio-molecular

functions; and ii) The prediction is supported by a majority of the used assessment tools.

5.3 Database Contents and Web Interface

The F-SNP database, release 1.0 (as of May 2009), contains the assessed functional infor-

mation for 559,322 SNPs within 18,282 candidate genes for 85 major human diseases. We

will continuously update F-SNP to provide functional information about additional SNPs.

Detailed statistics of the current F-SNP database are provided in Table 5.2.

For each functional category, the number of SNPs for which the function has been

assessed by the 16 integrated tools is shown in the middle column. The number of SNPs

that F-SNP indicates to be potentially deleterious is shown on the right. Among the 154,140

SNPs examined for the protein coding category, about 43% SNPs were predicted to be

potentially deleterious (66,899 among 154,140 SNPs). The ratio drops to 11%, 17%, and

7% for the splicing regulation, transcriptional regulation, and post-translation categories,
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Table 5.2: Statistics of functionally assessed SNPs in F-SNP, Release 1.0 (as of Feb.
2009). For each functional category, the number of SNPs for which the
function has been assessed using the 16 tools and databases integrated into
F-SNP is shown in the middle column. The number of SNPs that F-SNP
indicates to be potentially deleterious is shown on the right.

Functional Category # of Assessed SNPs # of potentially deleterious SNPs

Protein Coding 154,140 66,899

Splicing Regulation 73,051 8,075

Transcriptional Regulation 453,710 78,296

Post-Translation 64,736 4,477

Total 559,322 115,356

respectively. We also note that more than 80% of the examined SNPs resides in non-coding

regions, and were examined for their impact on transcriptional regulation (453,710 among

559,322 SNPs).

The F-SNP database is available at http://compbio.cs.queensu.ca/F-SNP/. The user can

search the database by SNP identifier, gene, disease, or chromosomal regions. Figure 5.2

shows an example of results obtained from an interactive search concerned with breast

cancer.

Search by SNP Identifier To obtain information about a single SNP the database can be

searched by providing the SNP’s rs-identifier from dbSNP build 126 [167]. The resulting

page provides the primary information about the SNP along with its assessed functional

information. The primary information includes the chromosomal location of the SNP, alle-

les, ancestral allele, validation status, type of genomic region, links to external databases,
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Figure 5.2: Example of an F-SNP search session. (a) The initial search page is dis-
played, where the user selected the disease type to be Cancers, and the
specific disease to be Breast cancer (Search by disease). (b) Results ob-
tained after clicking the Submit button in panel (a), namely a list of genes
associated with Breast cancer along with their associated chromosome lo-
cation, known related disorders, and links to OMIM. The BRCA1 link
(circled) is selected and clicked. (c) A detailed description of SNPs associ-
ated with BRCA1 is produced (demonstrating results of Search by gene).
The SNP whose identifier is rs28897699 (circled) - indicated by a ’+’ mark
to have associated functional information - is selected and clicked. (d) In-
formation about the SNP rs28897699 is presented. (Demonstrates results
of Search by SNP ID).
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namely dbSNP build 126 [167], NCBI Map Viewer homo sapiens build 125 3, Ensembl

release 42 [78], UCSC Genome Browser Mar. 2006 assembly [101], HapMap Rel 21a

/ phase II [33], and GeneCards ver. 2.37 [150], and the flanking gene sequence around

the SNP. The functional information provided for each SNP includes functional category,

integrated tools used, prediction results, and the detailed output from each predictive tool.

Search by Gene To find the SNPs located within a specific gene region, the database

can be searched by providing the HUGO 4 name of the gene or of its protein. If no offi-

cial HUGO name matches the input keyword, alias gene names, registered in NCBI Entrez

Gene [117], are examined for the search. A table with all the SNPs linked to the gene is

then produced, where a green ‘+’ mark is shown next to each SNP for which the functional

effects have been assessed, and a red ‘+’ mark further indicates that the SNP was deter-

mined to have a potentially deleterious functional effect. The user can then click on each

SNP to obtain the detailed functional information about it.

Search by Disease To identify SNPs that may be related to a specific disease the user

can select the disease category and name. A table with all the genes relevant to the disease

is produced. The user can then click on each gene to go to the gene information page. As

described above, the gene information page lists all the SNPs linked to the gene, for which

the user can retrieve further information.
3NCBI Map Viewer is the public web-based browsing service provided by NCBI. It allows users

to view and search genomic regions using a graphical interface. The service is currently available at
http://www.ncbi.nlm.nih.gov/mapview/.

4The Human Genome Organisation (HUGO) is the international organisation of scientists involved in
human genetic and genomic research. For each known human gene, the HUGO Gene Nomenclature Com-
mittee assigns a gene name and symbol (short-form abbreviation) to ensure that each gene is only given one
approved gene symbol.
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Search by Chromosomal Region To study SNPs along a chromosomal region the user

can provide the chromosome number, along with start/end positions. A table with all the

SNPs within the region is produced and, as explained above, a ‘+’ mark indicates the SNPs

for which functional effects have been assessed. Again, the user can click on each SNP to

obtain further information.

5.4 Discussion

The F-SNP (Functional Single Nucleotide Polymorphism) database aims to provide a com-

prehensive collection of functional information about SNPs, thus helping to expedite the

functional SNP prioritization process. The current version of the F-SNP database provides

functional information for 559,322 SNPs in 18,282 genes relevant to 85 major human dis-

eases. Functional assessment of SNPs is done using 16 bioinformatics tools and databases.

There are two distinguishing features of the F-SNP database. For assessing the deleteri-

ous effect of SNPs along each functional category, F-SNP integrates multiple, independent

bioinformatics tools that are based on different algorithms, data, and resources. No single

tool can yet capture all the possible effects of SNPs on even one biological function [11].

F-SNP thus aims to complement possible shortcomings of an individual tool, by gathering

information from multiple, independent resources. Researchers can also use the integrated

functional information about SNPs, provided by F-SNP, to implement their own prediction

tool for prioritizing functionally significant SNPs.

Another distinguishing feature of the F-SNP database is its integration of a human

disease database – currently NCBI’s Genes and Diseases – to facilitate identification of

potential disease-causing SNPs. As shown, the F-SNP database provides a web interface

that takes as input either a disease, a gene, a chromosomal region, or a SNP identifier. If the
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input is a specific disease, its candidate genes, obtained from the integrated human disease

database, are provided with their SNP information. Thus, researchers who are interested in

a specific disease can retrieve a list of all the known candidate genes relevant to the disease,

along with functional information for the SNPs within the selected genes with just a few

mouse clicks.

The functional information provided for SNPs will be regularly updated as other pre-

diction tools and bio-molecular experiments become available. We also plan to integrate

additional human disease databases to include a broader spectrum of common and complex

diseases.

We note, though, that the F-SNP database has a few limitations. First, while F-SNP

denotes a subset of SNPs as functional, it does not numerically score or rank SNPs accord-

ing to their functional significance. Budget considerations often force researchers to select

a limited number of SNPs on the target genomic region for conducting association stud-

ies. When the number of putatively deleterious SNPs presented by F-SNP is larger than a

pre-specified limit, selecting only some of the SNPs is not straightforward for researchers

without additional ranking information. As a result, researchers may need to rely on other

resources, such as the published literature, to finalize their decision.

Second, the F-SNP Classification (F-SNP-C) system is based on a simple majority vote

of the functional prediction results for SNPs (such as ‘deleterious’ vs. ‘neutral’), but it

does not exploit additional information obtained from the used tools. For example, many

function-assessment tools make predictions with different levels of confidence, and as such,

provide numeric scores designating certainty – or uncertainty – regarding their own predic-

tions. The F-SNP database does not take into account the confidence scores produced by

the used tool.
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Finally, some function-assessment tools are more (or less) reliable than others in terms

of their prediction accuracy, but the F-SNP-C method currently weighs each tool’s predic-

tion equally. If the reliability of the different tools can be measured quantitatively, this

information can be used to weigh each tool’s prediction results for enhancing the voting

procedure.

In the next chapter, we present a scoring method for functional SNP prioritization that

addresses some of these limitations.



Chapter 6

A Scoring Approach for Selecting

Functionally Significant SNPs

In the previous chapter, we have introduced the F-SNP database service and its classifica-

tion system, F-SNP-C, for supporting functional SNP selection. In this chapter, we describe

an integrative scoring method – for assessing the putative deleterious effects of SNPs – that

improves upon the initial method. We first provide the motivation for the proposed sys-

tem in Section 6.1. We formulate a scoring function that quantifies the putative deleterious

functional effects of SNPs in Section 6.2, and describe the implemented scoring system in

Section 6.3. In Section 6.4, we report the evaluation results of the proposed system us-

ing 112,949 SNPs on 580 disease-susceptibility genes, obtained from the OMIM (Online

Mendelian Inheritance in Man) database [69]. Finally, we discuss the impact of our work

and possible directions for future research in Section 6.5.

92
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6.1 Motivation and Objectives

We propose an integrative scoring system that assesses the potential deleterious functional

effects of SNPs within a probabilistic framework. The scoring system is based on the

F-SNP database service, as it uses the functional assessment results for SNPs, provided

by F-SNP. We thus call the proposed system F-SNP-Score. We have developed the F-

SNP-Score system to improve upon current state-of-the-art methods for functional SNP

selection, including the F-SNP Classification (F-SNP-C) system. While we have presented

the limitations of current functional SNP selection systems in Sections 5.1 and 5.4, respec-

tively, we briefly restate here the major motivation for the F-SNP-Score system.

Current systems, including F-SNP-C, for prioritizing functionally significant SNPs, suf-

fer from three major limitations. First, their prioritization schemes do not take into account

the uncertainty of the function prediction process (inherent in the tools used). Second, no

system that uses multiple, independent bioinformatics tools for examining the deleterious

functional effects of SNPs [188, 184, 11, 73, 109] considers the reliability of the different

tools. Finally, most of current function-assessment systems classify SNPs into qualitatively

distinct groups (such as ‘irrelevant’ vs. ‘relevant’ vs. ‘deleterious’), but do not score or rank

SNPs within each group.

The F-SNP-Score system aims to address these limitations by quantitatively assessing

the putative deleterious functional effects of SNPs. Within a probabilistic framework, it

combines the assessment results from multiple independent prediction tools, while taking

into account the prediction confidence as well as the tool reliability of different tools. It

assigns a specific numerical score to each SNP, representing its putative deleterious effects.

Using this score, a limited subset of the most functionally significant SNPs can be ranked

and selected.
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In the next section, we introduce the basic notation used throughout this chapter, and

formally define a scoring function for SNPs within a probabilistic framework.

6.2 Problem Definition

We aim to quantitatively measure the potential deleterious effects of SNPs with respect to

four major bio-molecular functions, namely, splicing, transcription, translation, and post-

translational modification. For simplicity, we refer to the assessed score as the functional

significance (FS) score of each SNP. To formally define the scoring function for assessing

the FS score, we first introduce basic notations.

Suppose that we are given p candidate SNPs on the target genomic region. Each SNP

can be represented as a discrete random variable, Xi (i = 1, .., p), whose possible values

are the 4 nucleotides, {a, c, g, t}. The true (and unknown) functional category of SNP Xi

is represented by another discrete random variable Yi, whose value is 1 when SNP Xi is

deleterious and 0 otherwise. We note that in most cases we do not know the true func-

tional category Yi of SNP Xi. We thus estimate it using q bioinformatics tools that predict,

for each SNP Xi, the functional label (i.e., ‘deleterious’ or ’neutral’) along four major

bio-molecular functions: protein coding, splicing regulation, transcriptional regulation, or

post-translation modification.

For each of the p SNPs and the q tools, we define two random variables, δij and

Sij (i = 1, ..., p ; j = 1, ..., q). The variable δij denotes the functional label assigned to the

ith SNP by the jth tool, that is, δij = 1 when the jth tool predicts SNP Xi to be deleterious,

and 0 otherwise. The variable Sij represents the tool’s own confidence score with respect to

the assigned label. The higher the value of Sij , the more strongly the tool supports its own

prediction, δij . As different tools use different confidence scales, we define another random
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variable, S̄ij , representing a normalized confidence score. The normalization procedure is

explained in Section 6.3.3.

We also define a random variable, Fjk, to indicate the bio-molecular functions that

each tool examines. We first define the set F = {‘protein coding’, ‘splicing regulation’,

‘transcriptional regulation’, ‘post-translational modification’} consisting of the four bio-

molecular functions with which we are concerned. For each of the q tools and the four

bio-molecular functions in F, a random variable Fjk (j = 1, ..., q, k ∈ F) is defined such

that its value is 1 when the jth tool examines the deleterious effects of SNPs on function k,

and 0 otherwise.

Last, for each tool, we define a continuous random variable TRj (j = 1, ..., q), corre-

sponding to the tool reliability (TR) score of the jth tool. This score represents how likely

the tool is to correctly categorize SNPs as deleterious. The computation procedure of the

TR score is explained in Section 6.3.2.

Based on the parameters TRj , Fjk, δij , and S̄ij , the functional significance score of SNP

Xi, denoted by FSi, is defined as follows:

Definition 6.1. Functional Significance (FS) score of SNP Xi

FSi
def
= max

k∈F

q∑
j=1

Fjk · TRj · (δij · S̄ij)

q∑
j=1

Fjk · TRj

.

That is, for each bio-molecular functional category k, we compute the weighted average

of the confidence of each prediction tool with respect to the deleterious effect of the SNP,

Xi, where the weight is the reliability score of each tool. We note that by multiplying

by δij , the confidence score of each tool is counted only when the tool predicts the SNP

to be deleterious (that is, δij = 1). We also note that although summation is done over
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Sij              Sij   :  R    (0, 1)
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    functio nal  labels  and
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Figure 6.1: Outline of the assessment process. In step I, we retrieve the predicted func-
tional labels of SNPs from the different tools, along with their confidence
scores. In step II, we compute tool reliability, and normalize the confidence
scores. In step III, we compute the functional significance score of SNPs as
shown in Definition 6.1.
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all the tools (that is, j = 1 to q, where q is the total number of tools, regardless of the

bio-molecular functional category that each tool examines), Fjk allows only the tools that

examine the specific bio-molecular functional category k to be considered. The maximum

score, over all examined bio-molecular functions, is then assigned as the FS score for the

SNP. In the next section, we describe the details of the implemented scoring system.

6.3 Methods for Assessing Functional Significance

Our system conducts three main steps to assess the functional significance (FS) score of

SNPs. Figure 6.1 outlines the process. In step I, the functional labels (either, ‘deleteri-

ous’ or ‘neutral’) of SNPs, predicted by q bioinformatics tools, are retrieved. Confidence

scores corresponding to the predictions are also retrieved when available. In step II-1, the

reliability score of each tool is computed based on its tendency to agree with other tools’

predictions. In step II-2, the confidence scores, obtained in step I, are normalized to a value

between 0 and 1. In step III, the FS score of SNPs is computed as defined in Definition 6.1.

We further describe each step in the following sections.

6.3.1 Retrieval of Predicted Labels and Confidence Scores

Given a set of p SNPs, {X1, ..., Xp}, we first retrieve their predicted functional labels (that

is, ‘deleterious’ or ‘neutral’) and corresponding confidence scores from sixteen publicly
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available web services and databases (that is, currently q = 16). Figure 6.2 illustrates the

retrieval flow-chart. Most of the chart is the same as the prediction flow-chart for the F-

SNP database service, shown in Figure 5.1. However, there are two aspects in which the

flow-chart for the F-SNP-Score system differs from that associated with F-SNP.

First, at the end of each assessment process involving the jth tool, the F-SNP-Score

system obtains both the functional label, δij , and the confidence score, Sij , for SNP Xi (i =

1, ..., p; j = 1, ..., q). We note, though, that as shown in Figure 6.2, in two cases the

confidence score is always set to 1: (1) when the SNPs create a new start/stop codon or

frameshift (that is, nonsense SNPs); or (2) when the SNPs occur in the first two or in the last

two bases of intronic splice sites (that is, SNPs altering canonical splice sites). These SNPs

are assigned the highest level of a confidence score, namely 1, because their deleterious

effects to either ‘protein coding’ or ‘splicing regulation’ is unequivocal. Nonsense SNPs

are often considered to have most deleterious effects, leading to a premature termination

of amino acid peptides [185]. The change to the canonical splice sites is also known to

be detrimental as suggested by the high selection pressure on the sites among mammalian

genomes [18]. Other SNP prioritization studies [11, 188, 184] assign the highest rank or

score of functional impact to these two kinds of SNPs as well.

Second, the F-SNP-Score system does not examine whether regulatory sites – predicted

by the used tools – are conserved across multiple species to decide the functional signif-

icance of the SNPs in the region. As previously stated, this strategy is used by F-SNP’s

Classification system to filter out possible false positive predictions for regulatory sites due

to their short DNA sequence. Instead, the F-SNP-Score system incorporates the informa-

tion about conservative regions to normalize the confidence scores obtained from the used

bioinformatics tools. We describe the details of this step in Section 6.3.3.
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6.3.2 Computation of Tool Reliability

The tool reliability score, TRj denotes how likely the jth tool (j = 1, ...q) is to correctly

predict deleterious SNPs . We express the tool reliability score using the conditional prob-

ability as defined below:

TRj
def
= Pr(Yi = 1 | δij = 1).

That is, the tool reliability score TRj represents the likelihood that the true functional

category of an arbitrary SNP Xi is ‘deleterious’ when the jth tool does predict so. If the

true labels of SNPs, Yi (i = 1, ..., p) are known, this score can be estimated statistically.

For example, using a maximum likelihood (ML) approach, TRj can be estimated as the

ratio between the number of correctly predicted deleterious SNPs and the total number of

deleterious SNPs predicted by the tool, as follows:

TRj
def
= Pr(Yi = 1 | δij = 1)

≈

d∑
i=1

IY δ ij

d∑
i=1

Iδ ij

,

where

IY δ ij =





1 : if Yi = 1 and δij = 1 ;

0 : otherwise ,

Iδ ij =





1 : if δij = 1 ;

0 : otherwise ,

and d is the number of SNPs whose true functional label is known.
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However, in most cases we do not know the true functional categories of SNPs. We

thus estimate the probability Pr(Yi = 1 | δij = 1) using the theoretical work proposed

by Long et al. on classification [113]. When class labels are unknown, they propose to

estimate the prediction accuracy of a classifier based on the extent to which the classifier

tends to agree with other classifiers. Long et al. have proven that the conditional probability

Pr(δij = 1 | Yi = 1) can be calculated in this context as follows:

Pr(δij = 1 | Yi = 1) =

Pr(δij = 1) +

√
(1− Pr(Yi = 1))

Pr(Yi = 1)
· (ujm − uj · um) · (ujn − uj · un)

(umn − um · un)
,

(6.1)

where the variables m and n represent the indices of any two distinct tools (m 6= n 6= j),

ujm
def
= Pr(δij = 1, δim = 1), and uj

def
= Pr(δij = 1). For the detailed proof of Equation

(6.1), we refer the reader to the work by Long et al. [113].

Using Bayes’ rule and Equation (6.1), we compute the tool reliability score of the jth

tool, TRj , as follows:

TRj
def
= Pr(Yi = 1 | δij = 1) = (by Bayes′ rule)

= Pr(δij = 1 | Yi = 1) · Pr(Yi = 1)

Pr(δij = 1)
= (by substituting Eq.(6.1) )

= Pr(Yi = 1) +

√
Pr(Yi = 1)

(1− Pr(Yi = 1))−1
· (ujm − uj · um) · (ujn − uj · un)

(umn − um · un)(uj)2
.

Note that we use the same prior probabilities, Pr(Yi = 1) and Pr(δij = 1) for all SNPs Xi,

and as such, the tool reliability score is independent of the SNP Xi. To estimate Pr(Yi = 1),

which is the prior probability of any SNP Xi to be deleterious, we take a conservative
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maximum likelihood approach. That is, for each tool assessing the effect of a SNP on a

specific bio-molecular function k, the fraction of SNPs that are unanimously predicted to

be deleterious by all the tools assessing the same function k is used as an estimate for

Pr(Yi = 1), (1 ≤ i ≤ p). We estimate Pr(δij = 1), which is the prior probability of the

jth tool to predict any SNP Xi to be deleterious, as the fraction of the examined SNPs that

are predicted to be deleterious by the jth tool.

6.3.3 Normalization of Confidence Scores

To account for the fact that different tools use different scales to report their confidence

scores, we normalize the obtained confidence scores Sij to be a value between 0 and 1. The

normalization formula is as follows:

S̄ij =
1

2
·
(

δij + (1− Cij) ·
(Sij −min

i
Sij)

(max
i

Sij −min
i

Sij)

)
,

where Cij is 1 if Xi resides on a nonconserved regulatory site, and 0 otherwise; 1 ≤ i ≤ p

and 1 ≤ j ≤ q.

Intuitively, when SNP Xi is predicted to be deleterious (i.e., δij = 1), the confidence

score Sij is converted to a value between 0.5 and 1. Otherwise (i.e., δij = 0), Sij is

converted to a value between 0 and 0.5. We note that for the SNPs occurring in regulatory

regions, we examine whether the SNP position on the genome is conserved across multiple

species (such as chimpanzee, dog, mouse, rat, chicken, zebrafish, and fugu) – information

that is obtained from GoldenPath [101] – to reduce the effects of possible false-positive

predictions. As previously mentioned in Sections 3.2.2 and 5.2.2, there is a high rate of

false positive findings of regulatory sites by in silico prediction tools due to the relatively
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short length of regulatory DNA sequences (typically 6- to 8-mers) [198]. Thus, when the

predicted regulatory sites are not within a conserved region, the confidence score for the

SNP in the region is set to 0.5, reflecting the uncertainty regarding the functionality of

the region, and the consequent lack of confidence about potential deleterious effects of the

SNPs on the regulatory function.

We also note that some prediction tools, such as SNPeffect [153] or LS-SNP [88], do

not provide confidence scores. For these systems, we impute the confidence scores using

the confidence scores for the same SNP obtained from other tools. Suppose that the jth tool,

which examines the possible effects of SNP Xi on the bio-molecular functional category k,

does not provide a confidence score on its prediction. Among the other tools that provide

the confidence scores for the same function k, we denote the index of the tool whose tool

reliability score is highest as t. The imputed value is calculated as:

S̄ij = min

(
TRj

TRt

· Sit, 1

)
.

That is, when the jth tool is more reliable than the tth tool (i.e., TRj > TRt), its confidence

score is imputed to be higher than that of the tth tool, but not greater than one. Otherwise

(i.e., TRj ≤ TRt), the confidence score stays the same or becomes reduced proportionally

to the ratio of the respective tool reliabilities.

Given the prediction results obtained in step I and the tool reliability and normalized

confidence scores computed in step II, the functional significance (FS) score of SNP Xi

can be computed as stated earlier in Definition 6.1.
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6.4 Experiments and Results

We applied the F-SNP-Score system to 112,949 SNPs located on 580 disease-susceptible

genes. The OMIM (Online Mendelian Inheritance in Man) database [69], which is one

of the most widely-used databases of human genes and genetic disorders, provides the

references to the biomedical literature that report the existence of SNPs – on these 580

genes – that are either disease-causing or associated with common disorders. The list

of SNPs linked to the 580 genes, along with their primary information (such as genomic

location), were downloaded from the dbSNP database, build 126 [167]. The number of

known disease-causing or disease-associated SNPs 1 on these 580 genes is 1,399. The

remaining 111,550 SNPs on the 580 genes are not yet identified to be disease-related.

For simplicity, we refer to the former set of 1,399 SNPs as disease-related SNPs, and to

the latter set of 111,550 SNPs as neutral SNPs. We note, however, that currently known

disease-related SNPs can explain only a fraction of the genetic basis of human disease,

and as such, the set of SNPs that is temporarily classified as neutral may still include

functionally significant SNPs with deleterious effects that are not yet identified.

In Section 6.4.1, we summarize the scoring results by the F-SNP-Score system for all

112,949 SNPs, and show the distinguishing features of disease-related SNPs compared

to neutral SNPs. In Section 6.4.2, we further validate that our integrative scoring system

improves upon other state-of-the-art methods when applied to the same set of SNPs.

1The list of referenced disease-causing or disease-associated SNPs was obtained from the FTP ser-
vice at ftp://ftp.ncbi.nih.gov/snp/database/organism data/human 9606/OmimVarLocusIdSNP.bcp.gz (down-
loaded April 14, 2007).
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Figure 6.3: The distribution of FS scores for disease-related SNPs and for neutral
SNPs, assigned by F-SNP-Score. The X-axis represents the FS score for
each group of SNPs, binned into 10 equal intervals, while the Y-axis rep-
resents the percentage of SNPs whose FS score is associated with that bin-
score.

6.4.1 Review of the Scoring Results

First, we examine the scores that F-SNP-Score assigns to already known disease-related

SNPs compared to neutral SNPs. Figure 6.3 shows the distribution of the FS score assigned

to disease-related SNPs (shown on the left) along with that of SNPs currently assumed to

be neutral (shown on the right). The figure clearly shows that the distribution of the FS

scores for disease-related SNPs is significantly different from that of neutral SNPs on the

same genes. The difference is also statistically significant, with a p-value of practically

0, according to the Kolmogorov-Smirnov two-side test with α = 0.05. In particular, the

median FS score for neutral SNPs is 0.1764, whereas, for disease-related SNPs, the median
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rises to 0.5. Moreover, 48.39% of disease-related SNPs are assigned an FS score greater

than 0.5, whereas only 2.2% of neutral SNPs are assigned such a high score.

Some examples of known disease-related SNPs with a high functional significance

score are as follow. Three SNPs on NAT2, namely, rs1799930, rs1801280, and rs1208

are included in the list of 1,399 disease-causing or disease-associated SNPs. The as-

sessed FS scores for the three SNPs are 0.866, 0.584, and 0.858, respectively, designat-

ing high functional significance of the SNPs. In OMIM [69], all three SNPs are described

to be relevant to slow acetylation activity [179], and rs1801280 has been reported to be

strongly associated with susceptibility to bladder cancer and adverse drug reactions (OMIM

ID: 243400) [138]. Other examples of high scoring, known disease-causing or disease-

associated SNPs are rs7775 (FS score 1) and rs288326 (FS score 0.75), which have been

reported as a strong risk factor for primary osteoarthritis of the hip in females (OMIM ID:

605083) [115].

Next, we examine the FS score distribution for SNPs based on their functional genomic

regions. Figure 6.4-a shows the distribution for neutral SNPs, while Figure 6.4-b shows

the same score distribution corresponding to disease-related SNPs. The X-axis denotes 6

types of genomic regions that are used in the decision procedure (shown in Figure 6.2).

The Y-axis shows the percentage of SNPs occurring on each genomic region. To designate

high FS scoring vs. low FS scoring SNPs on each region, we represent the percentage of

SNPs whose FS score is at least 0.5 using black bars and the percentage of SNPs whose

score is lower than 0.5 using gray bars. We note that the percentage of SNPs represented in

each bar is calculated with respect to the whole set of neutral SNPs (in case of Figure 6.4-a)

or to that of disease-related SNPs (in case of Figure 6.4-b). For clarity, the percentage is

displayed only up to 10%.
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Figure 6.4: The distribution of low FS scoring vs. high FS scoring SNPs based on
functional genomic locations. The X-axis denotes 6 types of genomic re-
gions that are used in the decision procedure (shown in Figure 6.2), while
the Y-axis shows the percentage of SNPs whose FS scores are at least 0.5
(black bars) vs. the percentage of SNPs whose scores are lower than 0.5
(gray bars) on each region type. We note that the percentage of SNPs rep-
resented in each bar is calculated with respect to the whole set of neutral
SNPs (in case of Figure 6.4-a) or to that of disease-related SNPs (in case of
Figure 6.4-b).
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Figure 6.5: The distribution of the assessed FS scores for exonic SNPs. The X-axis
represents the FS score for each group of SNPs, binned into 10 equal inter-
vals, while the Y-axis represents the percentage of SNPs whose FS score is
associated with that bin-score.

As shown in Figure 6.4-a, the majority of neutral SNPs are located within intronic

regions, and the FS score for most intronic SNPs is lower than 0.5 (80.67%). A simi-

lar tendency is noted in 5’/3’ untranslated regions (UTR), in regions that are upstream or

downstream from genes, and in currently unspecified regions. In contrast, despite the rel-

atively smaller number of SNPs on splice sites and on coding regions, these regions are

enriched for high-scoring putatively deleterious SNPs. That is, an FS score of at least 0.5 is

assigned to all SNPs in canonical splice sites and to 46.07% of the SNPs in coding regions.

This scoring pattern is consistent with previous findings that mutations in splice sites and

coding regions are likely to have direct impact on gene function [189, 22, 153]. It is thus

highly likely that these SNPs with a high FS score may not be neutral at all, and future
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disease-gene studies need to investigate them further.

In contrast, Figure 6.4-b shows the FS score distribution for disease-related SNPs as a

function of their genomic regions. Unlike the case for neutral SNPs, most disease-related

SNPs are located within exons (94.21%). This is indeed expected, as most association

studies that validated these SNPs to be disease-related, have focused on protein coding

SNPs, whose functional effects are relatively easy to pinpoint due to their direct impact

on protein products. Aside for the outstanding proportion of exonic SNPs, disease-related

SNPs show a similar scoring pattern to that of neutral SNPs. Most SNPs on intronic, 5’/3’

UTR, and up/downstream regions are assigned an FS score lower than 0.5, but more than

half of the SNPs on exonic regions (53.04%) and all SNPs on canonical splice sites are

assigned an FS score of at least 0.5.

As is clear from the data shown above, most disease-related SNPs are located on exons,

while most (currently assigned) neutral SNPs are located within introns. We thus need to

examine whether the difference in FS-score distributions between the two sets of SNPs,

shown in Figure 6.3, is merely an artifact of the difference in their genomic region. Figure

6.5 shows the distribution of assigned FS scores, this time only for 1,318 exonic SNPs that

are already known to be disease-related (shown on the left) and for 8,228 exonic SNPs

currently assumed to be neutral (shown on the right). As expected, the median score for

exonic SNPs is higher than that of SNPs in all regions, both for disease-related SNPs and

for neutral SNPs. Nevertheless, still only 22.86% of neutral exonic SNPs are assigned an

FS score greater than 0.5, while the ratio rises to 56.30% for disease-related exonic SNPs.

The Kolmogorov-Smirnov test with 5% significance level (that is, α = 0.05) confirms that

the two groups of exonic SNPs are unlikely to share a common score distribution (p-value

1.30e-079).
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Figure 6.6: The distribution of bio-molecular functions that the F-SNP-Score system
predicts to be disrupted by disease-related exonic SNPs (shown on the left)
and by neutral exonic SNPs (shown on the right).

Last, we examine what kinds of bio-molecular functions that the F-SNP-Score sys-

tem predicts the two groups of exonic SNPs mainly disrupt. Recall that SNPs in exonic

regions may deleteriously affect either ‘protein coding’, ‘exonic splicing regulation’, or

‘post-translational modification’ (as summarized in Figure 6.2), and F-SNP-Score assigns

the maximum score over the three functional categories to each exonic SNP as its final

FS score (as stated in Definition 6.1). We thus examine the proportion of the three pre-

dicted bio-molecular functions, which are used for assigning the final FS scores, among

disease-related exonic SNPs and among neutral exonic SNPs.

Figure 6.6 summarizes the results. In the case of disease-related SNPs, more than half

of the exonic SNPs are tagged by F-SNP-Score as affecting ‘protein coding’, and about

37% of the SNPs are tagged as affecting ‘exonic splicing regulation’. Conversely, only

8.48% of neutral exonic SNPs are tagged as affecting ‘protein coding’, while more than

two thirds of them are tagged as affecting ‘exonic splicing regulation’. In either case,

‘post-translational modification’ is rarely predicted as a source for potential deleterious
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effects of SNPs.

6.4.2 Comparative Study

To validate that the F-SNP-Score system indeed improves upon state-of-the-art methods,

we compare F-SNP-Score with three scoring methods for functional SNP selection that

numerically assess putative deleterious effects of SNPs: SNPselector [184], FastSNP [188],

and as a simple baseline, Simple Majority Vote. SNPselector and FastSNP are widely used

public web-services for prioritizing functionally significant SNPs, while Simple Majority

Vote is a baseline scoring scheme based on a majority vote. We briefly describe the three

compared methods as follows.

SNPselector is a web-based SNP selection system. It prioritizes SNPs based on their

tagging informativeness, SNP allele frequencies and source, function, regulatory potential

and repeat status. In addition, SNPselector provides a numeric score for each SNP, called

function score, which designates the possible effects of SNPs on gene transcript structure

or on protein product. The score is a real number between 0.6 and 1.0; the higher the score

is, the more deleterious the effects of the SNPs are expected to be.

FastSNP is another web-service for SNP function analysis and prioritization. It pri-

oritizes high-risk SNPs according to their phenotypic risks and putative functional effects

using 11 bioinformatics tools. FastSNP assigns to each SNP an integer score between 0

and 5, called risk rank, which quantifies how likely the SNP is to have functional effects

leading to disease phenotypes.

Finally, as a baseline, we compute the functional significance score of SNPs using a

simple majority vote. For example, when one third of the tools that examine the deleterious

effects of SNPs on protein coding predict the SNP to be deleterious, a value of 1/3 is
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assigned as its score with respect to the ‘protein coding’ category. This majority vote-based

score is calculated for the other three functional categories, and the maximum value among

the four scores is assigned as the FS score of the SNP. Our scoring scheme is distinguishable

from this simple majority vote as it takes into account the certainty of each prediction

(through normalized confidence-scores) as well as the reliability of each tool (through tool-

reliability-scores). We refer to this baseline method as Simple Majority Vote.

To compare the three scoring schemes to ours, we generated test datasets using the fol-

lowing sampling procedure. For each disease-related SNP Xi, one neutral SNP is selected

uniformly at random in the same functional region on the same gene as Xi. This selection

is done for all disease-related SNPs. As a result, a dataset of 1,399 SNP-pairs, one disease-

related and one randomly selected neutral, is generated. We repeat this procedure M times,

generating M test datasets (here, M=100). We note that, by limiting the random selection

to the same functional region on the same gene, we reduce any bias that may arise from

sampling along different functional or chromosomal regions.

Using the test datasets, we examine how well each system distinguishes disease-related

SNPs from neutral SNPs. Intuitively, a better scoring system would assign a higher func-

tional score to disease-related SNPs than to neutral SNPs. First, we measure this tendency

by directly computing the percentage of disease-related SNPs that are assigned a higher

functional significance score than their paired, randomly selected neutral SNPs, averaged

over M test datasets. We refer to this measure as Higher Score (%).

Second, instead of directly comparing each SNP pair, we compare the distribution of

FS scores for disease-related SNPs with the score-distribution for neutral SNPs. The paired

t-test can examine the hypothesis whether two score distributions share the same mean. We

thus separately conduct the paired t-test on each of the M datasets, and count the number
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Table 6.1: The results of a comparative study based on two evaluation measures:
Higher Score and Paired T-Test. Higher Score directly computes the per-
centage of disease-related SNPs that are assigned a higher functional sig-
nificance (FS) score than their paired, randomly selected neutral SNPs, av-
eraged over M test datasets. Paired T-Test computes the percentage of M
t-tests that rejected the hypothesis whether the FS score distribution for
disease-related SNPs is different from that for neutral SNPs.

EVALUATION MEASURE

SYSTEM Higher Score Paired T-Test (avg. p-value)

F-SNP-Score 63.82 % 1.00 (0.00)

FastSNP 61.15 % 1.00 (3.61e-127)

SNPselector 55.39 % 1.00 (6.91e-125)

Simple Majority Vote 45.42 % 0.93 (0.01)

of times that the hypothesis is rejected by the t-test along with their average p-value. The

rejection implies that the FS score distribution of disease-related SNPs is distinct from that

of likely neutral SNPs. Therefore, scoring schemes with a high proportion of rejections are

preferred. We refer to this second measure as Paired T-Test.

Table 6.1 summarizes the results of the comparative study. Overall, F-SNP-Score im-

proves upon all the compared systems. According to the Higher Score measure, F-SNP-

Score assigns higher functional significance scores to about 64% of known disease-related

SNPs than to neutral SNPs. FastSNP comes second, and SNPselector and Simple Major-

ity Vote follow. The score difference between F-SNP-Score and the compared systems is

also statistically significant (p-values are 6.96e-038, 4.82e-105, and 5.26e-174 for FastSNP,

SNPselector, and Simple Majority Vote, respectively, using the paired t-test, α = 0.05). It
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is notable that F-SNP-Score greatly improves upon Simple Majority Vote, which demon-

strates the utility of the confidence and the tool reliability scores, integrated into our scoring

scheme.

In the case of the Paired T-Test measure, the first three systems, namely, F-SNP-Score,

FastSNP, and SNPselector perform the same; all of the paired t-tests rejected the hypothesis

of the same mean for disease-related SNPs and neutral SNPs with a significance level of

at least 0.05. However, the average p-value of the rejected hypotheses is smallest (that is,

practically zero) for F-SNP-Score among the three, which means that the score distribution

of disease-related SNPs and that of neutral SNPs are most disparate when their FS scores

are assigned by F-SNP-Score. In the case of Simple Majority Vote, only 93% of the paired

t-tests rejected the hypothesis of the same mean. The average p-value for the rejected

hypotheses is also the largest among all the compared systems.

6.5 Discussion

We have presented a new integrative scoring system, F-SNP-Score, for assessing the pu-

tative deleterious effects of SNPs. The F-SNP-Score system combines assessments from

multiple independent computational tools, using a probabilistic framework that takes into

account the certainty of each prediction as well as the reliability of different tools. An em-

pirical study over 580 disease-associated genes taken from the OMIM database shows that

F-SNP-Score provides distinct scoring patterns that are consistent with well-established

findings about functional SNPs. A comparative study based on two evaluation measures

also shows that F-SNP-Score improves upon other SNP scoring systems in terms of distin-

guishing known disease-related SNPs from likely neutral SNPs.

Two main features distinguish F-SNP-Score from others. First, we integrate multiple
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tools to overcome the incomplete or erroneous predictions of individual prediction tools.

While a single tool may fail to capture the deleterious effects of many SNPs, a combination

of multiple independent tools, which are based on different resources and algorithms, are

less likely to all make the same error. Thus the tools are likely to complement each other,

and typically compensate for each other’s errors. As a result, the effect of possible false-

negative or false-positive predictions in any single tool is reduced when computing the

combined FS score. Our improved results suggest that this hypothesis indeed holds in

practice.

Second, unlike other scoring systems, we take into account the reliability of different

tools as well as the certainty of each prediction made by the tools. To the best of our

knowledge, this is the first SNP prioritization approach to measure the reliability of indi-

vidual tools and to use this information along with the confidence scores obtained from

each tool.

We note, though, that the FS score assigned by F-SNP-Score to about 45% of disease-

related SNPs is still below 0.5. There are two possible explanations for this seemingly

inappropriate FS score. First, even though some SNPs, obtained from the OMIM database,

show a positive statistical correlation with common disorders in some association studies,

these SNPs may not all be actual disease-causing mutations. Some of these SNPs may

represent false positive findings, or may simply be correlated with actual disease-causing

mutations. Our future study will focus on investigating the actual disease-causing muta-

tions that could be located near SNPs known to be disease-related with low FS scores.

Second, while the disease-related SNPs may indeed be disease-causing mutations, our

current scoring scheme may not capture them properly. For example, in addition to the bio-

molecular functions that we currently examine, there could be other genetic mechanisms
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that have a profound impact on human pathogenesis. We thus plan to update F-SNP-Score

through combining other epidemiological resources, such as literature information, as well

as integrating more prediction tools for each bio-molecular function.



Chapter 7

Two Birds, One Stone: Selecting

Functionally Informative Tag SNPs

In the previous chapters, we have introduced three SNP selection systems, namely BN-

Tagger, F-SNP (and its classification system, F-SNP-C) and F-SNP-Score: the first is de-

veloped for tag SNP selection, while the latter two are for functional SNP selection. In

this chapter, we describe the first integrative SNP selection method for identifying SNPs

that are both informative tagging and functionally significant. We provide the motivation

for the proposed system in Section 7.1. In Section 7.2, we formally define the problem of

functionally informative tag SNP selection as a multi-objective optimization problem, and

introduce the basic notation used throughout this chapter. Section 7.3 describes a heuristic

selection algorithm based on incremental, greedy search. Section 7.4 reports the evaluation

results of the proposed system using a comparative study, and Section 7.5 concludes this

chapter and outlines future directions.

117
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7.1 Motivation and Objectives

We propose an integrative SNP selection method that supports both tag SNP selection and

functional SNP selection within one selection process. Despite their distinct merits, nei-

ther tag SNP selection nor functional SNP selection shares the other’s advantage. That is,

methods for the selection of informative tag SNPs do not take into account the functional

significance of SNPs; Similarly, methods for identifying functionally significant SNPs do

not attempt to capture the allele information of the complete target locus.

As a result, there have been a few efforts to support these two SNP selection approaches

within one selection framework [184, 30, 73]. Typically, these systems view the identifica-

tion of informative tag SNPs and of functionally significant SNPs as two distinct optimiza-

tion problems, and address each selection problem independently. That is, they separately

conduct tag SNP selection and function-based SNP selection, and combine the two selected

sets as a last step. A major shortcoming of such systems, in addition to the ad-hoc nature

of the combination, is that the number of selected SNPs can be much larger than necessary.

To address this limitation, we propose an integrative SNP selection system that simulta-

neously identifies SNPs that are both informative tagging and carry a deleterious functional

effect – which in turn means that they are likely to be disease-related. We formulate SNP

selection as a multi-objective optimization problem, to which we refer as functionally infor-

mative tag SNP selection. We define a single objective function, incorporating both allelic

information and functional significance of SNPs, and present a heuristic selection algorithm

that we show, through a comparative study, to improve upon other state-of-the-art systems.

To the best of our knowledge, the idea of combining the two notions of SNP selection –

the function-based and the information-based – into a single optimized selection process is

new, and was not attempted before.
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In the next section, we formally define the problem of functionally informative tag SNP

selection, and introduce the basic notation used throughout the chapter.

7.2 Problem Definition

We aim to select a subset of at most k SNPs on the target locus (where k is a pre-specified

number) whose allele information is as informative as that of the whole set of SNPs, while

including those SNPs that are most functionally significant. We refer to the problem as

functionally informative tag SNP selection. Before we formulate and address this problem,

we first introduce basic notation.

Suppose that our target locus contains p consecutive candidate SNPs. As previously

stated, we represent each SNP as a discrete random variable, Xj (j = 1, ..., p), whose

possible values are the 4 nucleotides, {a, c, g, t}. For each value x ∈ {a, c, g, t}, there is

a probability Pr(Xj = x) that the nucleotide x is assigned to the genomic position of SNP

Xj . Let V ={X1, ..., Xp} denote the set of random variables corresponding to the p SNPs.

We are given a haplotype dataset, D, containing the allele information of n haplotypes,

each of which consists of the p SNPs in V . As stated in Chapter 4, the set D can be viewed

as an n by p matrix; each row, Di−, in D corresponds to the allele information of the p SNPs

comprising haplotype hi, while each column, D−j , corresponds to the allele information of

SNP Xj in each of the n haplotypes. We denote by Dij the allele information of the jth

SNP in the ith haplotype. To formally address functional significance of SNPs, we denote

by ej the functional significance score for each SNP Xj in V , and define E = {e1, ..., ep}
to be the set of scores for all the SNPs on the target genomic locus. We explain how these

values are obtained in Section 7.4.

For a subset of SNPs, T ⊂ V , we define an objective function, f(T |D, E), to reflect
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both the allele information carried by the SNPs in T about the remaining SNPs in V − T ,

and the functional significance of the SNPs in T . The problem of functionally informative

tag SNP selection can then be stated as follows:

Problem : Functionally Informative Tag SNP Selection

Input : A set of SNPs, V ;
A maximum number of SNPs to select, k;
A haplotype dataset, D;
A set of functional significance scores, E;

Output : A set of SNPs T = argmax
T such that T ⊂ V & |T | ≤ k

f(T |D, E) .

That is, to select a subset of functionally informative tag SNPs, we need to find among all

possible subsets of the original SNPs in the set V , an optimal subset of SNPs, T , of size

≤ k, based on the objective function f(T |D, E).

Our first task is to define the objective function, f(T |D, E). To do so, we first introduce

two simpler objective functions, denoted by f1(T |D) and f2(T |E); the former measures

the allelic information, while the latter measures the functional significance of a SNP set

T , based on the haplotype data D and the functional significance score set E, respectively.

Definition 7.1. Information-based Objective : Given a set of p candidate SNPs, V =

{X1, ..., Xp}, a subset of k SNPs, T = {Xt1 , ..., Xtk} (T ⊂ V ), and a dataset D of n

haplotypes, we define an information-based objective function, f1(T |D), as:

f1(T |D) =
1

np

p∑
j=1

n∑
i=1

I(Xj, T, Di−)
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where

I(Xj, T, Di−) =





1 : if Xj ∈ T or

Dij == argmax
x∈{a,c,g,t}

Pr(Xj = x |Xt1 = Dit1 , ..., Xtq = Ditk) ;

0 : otherwise .

Recall that this prediction indicator function, I(Xj, T, Di−), has been previously defined

for our tag SNP selection method in Chapter 4, Eq. 4.1. The function I returns 1 if the

SNP Xj is selected as a tag SNP (i.e., Xj ∈ T ) or if its allele in the ith haplotype (i.e.,

Dij) is correctly predicted based on the allele information of the SNPs in T . We note that,

by using the conditional probability expression, the allele value assigned to Dij is the one

that is most likely to occur given the allele information of the predictive tag SNPs in T .

Otherwise, the function I returns 0. To summarize, the allelic information provided by

a SNP set, T , with respect to a given haplotype dataset D, is measured by the average

proportion of the correctly predicted alleles of each SNP, Xj , given the allele information

of the SNPs in T .

This information-based objective function, f1(T |D) follows the prediction-based tag

SNP selection approach, which aims to select a subset of SNPs (i.e., tag SNPs) that can best

predict the alleles of the remaining, unselected SNPs (i.e., tagged SNPs) [7, 67, 164]. This

approach is appealing since: (1) it does not require prior block partitioning [7]; (2) it tends

to select a small number of SNPs [8]; and (3) it works well even for genomic regions with

low linkage disequilibrium [107]. An in-depth discussion and survey of information-based

tag SNP selection approaches was given in Section 3.1 and in other reviews [105, 66].

Definition 7.2. Function-based Objective : Given a set of p candidate SNPs, V =

{X1, ..., Xp}, a set of k SNPs, T ⊂ V , and a set of functional significance scores, E =
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{e1, ..., ep}, we define a function-based objective function, f2(T |E) as:

f2(T |E) =

p∑
j=1

ej · IT (Xj)

p∑
j=1

ej

where

IT (Xj) =





1 : if Xj ∈ T ;

0 : otherwise .

That is, the functional significance of a SNP set T is the normalized sum of the functional

significance of SNPs in T .

Based on the two functions defined above, we next define a single objective function,

f(T |D,E), incorporating both allelic information and functional significance.

Definition 7.3. Functionally Informative Objective Function : Given a set of k SNPs,

T ⊂ V , a haplotype dataset, D, a functional significance score set, E = {e1, ..., ep}, and

a parameter value, α (0 ≤ α ≤ 1), we define the functionally informative (FI) objective

function, f(T |D, E) as:

f(T |D,E) = α · f1(T |D) + (1− α) · f2(T |E) .

The parameter α is a weighting factor, which allows us to adjust the importance of information-

based selection with respect to that of functional significance. In the work described here,

we assign an equal weight to the two criteria, that is, α = 0.5. We refer to the value

assigned by this function to the subset of SNPs T, as the FI-score of T.

To summarize, we are looking for a subset of at most k SNPs, T , that is both function-

ally significant and likely to correctly predict the remaining SNPs in V −T . Bafna et al. [7]
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have previously shown that finding k most informative tag SNPs is NP-complete. Based

on this, we take it as a conjecture that the current problem is also NP-complete. In the next

section, we thus introduce a heuristic algorithm to address the problem.

7.3 Algorithm for Selecting Functionally Informative Tag

SNPs

Our selection algorithm takes an incremental, greedy approach. It starts with an empty

tag SNP set, T , and iteratively adds one SNP to T until a maximum number, k, of SNPs

are selected. Each greedy selection step identifies a SNP whose addition to T will result

in the maximum increase in the value of the functionally informative objective function

(FI-score) with respect to the current tag SNP set, T .

We first explain the basis for our greedy incremental selection process. Let T (m) denote

the set of m selected SNPs after the mth iteration, where m = 0, ..., k and T (0) = ∅. The

FI-score of T (m) was defined in Definition 8.2 as follows:

f(T (m)|D,E) = α · f1(T
(m)|D) + (1− α) · f2(T

(m)|E)

=
p∑

j=1


α ·

(
1
np
·

n∑
i=1

I(Xj, T
(m), Di−)

)
+ (1− α) ·


 ej

p∑
l=1

el

· IT (m)(Xj)





 .

Note that the FI-score of T (m) is the weighted sum of the allelic information of T (m) and the

functional significance of T (m) for each SNP Xj (j = 1, ..., p). For simplicity, we denote

the contribution of each SNP Xj to the FI-score of T (m) as fj(T
(m)|D, E), and refer to it
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as the FI-score of Xj with respect to T (m). That is,

fj(T
(m)|D,E) =


α ·

(
1
np
·

n∑
i=1

I(Xj, T
(m), Di−)

)
+ (1− α) ·


 ej

p∑
l=1

el

· IT (m)(Xj)





 ,

and

f(T (m)|D,E) =
p∑

j=1

fj(T
(m)|D,E) .

In the next iteration, m + 1, we aim to select a SNP, X(m+1), whose addition to T (m)

will maximally increase the FI-score. Using the FI-score of Xj with respect to T (m),

fj(T
(m)|D, E), defined above, this goal can be stated as follows:

X(m+1) = argmax
X∈ ( V−T (m))

p∑
j=1

(
fj( T (m) ∪ {X} |D, E)− fj(T

(m)|D, E)
)
.

Our algorithm is outlined in Table 7.1. It starts with an empty set of tag SNPs, T , and

computes the FI-score of each SNP with respect to the current set T . We note that although

no SNP is currently selected, our algorithm can still predict the allele information of SNPs,

and can thus lead to a different FI-score for each SNP. The reasoning is that in this initial

case where T is empty, the posterior probability, Pr(Xj|T ), shown in the definition of the

function I within Definition 7.2, is simply the prior probability, Pr(Xj). That is, we always

predict the alleles of Xj , Dij(i = 1, ..., n), as the major allele of the SNP. This approach

is taken because it maximizes the expected prediction accuracy when no other information

is given. At each subsequent iteration, the SNP that leads to the maximum increase in the

FI-score is selected and added to T . The FI-score for each SNP is updated based on the

augmented set T and used in the next iteration. This procedure is repeated until the set T
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Input: A set of SNPs, V ;
A maximum number of SNPs to select, k;
A haplotype dataset, D;
A set of functional significance scores, E;

Output: A set of tag SNPs, T ;

m ← 0;

T (m) ← ∅;

For each SNP Xj ∈ V

FIj ← fj(T
(m)|D, E);

While m < k

For each t where Xt ∈ V − T (m)

∆
(m)
t ←

p∑
j=1

(
fj(T

(m) ∪Xt|D,E)− FIj

)
;

X(m+1) ← argmax
Xt∈V−T (m)

∆
(m)
t ;

T (m+1) ← T (m) ∪X(m+1);

For each Xj /∈ T (m)

FIj ← fj(T
(m+1)|D,E);

m ← m + 1;

T ← T (m);

Table 7.1: The incremental, greedy algorithm for selecting functionally informative
tag SNPs.
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contains the pre-specified number of SNPs, k.

The time complexity of each incremental greedy selection is O((p − m)2 · n), where

p −m is the number of SNPs that can be selected, and n is the number of haplotypes in a

dataset D. As this iteration is repeated for m = 0 to m = k − 1, the overall complexity of

our algorithm is O(k · n · p2).

7.4 Experiments and Results

We compare the performance of the proposed integrative SNP selection method with that

of two state-of-the-art selection systems supporting both tag SNP selection and functional

SNP selection: TAMAL [73] and SNPselector [184]. For simplicity, we refer to the pro-

posed method as FITS-Select (Functionally Informative Tag SNP Selector). In the follow-

ing sections, we summarize the experimental setting of the comparative study, and report

the evaluation results.

7.4.1 Experimental Setting

For evaluation, we have selected 14 genes that are involved in the etiology of common and

complex diseases according to the OMIM database [69] and have disease-related SNPs

identified and recorded by the HapMap Project [33]. To identify the candidate genes, we

scanned the OMIM database for several major common and complex diseases, including

diabetes, cancer, hypertension, and heart disease. The retrieved genes were then scanned

to find those that have SNPs with possible deleterious functional effects reported in the

biomedical literature and also have haplotype information available from the HapMap con-

sortium [33]. From the genes satisfying these criteria, 14 were selected at random.
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Table 7.2: Summary of 14 test datasets. Linkage disequilibrium (LD) is estimated by
the multi-allelic extension of Lewontin’s LD, D′ [72]. The number of SNPs
selected by TAMAL [73] and by SNPSelector [184] are shown in the right
column.

Selected SNP #
Gene Associated Disease Locus LD (D’) SNP #

TAMAL SNPSel.

ADD1 Hypertension 4p16.3 0.7718 60 16 1
BRCA2 Breast Cancer 13q12.3 0.7657 106 28 13
CMA1 Hypertension 14q11.2 0.8361 20 6 4
ELAC2 Prostate Cancer 17p11 0.8336 35 13 2
ERBB2 Prostate Cancer 17q21.1 0.8104 8 6 1
F7 Heart Disease 13q34 0.8629 13 8 5
HEXB Mental Retardation 5q13 0.7371 51 10 5
ITGB3 Heart Disease 17q21.32 0.6491 83 20 8
LEPR Diabetes 1p31 0.7048 245 46 11
LTA Heart Disease 6p21.3 0.7865 12 4 2
MSH2 Colon Cancer 2p22-p21 0.8413 51 18 4
NOS3 Alzheimer Disease 7q36 0.6183 16 7 0
PTPRJ Colon Cancer 11p11.2 0.7863 115 32 7
TP53 Colon Cancer 17p13.1 0.7154 9 5 2

Table 7.2 provides the genetic characteristics of the 14 genes and their associated dis-

ease. Linkage disequilibrium (LD) is estimated by the multi-allelic extension of Lewontin’s

LD, D′ [72]. The list of SNPs linked to the genomic location of each gene – including 10k

upstream/downstream – was downloaded from the dbSNP database, build 126 [167]. The

phased haplotype datasets for the SNPs were downloaded from the HapMap consortium

website [33] for the CEU population (HapMap public release #20/phaseII). When no haplo-

type information exists for SNPs, the SNPs were excluded from the analysis. We have also

downloaded the functional significance scores of the SNPs from the F-SNP database [109].
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We compare our system with two state-of-the-art SNP selection systems that support

both tag SNP selection and function-based SNP selection: TAMAL [73] and SNPselec-

tor [184]. The two systems share the same goal with our system, namely, selecting a set

of tag SNPs, with significant functional effects on the molecular function of the genes, for

association studies. However, they differ from our system in the assessment process for the

functional significance of SNPs, the integrated bioinformatics tools, and the criteria used

for selecting SNPs. Moreover, they conduct tag SNP selection and function-based SNP

selection in two separate consecutive steps, while we address it as a single optimization

problem.

As evaluation measures, we use Halperin’s prediction accuracy [67] and the FI-score,

introduced in Definition 8.2, (we note that the two systems to which we compare do not

provide an evaluation measure). To compare the performance of the systems using the two

measures, the SNP sets selected by each of the compared systems must include an equal

number of SNPs. However, unlike our system, TAMAL and SNPselector do not allow the

user to specify the number of selected SNPs, but rather calculate a subset of SNPs and

provide it as their output. Thus, when they do not select the same number of SNPs for the

same gene, they cannot be directly compared. Hence, for a fair comparison, we first apply

each of the compared systems to each of the 14 test datasets, and then use our system on the

same dataset to select the same number of SNPs as selected by the compared system. We

then compute the two evaluation measures for the sets selected by each of the systems, and

compare the resulting scores. The number of SNPs selected by TAMAL and SNPselector

for the 14 tested genes is shown in Table 7.2. To ensure robustness of the results obtained

from our system, we employ 10-fold cross validation 10 times, each using a randomized

10-way split of the n haplotypes. In all cases, the average performance is used in the
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Figure 7.1: The performance of our system and the compared systems for 14 gene
datasets.

comparison.

7.4.2 Test Results

Figure 7.1 shows the performance of FITS-Select compared with TAMAL (left) and with

SNPselector (right). The X-axis represents the 14 genes in an alphabetical order of their

names, as listed in Table 7.2. In Figure 7.1-a (top), the Y-axis shows Halperin’s prediction

accuracy [67], and in Figure 7.1-b the Y-axis shows the FI-score for the selected SNP set
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of the corresponding gene.

FITS-Select (upper solid line with diamonds) consistently outperforms the other two

systems, TAMAL and SNPselector (lower dotted line with rectangles) on both evaluation

measures. The performance difference in all cases is statistically significant, as confirmed

by the Wilcoxon rank-sum test (p-values are 1.144e-005 and 4.7e-003 with respect to the

TAMAL system and 1.7382e-005 and 5.6780e-004 with respect to the SNPselector sys-

tem). We note that optimizing the FI-score when selecting SNPs does not compromise the

predictive power of the SNPs selected by FITS-Select, that is, our selected SNPs still have

a high prediction accuracy according to Halperin’s original measure as demonstrated by

Figure 7.1-a.

7.5 Discussion

We have presented a first integrative SNP selection system, FITS-Select, that simultane-

ously identifies SNPs that are both highly informative in terms of providing allele informa-

tion for the target locus, and are of high functional significance. Our main contributions

include the formulation of the problem of functionally informative tag SNP selection as a

multi-objective optimization problem and presenting a heuristic selection algorithm to ad-

dress the problem. An empirical study over a set of 14 disease-associated genes shows that

our system improves upon current state-of-the-art systems.

While we have presented improved results, there are a number of limitations and possi-

ble extensions needed for this work. First, our SNP selection method, FITS-Select, assumes

that both haplotype data and functional significance scores are given for all candidate SNPs

to be examined. Therefore, when conducting the comparative study described in Section

7.4, we excluded SNPs that have no haplotype data or functional significance (FS) scores.
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Computational methods, such as imputation, are needed to include these SNPs in the anal-

ysis.

Second, we presented a simple greedy search algorithm in which both tagging infor-

mativeness and functional significance of SNPs are incorporated into a single objective

function expressed as a weighted sum [108]. Although the weighted sum approach has

been widely used to solve multi-objective optimization problems, it is still limited by the

fact that the selected SNP set depends on the predefined weighting factors. In the work

described above, we have set an equal weight to the informative and the functional objec-

tive. It will be interesting to change the weight, and to see if and how the selection varies

according to the given weight in the scoring function.

Third, we demonstrated the utility of our multi-objective SNP selection framework

combining two objective functions, f1 – based on tagging informativeness, and f2 – based

on function. However, our selection framework is general in a sense that other types of SNP

selection criteria can be incorporated into it as well. For example, our information-based

objective function, f1, is currently defined following the tagged SNP prediction-based ap-

proach. It will be interesting to examine whether our selection framework works well with

objective functions based on other tag SNP selection approaches, such as pairwise linkage

disequilibrium (LD).

Finally, it is also interesting to apply other multi-objective optimization approaches,

and to compare the selected SNP sets as well as their performance. In the next chapter, we

present our second integrative SNP selection system that addresses some of these limita-

tions.



Chapter 8

A Multi-objective Pareto Optimization

Framework for Selecting Functionally

Informative Tag SNPs

This chapter introduces our second integrative SNP selection method for identifying func-

tionally informative tag SNPs. The proposed method is based on the notion of Pareto opti-

mality, which is a well-established concept in game theory and engineering for addressing

multi-objective optimization problems. We provide the motivation for the proposed method

in Section 8.1. In Section 8.2, we formally define the problem of functionally informative

tag SNP selection in the context of Pareto optimality. Section 8.3 describes an imputation

algorithm for linkage disequilibrium and a heuristic algorithm for selecting functionally

informative tag SNPs. Section 8.4 reports the evaluation results of the proposed method

using a comparative study, and Section 8.5 concludes and outlines future directions.

132
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8.1 Motivation and Objectives

In the previous chapter, we have introduced the first integrative SNP selection system that

combines tag SNP selection and functional SNP selection into one unified selection pro-

cess. We proposed a greedy selection algorithm in which both tagging informativeness

and functional significance of SNPs are incorporated into a single objective function ex-

pressed as a weighted sum [108]. In that work, two objective functions, f1(x) and f2(x)

are combined into one, by employing a linear combination of the form α1·f1(x)+α2·f2(x).

However, this formulation is still limited by the fact that the selected set of SNPs depends

on the predefined weighting factors, α1 and α2, whose optimal value is unknown a priori

in most cases.

In this chapter, we introduce a new multi-objective SNP selection system that, as one

of its main contributions, overcomes this limitation by using the well-established, game-

theoretic notion of Pareto optimality [98]. To the best of our knowledge, this idea was not

applied before in any genetic variation study. The underlying theoretical principle is that

when several, possibly competing, objectives are considered simultaneously, there may not

exist a single global optimal solution that is superior with respect to all objectives; however,

we can possibly find a set of nondominated solutions, formally called Pareto optimal so-

lutions, to which no other solution is superior with respect to all objectives. Based on this

notion of Pareto optimality, we propose a multi-objective simulated annealing algorithm

that searches the space of Pareto optimal subsets of functionally informative tag SNPs. Our

algorithm does not require a predefined weighting factor to combine different objectives,

while it still selects only a small number of SNPs. We also present two heuristics to speed

up the search process, and demonstrate the utility of the heuristics through a comparative

study.
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In addition, we present a new framework to calculate the tagging informativeness of

SNPs with no allelic information. The HapMap consortium [33] provides haplotype in-

formation of a subset of SNPs on the human genome for three major populations. When

SNPs in which we are interested are not members of the public haplotype, their tagging

ability cannot be measured due to the lack of allele information over population samples.

Conventional imputation algorithms for genome sequences are not helpful in this case, be-

cause the algorithms cannot estimate the missing allele information of the SNPs for the

entire population samples. In order to address this problem, we propose to impute pairwise

linkage disequilibrium (LD) of SNPs, rather than imputing the allele values themselves.

In the next section, we start by defining the problem of functionally significant tag SNP

selection in the context of Pareto optimality.

8.2 Problem Definition

In Section 7.2, we have formally defined the problem of functionally informative tag SNP

selection. As a basis, we use the same formulation of the problem, but redefine the multi-

objective optimization function in the context of Pareto optimality. We also note that the

information-based and the function-based objective functions introduced in this chapter

extend our previous work. We redefine the two objective functions to incorporate the widely

used concept of pairwise linkage disequilibrium (LD). This modification, along with our

new imputation algorithm, enables to include SNPs with no haplotype information in our

SNP selection process. We start by introducing the basic notation used throughout this

chapter.

Suppose that the target locus contains p consecutive SNPs. As before, we represent

each SNP as a discrete random variable, Xj (j = 1, ..., p), whose possible values are
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the 4 nucleotides, {a, c, g, t}. Let V = {X1, ..., Xp} denote a set of random variables

corresponding to the p SNPs. A haplotype dataset, D, that contains the allele information

of n haplotypes, each of which consists of the p SNPs in V , is provided as input. We

are also given the set of functional significance (FS) scores for the p SNPs, which we

denote by E = {e1, ..., ep}. We currently use the FS scores assessed by the F-SNP-Score

system, introduced in Chapter 6. We note, though, that it is possible to use other functional

scoring methods as well. Last, for a subset of SNPs, T ⊂ V , we define an objective

function, f(T |D,E), to reflect both the allele information carried by the SNPs in T about

the remaining SNPs in (V−T ) and the functional significance represented by the SNPs in

T .

The problem of functionally informative tag SNP selection is still formally stated as in

Section 7.2:

Problem : Functionally Informative Tag SNP Selection

Input : A set of SNPs, V ;
A maximum number of SNPs to select, k;
A haplotype dataset, D;
A set of functional significance scores, E;

Output : A set of SNPs T = argmax
T such that T ⊂ V & |T | ≤ k

f(T |D, E) .

However, alike in Chapter 7, we define the objective function, f(T |D, E), as an ordered

pair of two simpler objective functions, f1(T |D) and f2(T |D,E), where f1 measures the

allelic information of a SNP set T , while f2 measures its functional significance. We also

note that, as stated above, we redefine the two objective functions for incorporating the

widely used concept of pairwise linkage disequilibrium (LD). Many tag SNP selection

tools are based on the pairwise LD-based SNP selection approach (we provide the litera-

ture review in Section 3.1.2). Our new imputation algorithm, introduced in Section 8.3.1
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expedites the computation procedure of the objective functions, as well.

The two objective functions, f1(T |D) and f2(T |D, E) are formally defined as follows:

Definition 8.1. Information-based Objective. Given a set V of p SNPs, V ={X1, ..., Xp},

a dataset D of n haplotypes, and a parameter value, α (0 < α < 1), we define the

information-based objective f1(T |D) for a subset of SNPs, T ⊂ V, as:

f1(T |D)
def
=

1

p

p∑
j=1

I(Xj, T )

where

I(Xj, T ) =





1 : if ∃Xs ∈ T such that LD(Xj, Xs|D) ≥ α;

0 : otherwise.

This objective function, f1(T |D), measures the allele information carried by the SNPs in

T about the haplotype dataset D. It is based on the pairwise LD-based tag SNP selection

approach, in which the smallest subset of SNPs is selected such that all unselected SNPs

are in high LD with one of the selected tag SNPs [21]. Here, we express the objective as

the number of SNPs in V whose maximum LD with selected tag SNPs in T is at least a

pre-specified threshold α (here, α=0.8), based on the haplotype dataset D.

Definition 8.2. Function-based Objective. Given a set V of p SNPs, V = {X1, ..., Xp},

a dataset D of n haplotypes, a set of functional significance scores for the p SNPs, E =

{e1, ..., ep}, and a parameter value, α (0 < α < 1), we define a function-based objective

f2(T |D, E) for a subset of SNPs, T ⊂ V, as:
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f2(T |E)
def
=

p∑
j=1

(ej · IT (Xj))

p∑
j=1

ej

,

where IT is a modified indicator function formally defined as:

IT (Xj) =





1 : if Xj ∈ T ;

ldj : if Xj /∈ T and ∃Xs ∈ T such that LD(Xj, Xs|D) ≥ α ;

0 : otherwise ;

and ldj is the maximum LD between SNP Xj and the selected SNPs. That is, the functional

significance (FS) of the subset T is computed as the normalized sum of the FS scores

of the SNPs in T . This formulation is primarily based on a typical function-based SNP

selection approach that aims to prioritize SNPs according to their functional significance

scores [184, 188, 111].

However, by introducing ldj , we modify the basic framework shown in Section 7.2, to

account for the functional significance of unselected SNPs. That is, when a SNP Xj is not

directly selected into T , but is in high LD with the SNPs in T (i.e., LD(Xj, Xs|D) ≥ α), we

still allow a certain proportion (i.e., ldj) of its functional significance score to be included

in our computation. Specifically, although some functional SNPs are not directly selected,

their association with disease is indirectly accounted for from the selected SNP, based on

their LD. Therefore, the functional significance represented by the SNPs in T reflects not

only the functional score of the SNPs in T , but also that of other SNPs which are in high

LD with the selected SNPs. To the best of our knowledge, this is the first formulation of

functional SNP selection that takes LD into account.

The functionally informative (FI) objective function, f(T |D,E), is now defined as an
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ordered pair
〈
f1(T |D), f2(T |D, E)

〉
as follows:

Definition 8.3. Functionally Informative Objective Function. Given a set of k SNPs,

T ⊂ V , a haplotype dataset, D, and a functional significance score set, E = {e1, ..., ep},

we define a functionally informative (FI) objective function, f(T |D, E) as:

f(T |D,E) =
〈

f1(T |D), f2(T |D,E)
〉
.

Note that we aim to simultaneously optimize these two distinct and possibly competing

objectives, f1 and f2. To achieve this goal, we adopt the notion of Pareto optimality defined

as follows:

Definition 8.4. Pareto Optimality. Let Ti and Tj be two distinct subsets of V , of the

same size, k.

1. Ti is said to dominate Tj if and only if

(f1(Ti) ≥ f1(Tj) and f2(Ti) > f2(Tj)) or (f1(Ti) > f1(Tj) and f2(Ti) ≥ f2(Tj)).

We denote this relationship by Ti Â Tj .

2. Ti is called Pareto optimal if and only if no other subset of V dominates Ti.

Figure 8.1 shows an example of dominated and nondominated Pareto optimal solutions.

Suppose that there are only seven subsets of the SNP set V , namely A,B,C,D, E, F, and

G, chosen as candidate sets of functionally informative tag SNPs. The X-axis represents

the information-based objective score, f1 of each subset, and the Y-axis represents the

corresponding function-based objective score, f2. Based on our formulation, the higher the

f1 and f2 scores are, the better the subset is. For clarity, in the figure we denote the f1 and

the f2 scores of subset F as XF and YF , and show dashed lines to the respective values,

drawn perpendicular to the X- and Y-axis, respectively.
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f2 ( Function-based Objective )

f1  ( Information-based Objective )
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Figure 8.1: Dominated and non-dominated Pareto optimal solutions. The X-axis rep-
resents the information-based objective score, f1, and the Y-axis represents
the function-based objective score, f2. To illustrate an example of domi-
nated solutions, we denote the f1 and the f2 scores of subset F as XF and
YF , and show dashed lines to the respective values on the X- and Y-axis, re-
spectively. Solutions B and C dominate F as they show higher scores than
F with respect to at least one objective. Among seven candidate solutions,
nondominated Pareto optimal solutions are displayed as black dots, while
dominated solutions are displayed as unfilled circles.

Solution B dominates solution F as it shows higher scores than F with respect to both

objectives; solution C also dominates F as it shows a higher score than F with respect to f1

and the same score as F with respect to f2. However, solutions B and C do not dominate

each other, as each of them shows better performance than the other, with respect to one

objective, but is doing worse than the other with respect to the other objective. Similarly,

solutions A, B, C, and D (shown as black dots in Figure 8.1) form a nondominated Pareto

optimal set in this example. None of them are dominated by other solutions; each of these

solutions shows higher score than all others on at least one objective, thus equally “optimal”
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unless a specific preference toward one objective is stated.

In summary, among all possible SNP subsets of maximum size k, we aim to select all

Pareto optimal subsets of functionally informative tag SNPs based on Definition 8.4. The

problem of finding k most informative tag SNPs is proven to be NP-complete [7]. We

compute our information-based objective independently of the function-based objective,

which means that simultaneously considering the two selection objectives does not reduce

the complexity of the problem. In the next section, we thus propose a heuristic framework,

(which, like all heuristics, looks for a locally optimal solution), to address the problem of

functionally informative tag SNP selection within the framework of Pareto optimality.

8.3 Methods for Pareto-based SNP Selection

Our SNP selection system consists of two main steps. First, we calculate the pairwise

linkage disequilibrium (LD) among all candidate SNPs. When the allele information is

not available, we impute the corresponding LD values. Second, we select the Pareto (lo-

cally) optimal sets of functionally informative tag SNPs using a multi-objective simulated

annealing algorithm. We describe the details of each step in the following subsections.

8.3.1 Computing the Linkage Disequilibrium of SNPs

To efficiently compute the score of the information-based objective function, f1(T |D), we

calculate the pairwise LD between all pairs of candidate SNPs in advance. As a measure

of pairwise LD, we currently use the multi-allelic extension of Lewontin’s linkage disequi-

librium (LD) measure, D′ [72].

As stated in Section 4.4.2, the LD computation procedure is as follows: Let Xi be an
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m-allelic SNP, and Xj be an n-allelic SNP. Let f i
k be the relative frequency of the kth allele

for SNP Xi, while f j
l be the relative frequency of the lth allele for SNP Xj , counted from

the haplotype dataset D (where k = 1, .., m and l = 1, .., n). We denote the relative joint

frequency of the kth allele occurring for SNP Xi and the lth allele occurring for SNP Xj

by f ij
kl . The LD between the two SNPs, Xi and Xj , is computed as:

LD(Xi, Xj |D) =
m∑

i=1

n∑
j=1

f 1
i ·f 2

j |
f12

ij −f1
i ·f2

j

Dmax
|,

where Dmax is the maximum value among the products of two relative frequencies of SNP

X1 and X2, f 1
i · f 2

j (i = 1, .., 4; j = 1, .., 4).

When the allele information of a SNP is not available in D, we impute its LD value

according to the general characteristic of LD; the level of LD tends to decrease in propor-

tion to the physical distance between SNPs [70]. Thus, for each SNP, Xi, with no allele

information, we choose two nearest SNPs with allele information, one from the left and the

other from the right side of the SNP, as shown in Figure 8.2. We call these two SNPs the

proxy SNPs of Xi, and use their allele information to estimate the pairwise LD of Xi with

others. The imputation algorithm is formulated as follows:

LD(Xi, Xj |D)
def
=

d(Xi, X
L
i ) · LD(XR

i , Xj |D) + d(Xi, X
R
i ) · LD(XL

i , Xj |D)

d(Xi, XL
i ) + d(Xi, XR

i )
,

where XL
i and XR

i denote the left and the right proxy SNPs of Xi respectively, and d(X ,Y )

denotes the distance in base-pairs between the location of any two SNPs, X and Y , on

the genomic sequence. In short, we calculate the pairwise LD between Xj and Xi as a

weighted average of the pairwise LD between Xj and the two proxy SNPs of Xi. We note

that the closer the proxy SNP is to Xi on the genomic sequence (in terms of physical base

pairs distance), the higher weight its LD has. This imputation procedure is illustrated in
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Figure 8.2: The imputation procedure for inferring the linkage disequilibrium (LD) of
SNPs with no allele frequency information. First, pairwise LD is computed
between SNPs with allele information. Second, for each SNP with no allelic
information, two neighboring SNPs with allelic information, one on each
side, are selected. Third, the allele information of the selected neighbor-
ing SNPs are used to compute the pairwise LD of the SNP with no allelic
information with others.



CHAPTER 8. PARETO-BASED MULTI-OBJECTIVE SNP SELECTION 143

Figure 8.2.

8.3.2 Selecting Functionally Informative Tag SNPs

Our selection algorithm is based on a multi-objective simulated annealing (SA) algorithm [97],

which has been successfully used for addressing many combinatorial optimization prob-

lems [37, 48, 47]. Table 8.1 summarizes the proposed algorithm.

First, we choose a randomly generated subset of k SNPs as a current solution, Tc, and

compute the score-pair f(Tc|D, E). Second, while a temperature parameter t is greater

than a minimum threshold tmin, the following three steps are repeated: 1) A neighbor set of

the current solution Tc, referred to as Tn, is generated (as explained later in this section)1;

2) If Tn is Pareto optimal among the sets we examined, Tn is added to the Pareto optimal

solutions with respect to the examined sets, PO, and replaces Tc for the next iteration;

otherwise, it replaces Tc with a probability Paccept. The probability Paccept is updated as

a function of f(Tc|D,E), f(Tn|D,E) and t; 3) The temperature t is reduced by a rate of

rc. This whole procedure is repeated M times. In the experiments described here, we

empirically set the SA parameters as follows: t0 = 1.3, rc = 0.9999, tmin = 0.001, and

M = 103.

To guide an efficient SA search, we introduce two heuristics for generating a new neigh-

bor solution. First, in order to find a neighbor SNP set that is likely to dominate the cur-

rent set Tc, we utilize the score of each SNP with respect to the two selection objectives,

f1 and f2. That is, for each SNP Xi, we compute the objective scores, f1({Xi}|D) and

f2({Xi}|D, E) (i = 1, ..., p), before starting the search. When generating a new neighbor

1We note that the size of a new neighbor set is fixed to k. It is straightforward to show that for each subset
of size k− 1, we can always find a subset of size k of which the selection objective f1(T |D) increases, while
f2(T |D, E) does not decrease.
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Table 8.1: The multi-objective simulated annealing algorithm for searching the Pareto
optimal sets of functionally informative tag SNPs.

Input: A set of SNPs, V = {X1, ..., Xp } ;
A set of functional significance scores, E = { e1, ..., ep } ;
A haplotype dataset D ;
The maximum number of SNPs to select, k ;

Output: Sets of Pareto optimal solutions, PO = { T1, ... };

Algorithm:
Compute LD = { ld11, ..., ldpp } ;

PO ← ∅ ;
m ← 0 ;

While (m < M )
t ← t0;
Tc ← T0 ; // A set of randomly selected k SNPs from V ;
Compute f(Tc|D, E) =

〈
f1(Tc|D), f2(Tc|E)

〉
;

While (t > tmin)
Tn = neighbor (Tc) ;
Compute f(Tn|D,E) =

〈
f1(Tn|D), f2(Tn|E)

〉
;

If ( ∃Ti ∈ PO, Tn Â Ti )
remove ∀ Ti ∈ PO s.t. Tn Â Ti ;
PO ← PO ∪ {Tn} ;

Else if ∀ Ti ∈ PO, Ti 6Â Tn

PO ← PO ∪ {Tn} ;
EndIf

Paccept( Tc, Tn, t ) ← min
{

1, exp

(
max

j∈{1,2}

(
fj(Tn)−fj(Tc)

)
t

)}
;

If ( Tn Â Tc or Paccept > random )
Tc ← Tn ;

EndIf

t ← rc · t ;
EndWhile

m ← m + 1 ;

EndWhile
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for the current set of functionally informative SNPs, Tc, we first determine whether to focus

on the information-based objective, f1, or on the function-based objective, f2, by flipping

an unbiased coin. Suppose that the information-based objective f1 is selected. We now

select a SNP Xr from Tc to be replaced by a SNP Xa from
(
V−Tc

)
. Xr is chosen with

probability Premove, which is inversely proportional to its f1 score, while Xa is chosen with

probability Padd, which is directly proportional to its f1 score. That is,

Padd = f1({Xi}|D)∑
Xi∈(V−Tc)

f1({Xi}|D)
, and

Premove =

(
f1({Xi}|D)

)−1

∑
Xi∈Tc

(
f1({Xi}|D)

)−1 .

A second heuristic is used to expedite and diversify the coverage of the search space.

Instead of generating a new neighbor by replacing one SNP at a time, we simultaneously

replace several SNPs in the initial search period, and gradually decrease the number of

replaced SNPs as the search progresses. As a result, farther neighbors are examined in the

initial stages of the search, diversifying the search area, while the later stages, which are

expected to search closer to the optimum, focus on neighbors that are closer to the current

solution. This strategy helps avoid local optima. In Section 8.4, we show the utility of these

two heuristics by comparing the performance of our selection algorithm with and without

them.

The time complexity of each iteration is O(p), where p is the number of candidate

SNPs. As this iteration is repeated for a maximum of
(
M · log(tmin/t0)/ log rc

)
times,

the overall complexity of our selection algorithm is O
(
p · M · log(tmin/t0)/ log rc

)
. The

computation procedure of the pairwise LD between p SNPs is O(n · p2), where n is the

number of haplotypes, and p is the number of SNPs in dataset D.
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8.4 Experiments and Results

We conduct a comparative study to evaluate the performance of the proposed integrative

SNP selection system compared to other state-of-the-art selection systems that support both

tag SNP selection and functional SNP selection: TAMAL [73] and SNPselector [184]. In

the following sections, we summarize the experimental setting of the comparative study,

and report the evaluation results.

8.4.1 Experimental Setting

We applied our method to 34 disease-susceptibility genes for lung cancer, as summarized

by Zhu et al. [204]. This dataset includes a larger number of genes compared to the dataset

of 14 genes we used for evaluating FITS-Select in Section 7.4.1. The list of SNPs linked to

the genes, including 10k upstream and downstream regions, was retrieved from the dbSNP

database [167]. The haplotype datasets for the genes were downloaded from the HapMap

consortium for the CEU population (public release #20/phaseII) [33]. We summarize the

primary information about the 34 genes, such as gene symbol and the total number of

linked SNPs, in the left-most part of Table 8.2. We note that we used a larger number of

genes compared to the experiments that we did in Chapter 7 to ensure more generalized

performance.

We compare the performance of our system with that of two state-of-the-art SNP selec-

tion systems that support both tag SNP selection and functional SNP selection: SNPselec-

tor [184] and TAMAL [73]. The compared systems share the same goal as ours, namely,

selecting an informative set of tag SNPs with significant functional effects. However, they

address tag SNP selection and functional SNP selection as two separate optimization prob-

lems, while we address it as a single multi-objective optimization problem.
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Table 8.2: Evaluation results of three Pareto optimal search algorithms, SA1, SA0,
and RS against the two compared systems, SNPselector and TAMAL. Un-
der the name of each compared system, the left-most column shows the
number of SNPs, k, selected by the compared system, for the correspond-
ing gene. The remaining three columns, SA1, SA0, and RS, typically show
the e1 score, that is, the percentage of the identified Pareto optimal solu-
tions that dominate the compared system’s solution, computed for each of
the respective Pareto optimal search algorithms. In the few cases where the
solutions are dominated by the compared system’s solution, e2 is shown (de-
noted by †). Cases where there is no dominating nor dominated solution are
indicated by a dot.

Gene Total SNPselector TAMAL
Symbol SNP # k SA1 SA0 RS k SA1 SA0 RS
ADRB2 153 41 100.0 100.0 33.3 17 66.6 100.0 50.0†

APEX1 83 27 100.0 100.0 100.0 19 100.0 100.0 100.0
ATR 181 36 100.0 100.0 100.0 20 100.0 100.0 50.0
CDKN1A 116 34 100.0 100.0 100.0 20 100.0 100.0 100.0
CYP1A1 49 34 100.0 100.0 100.0 10 100.0 100.0 75.0
CYP1B1 172 51 100.0 100.0 100.0 28 100.0 100.0 100.0
NQO1 86 6 100.0 100.0 50.0 8 100.0 100.0 50.0
EPHX1 148 27 80.0 25.0 14.2† 23 25.0 · ·
ERCC2 210 27 100.0 100.0 100.0 30 50.0 50.0 ·
ERCC4 289 41 100.0 100.0 44.4 49 50.0 50.0 20.0†

ERCC5 261 43 88.8 25.0 · 43 11.1 · ·
GSTP1 70 27 100.0 100.0 100.0 14 100.0 100.0 50.0
LIG4 107 27 100.0 100.0 100.0 27 20.0 100.0 25.0†

MBD1 65 24 100.0 100.0 100.0 19 100.0 100.0 50.0
MGMT 550 36 100.0 100.0 71.4 81 20.0 25.0† ·
MMP9 111 33 100.0 100.0 100.0 16 100.0 100.0 33.3
MTHFR 206 42 100.0 100.0 100.0 24 50.0 100.0 50.0
MTR 372 27 75.0 100.0 100.0 33 14.2 33.3 33.3
MTRR 212 31 100.0 100.0 100.0 32 33.3 50.0 75.0†

NBN 355 21 100.0 100.0 100.0 38 67.0 100.0 50.0†

POLB 143 25 100.0 100.0 100.0 18 100.0 100.0 100.0
RAD23B 197 12 100.0 100.0 100.0 29 20.0 16.6 ·
SOD2 188 31 20.0 · · 27 25.0 25.0† 20.0†

SULT1A1 180 39 100.0 100.0 100.0 6 33.3 100.0† 100.0†

TP53 307 46 50.0 100.0 100.0 11 50.0 33.3 66.6†

XPC 237 35 100.0 100.0 100.0 29 20.0 · ·
XRCC1 152 46 80.0 33.3 · 46 20.0 · ·
XRCC2 253 13 100.0 100.0 100.0 25 33.3 33.3 50.0†

XRCC3 158 11 100.0 100.0 100.0 37 50.0 100.0 33.3
EXO1 283 35 33.3 100.0 · 36 20.0 100.0 66.6†

HDAC5 111 21 100.0 100.0 100.0 13 100.0 100.0 100.0
POLI 239 23 75.0 100.0 100.0 24 25.0 100.0 ·
REV1 307 53 100.0 100.0 100.0 32 50.0 100.0 50.0

† denotes the e2 measure.
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TAMAL [73] enables users to select haplotype tag SNPs (using Gabriel’s method [58]

or the Tagger method [39]), or functionally significant SNPs such as SNPs leading to non-

synonymous or synonymous amino acid changes, or SNPs altering canonical splice sites,

promoter regions, or transcriptional regulatory regions. To identify tag SNPs, we selected

the Tagger method option as it is based on the same pairwise linkage disequilibrium (LD)-

based objective, f1(T |D), as ours. SNPselector [184] prioritizes SNPs based on their tag-

ging informativeness, SNP allele frequencies, functional significance, regulatory potential,

and repeat scores. Same as TAMAL, it recognizes SNPs that are likely to alter protein

function, splicing regulation, or transcriptional regulation as functionally significant. The

tagging informativeness is calculated also based on the pairwise LD-based criterion.

As described in Section 7.4.1, TAMAL and SNPselector do not allow users to spec-

ify the maximum number of selected SNPs. Thus, for a fair comparison, we first apply

TAMAL and SNPselector to the dataset of 34 genes, and apply our system on the same

dataset to select the same number of SNPs as selected by each compared system. We de-

note our full-fledged multi-objective simulated annealing algorithm that employs the two

heuristics by SA1. In addition, we demonstrate the utility of our heuristics by examining

the performance of two baseline search algorithms for identifying (locally) Pareto optimal

solutions: 1) The same simulated annealing algorithm, described in Table 8.1, without the

proposed two heuristics, which we denote by SA0; and 2) A naı̈ve selection algorithm that

randomly generates M solutions (here, M = 104) and identifies (locally) Pareto optimal

subsets within the M solutions. We refer to this naı̈ve selection algorithm as RS.

As evaluation measures, we define two statistics based on Pareto optimality. First, for

each Pareto optimal search algorithm, we compute the percentage of its SNP set results

that dominate the solution found by the compared system (following Definition 8.4, one
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solution dominates the other, if it is at least as good as the other according to one objective,

and is strictly better than the other according to another objective). This measure examines

whether our Pareto optimal search algorithm indeed performs better than the compared

system. We refer to this first measure as e1. If there is no dominating solution (i.e., e1=0),

we compute the percentage of the Pareto optimal solutions that are dominated by the so-

lution found by the compared system. This second measure examines whether our search

algorithm performs worse than the compared system. We refer to this measure as e2. We

note that some Pareto optimal solutions are neither dominant nor dominated by the com-

pared solution2. Therefore, the sum of the two evaluation measures, e1 and e2 could be less

than 100%.

8.4.2 Test Results

Table 8.2 summarizes the evaluation results of the three Pareto optimal search algorithms,

SA1, SA0, and RS against the two compared systems, SNPselector and TAMAL. The two

leftmost columns show gene symbols and the total number of SNPs linked to each gene.

The remaining columns are divided into two parts, corresponding to the two compared

systems. In each part, the leftmost column shows the number of SNPs, k, which is chosen

by each compared system for the corresponding gene. The remaining three columns, SA1,

SA0, and RS show the evaluation measure, e1(the majority of the cases) or e2 (denoted by

†) computed for the corresponding search algorithm, respectively. When both of e1 and e2

are 0, which means that the compared solution is neither dominant nor dominated by our

Pareto optimal solutions, we display it with a dot.

2This happens when the Pareto optimal solutions outperform the compared solution with respect to one
objective, but are worse with respect to the other objective. In other word, the compared solution is also a
Pareto optimal solution.
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Figure 8.3: The performance of Pareto optimal solutions identified by three search al-
gorithms, SA1, SA0, and RS, and that of the solution selected by TAMAL
for gene CDKN1A. The X-axis represents the information-based objective
score, f1, while the Y-axis represents the function-based objective score,
f2. The solutions identified by SA1, SA0, and RS are marked with black
dots, red rectangles, and blue diamonds, respectively. TAMAL’s solution
is marked with a green triangle.

Overall, the SA1 algorithm that uses the two proposed heuristics always finds Pareto

optimal subsets that dominate the compared solutions. The difference between our domi-

nating solution and the compared system’s solution is statistically significant with respect

to both selection objectives. Using the paired t-test with 5% significance level (α = 0.05),

p-values are 8.29e-179 for f1(T |D) and 8.15e-157 for f2(T |D, E) in the case of SNPs-

elector, and 7.02e-073 and 5.76e-005 for TAMAL. In contrast, the naı̈ve SA0 algorithm,

which does not employ any heuristics, fails to find dominating solutions in 8 cases (shown

as † or · in Table 8.2). In three cases, SA0’s solutions are dominated by the compared sys-

tem’s (shown as † in Table 8.2). The random search algorithm RS fails to find dominating

solutions in 23 cases, while producing dominated solutions in 11 cases.
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We further confirmed that the SA1 algorithm performs better than the two naı̈ve ap-

proaches, SA0 and RS; SA1’s solutions dominate SA0’s solutions on 31 genes and RS’s

solutions on all 34 genes. The difference is statistically significant, as confirmed by the

paired t-test (p-values are 1.37e-004 for f1 and 3.11e-015 for f2 with respect to SA0, and

2.43e-149 and 3.89e-179 for RS).

Figure 8.3 shows an example of the identified solutions by SA1, SA0, RS, and the

compared system, in this case, TAMAL, for the gene CDKN1A. The gene CDKN1A plays

a critical role in the cellular response to DNA damage, and its allelic variants are known

to be associated with lung cancer [169]. The number of SNPs selected by TAMAL is 20,

which is approximately 17% of the SNPs linked to the gene. As is clearly shown in Figure

8.3, SA1 identifies a set of solutions (that is, 5 different subsets of 20 SNPs each, shown

as black dots in the figure), for which both information-based objective, f1, and function-

based objective, f2, outperform the solutions found by SA0, and greatly outperform RS

and TAMAL.

8.5 Discussion

In this chapter, we presented a new multi-objective optimization framework for selecting

functionally informative tag SNPs. It simultaneously identifies SNPs that are both highly

informative as tag SNPs for all other SNPs on the target locus and are of high functional

significance. For the first time, we applied the notion of Pareto optimality, which has been

extensively used in other fields, to address the problem of SNP selection. A comparative

study over a set of 34 disease-susceptibility genes for lung cancer shows that our system

improves upon current state-of-the-art SNP selection systems that support both tag SNP
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selection and functional SNP selection, as well as upon other general-purpose search algo-

rithms for identifying Pareto optimal solutions.

It appears that two main factors contribute to this improved performance. First, we

take into account both objectives at the same time, thus ensuring the optimization of both

objectives given the limited number of selected SNPs. Second, instead of searching for

a single optimum, which may not exist due to possibly competing selection objectives,

we search for a collection of all Pareto locally-optimal subsets. Our comparative study

shows that a broad range of Pareto optimal solutions exist for all 34 genes. Researchers can

thus examine possible trade-offs between the obtained Pareto optimal solutions, without

deciding a priori one best combination of distinct selection objectives.

In this work, we demonstrated the utility of our multi-objective SNP selection frame-

work in the context of pairwise linkage disequilibrium. As discussed in Section 7.5, our

selection framework is general in a sense that other types of SNP selection criteria can be

incorporated into it as well. It is also straightforward to include additional SNP selection

criteria or to use different functional significance (FS) score of SNPs, if preferred.

A disadvantage of exploring a set of Pareto optimal solutions is the increased running

time. In our analysis, it takes from 17 minutes (in the case of CYP1A1, number of SNPs is

49) to 1174 minutes (in the case of MGMT, number of SNPs is 550) to reach convergence.

Our future research will thus focus on improving the search speed by employing addi-

tional heuristics. Addressing this scalability issue is also critical for applying the method

to genome-wide association studies.

In this work, we did not specify a criteria to select one solution from a set of Pareto

optimal solutions. We believe that additional SNP selection criteria, such as fitness to

SNP array design, can be used to finalize the decision. In the near future, we thus plan
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to investigate other SNP selection objectives, and examine how the objectives can be used

to prioritize the selected Pareto optimal solutions. We also plan to examine other search

algorithms used for addressing multi-objective optimization problems.



Chapter 9

Conclusion

This chapter summarizes the major contributions of this dissertation work and outlines

possible directions for future research. Section 9.1 presents a summary of the algorithms

and systems introduced in this thesis, and describes the major contributions. Section 9.2

discusses the limitations of the proposed work and suggests a number of future research

directions to enhance it.

9.1 Summary of Major Contributions

In this thesis, we addressed the problem of selecting a set of SNP markers for supporting

effective disease-gene association studies. SNPs are the most common form of genetic

variations on the human genome, and as such, they have been widely used as genetic mark-

ers for studying common and complex human diseases. However, the tremendous number

of SNPs, which is estimated at more than eleven million [167], poses challenges to the

genotyping and analysis procedure associated with such studies. Our goal is to support ef-

fective genetic association studies for common and complex human diseases, by providing

154
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effective prioritization methods for SNP markers based on both their allele information and

functional significance.

To achieve the goal, we have presented several novel algorithms and a database system

based on the two major SNP selection approaches: tag SNP selection and functional SNP

selection. In addition, we have proposed an innovative approach to combine both tag SNP

selection and functional SNP selection into one unified selection process. Improved per-

formance of all the proposed methods was demonstrated through comparative studies. The

summary of the major contributions are as follows:

• We presented a new tag SNP selection method, BNTagger, to identify a subset of

SNPs that can effectively predict the allele information of the complete SNP set on

the target genomic region. By allowing the number or the location of predictive tag

SNPs to vary, BNTagger improves prediction performance over that of state-of-the-

art predictive methods. BNTagger is also more widely applicable than other tools, as

it is neither limited to bi-allelic SNPs, nor requires an additional haplotype phasing

procedure.

• We constructed a web-based public database service, F-SNP, to provide a comprehen-

sive collection of functional information about SNPs. Using 16 external databases

and function-assessment tools for SNPs, F-SNP provides users with information

about putative deleterious effects of SNPs on protein structure, function, post-translational

modification, splicing regulation, and transcriptional regulation. A web interface

enables easy navigation for obtaining functional information about SNPs through

multiple starting points and exploration routes, including relevant gene and disease

information.
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• We described a classification method, F-SNP-C (F-SNP Classification) that desig-

nates a subset of the SNPs assessed by the F-SNP system as functional. The func-

tional SNPs are the ones that are predicted by a majority of the function-assessment

tools to be deleterious with respect to major bio-molecular functions. Therefore, F-

SNP-C enables users to identify functionally significant SNPs that are more likely to

be associated with disease or with functional impairment.

• We presented a scoring scheme, F-SNP-Score, to quantitatively assess the deleterious

functional effects of SNPs. Using a probabilistic framework, F-SNP-Score quan-

tifies the functional assessment results obtained from multiple independent tools,

while taking into account the certainty of each prediction as well as the reliabil-

ity of different tools. An empirical study over 580 disease-associated genes shows

that F-SNP-Score assigns much higher functional significance (FS) scores to known

disease-related SNPs than to likely neutral SNPs. The calculated functional signifi-

cance scores of SNPs are currently provided through our public web-based database

service, F-SNP.

• We proposed a novel integrative approach, FITS-Select (Functionally Informative

Tag SNP Selector), to identify a subset of SNPs that are both informative tagging

and functionally significant. We formalized the problem of SNP selection as a multi-

objective optimization problem and presented a heuristic selection algorithm based

on a single objective function, incorporating both allele information and functional

significance of SNPs. An empirical study over a set of 14 disease-associated genes

shows that our system improves upon current state-of-the-art systems. This work is

the first method that combines the two notions of SNP selection – the function-based

and the information-based – into a single optimized selection process.
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• We presented an additional integrative approach, based on the game-theoretic notion

of Pareto-optimality, for selecting functionally informative tag SNPs. The presented

method extends and improves on our own FITS-Select method. The information-

based and the function-based objective functions were redefined to incorporate the

widely used concept of pairwise linkage disequilibrium. Moreover, we employed

the notion of Pareto-optimality in the search for functionally informative tag SNPs.

A comparative study based on 34 genes shows that the proposed selection algorithm

improves upon state-of-the-art methods that support both tag SNP selection and func-

tional SNP selection, as well as upon other general Pareto-based search algorithms.

In addition, this thesis work provides the following contributions pertaining to computer

science in general:

• The work, presented in Chapter 4, applied a domain-specific concept, namely, pair-

wise linkage disequilibrium, to guide the learning procedure of the Bayesian network

topology. This integration shows that utilizing constraints from specific problem do-

mains enhances the model learning procedure. We expect such integration of con-

straints to be applicable to other domains.

• The scoring scheme, presented in Chapter 6, proposes a novel approach to combine

diverse information from multiple sources within probabilistic framework. The ap-

proach is general, and thus can be applicable to other problems that require analysis

of data emerging from multiple sources, especially when the true class labels for

many data instances are not available.

• The two multi-objective optimization methods, presented in Chapters 7 and 8, showed

a new application of multi-objective optimization frameworks in human genetics and



CHAPTER 9. CONCLUSION 158

medicine. Moreover, the work clearly demonstrated that combining distinct prob-

lem solving criteria into one unified process is possible, and indeed improves upon

separate optimization approaches.

9.2 Future Work

The work described in this thesis comprises one step toward the goal of identifying disease-

causal variants underlying common and complex human diseases. Specific issues and fu-

ture research directions have already been discussed in each chapter. We thus provide here

more general directions for extending the work.

Further Utilizing Bayesian Networks Topology The proposed tag SNP selection method,

BNTagger, is based on the framework of Bayesian networks (BNs) to identify predictive tag

SNPs. In particular, BNTagger’s heuristic selection algorithm utilizes of a certain aspect

of the topology of BNs, as the topology captures the dependence and conditional indepen-

dence relationship among SNPs. Analyzing the topology of the BNs learned for SNPs may

provide further insights about the relationships among SNPs. Some of the possible ques-

tions to which the analysis may provide answers are: Does the topology of the networks

show patterns consistent with other features of SNPs? For example, are nodes correspond-

ing to SNPs in close physical proximity on the genome located close to each other in the

network graphs? Are the selected tag SNPs concentrated in a specific part of the network

or scattered over the whole network? If so, what inferences can we draw from such an

observation? It would be also interesting to examine whether the topology of BNs varies

across different haplotype/genotype datasets and populations.
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Evaluation through Simulation Studies In this thesis, comparative studies based on

multiple datasets were used primarily to evaluate performance. While comparative stud-

ies can indeed demonstrate the improved performance of the proposed methods over the

state-of-the-art, theoretical evaluation remains to be done. Specifically, we are interested

in conducting simulation studies to examine the performance of the proposed methods un-

der various genomic/evolutionary/experimental conditions. For example, as discussed in

Section 3.1.4, several factors are known to affect the effectiveness of a tag SNP selection

strategy. These include: the sample size, SNP densities, allele frequencies, the level of link-

age disequilibrium on the genomic region, population structure, and inheritance modes of

disease-causal variants. The influence of these conditions on the effectiveness of selected

tag SNPs remains to be studied.

Extending F-SNP-Score for Scoring a Set of SNPs The F-SNP-Score system assesses

the putative deleterious effects of an individual SNP with respect to the four major bio-

molecular functional categories: protein coding, splicing regulation, transcriptional regu-

lation, and post-translational modification. To the best of our knowledge, all the current

function-assessment tools and databases for SNPs take this single SNP-based assessment

approach. Basic assumptions under the single SNP-based assessment are that 1) the func-

tional effects of an individual SNP can be assessed based on its genomic properties (such

as the chromosomal location and allele information); and 2) the effects are not affected

by other SNPs. While these assumptions greatly simplify the function-assessment process,

they do not reflect the epistatic 1 effects of genes and mutations. It is now widely ac-

cepted that most biological systems that underlie cellular, developmental and physiological

1Epistasis refers to the interaction between genes at two or more loci. When epistasis takes place, the
phenotype of one locus is altered or masked by effects of another locus [141].
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function are composed of many elements that interact with one another [141]. Similarly,

mutations are assumed to interact such that their combined effect on fitness is reinforced

(also known as synergistic epistasis), mitigated (known as antagonistic epistasis) or cu-

mulated (which means no epistasis) [118]. Therefore, it is more realistic to assume that

functional significance of each SNP depends on that of other SNPs. Assessing the putative

deleterious effects of an individual SNP in the context of functionally relevant other SNPs

remains a challenging and important task to address.

Applying F-SNP-Score to Association Studies Another interesting research direction is

to incorporate the functional significance score, assessed by F-SNP-Score, into large-scale

association studies. As discussed in Section 3.2.4, functional significance (FS) scores of

SNPs can be used for prior selection of SNP markers as well as for post evaluation of SNP

markers after association with disease is identified. Furthermore, the assessed FS scores

can be directly applied to large-scale association studies to reduce the chance of missing

true positive associations, also known as the multiple testing problem. In statistics, the

multiple testing problem occurs when a large number of statistical inferences are conducted

simultaneously. Due to the large number of hypothesis tests, there is a high chance of

detecting false positive associations that occur by chance. Thus, to control the false positive

error rate, more conservative p-values are used to examine association tests, which raises

the multiple testing problem. We plan to develop association tests that incorporate prior

information on the putative deleterious effects of SNP to deal with the multiple testing

problem. A possible route (which we have started exploring) is to use the FS scores of

SNPs as weights to adjust the p-value for individual hypothesis testing.
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Developing Genome-wide SNP Selection Methods The SNP selection methods dis-

cussed in this thesis are not directly applicable to the whole genome due to their com-

putational complexity. However, much current interest is focused on genome-wide associ-

ation studies that examine hundreds of thousands of SNPs at the same time. Genome-wide

studies are more promising than traditional candidate gene-based studies with respect to

common and complex diseases, in which a combination of multiple genetic variations con-

tributes to an individual’s risk. Therefore, an important extension of the work will be to

develop SNP selection methods that scale up to the whole genome. In particular, we are

interested in developing a genome-wide integrative SNP selection method that takes into

account both functional significance and tagging effectiveness of SNPs. As discussed in

Section 8.5, the greatest obstacle to the full scale extension is the current computational

complexity. There are also other difficulties that complicate the selection procedure. That

is, the genomic structure of the human genome is much more complicated than that of a

single gene; It consists of both gene and intergenic regions, more complex linkage disequi-

librium structures, and different levels of functional structures. Leveraging the qualitative

characteristics of the genomic structure as well as reducing the computational complexity

of the selection algorithm will be the key issue to address in order to apply the work on a

genome-wide scale.
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Appendix A

Program Source Codes

A.1 BNTagger

Server: redtape.cs.queensu.ca

Home Directory: /fs/hs/projects/BNTagger

A.1.1 To run Bayesian networks of SNPs

COMMAND

To learn all SNP datasets in a dataset file

java phd.bn.learning.LearnerMain DATA SET NAME DATA NAME CANDIDATE

PARENTS MODE redtape;

COMMAND OPTIONS:

* DATA SET NAME: the name of datasets such as LOCV (for leave one out cross valida-

tion) or 10fold 10set (for 10 fold cross validation 10 times)
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* DATA NAME: gene symbol such as ACE, LPR

* CANDIDATE PARENTS MODE

VALUE MEANING

0 Probability.CORRELATION

1 LD.D PRIME

2 LD.LARGE DELTA SQUARE

3 InformationTheory.MI

4 LD.PROXIMITY

5 LD.Q

6 LD.SMALL D

7 LD.SMALL DELTA

8 NO RESTRICTION

INPUT FILE:

A metafile with the information about datasets should be saved as a text file at

/fs/hs/projects/BNTagger/data/DATA NAME/DATA SET NAME.txt, and its exemplary con-

tents are shown for gene ACE and dataset name LOCV2 as follows:

DATA NAME TRAINING DATA TEST DATA FREQUENCY

ACE/LOCV2/1.6 ACE/LOCV2/training.1.6.txt ACE/LOCV2/test.1.6.txt 1

ACE/LOCV2/1.1 ACE/LOCV2/training.1.1.txt ACE/LOCV2/test.1.1.txt 1

ACE/LOCV2/6.7 ACE/LOCV2/training.6.7.txt ACE/LOCV2/test.6.7.txt 2

ACE/LOCV2/6.9 ACE/LOCV2/training.6.9.txt ACE/LOCV2/test.6.9.txt 1

ACE/LOCV2/1.7 ACE/LOCV2/training.1.7.txt ACE/LOCV2/test.1.7.txt 1
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ACE/LOCV2/2.3 ACE/LOCV2/training.2.3.txt ACE/LOCV2/test.2.3.txt 1

ACE/LOCV2/4.5 ACE/LOCV2/training.4.5.txt ACE/LOCV2/test.4.5.txt 1

ACE/LOCV2/11.10 ACE/LOCV2/training.11.10.txt ACE/LOCV2/test.11.10.txt 1

ACE/LOCV2/1.8 ACE/LOCV2/training.1.8.txt ACE/LOCV2/test.1.8.txt 1

ACE/LOCV2/12.13 ACE/LOCV2/training.12.13.txt ACE/LOCV2/test.12.13.txt 1

To learn a specific set of consecutive SNP datasets in a dataset file

java phd.bn.learning.LearnerMain DATA SET NAME DATA NAME CANDIDATE

PARENTS MODE START DATA INDEX END DATA INDEX redtape;

A.1.2 To select tag SNPs and evaluate the accuracy

COMMAND

To learn all SNP datasets in a dataset file

java phd.bn.prediction.PredictorMain DATA NAME CANDIDATE

PARENTS MODE START DATA INDEX END DATA INDEX MAX SNP NO MODE

DATA SET NAME redtape;

COMMAND OPTIONS:

* MAX SNP NO: the total number of SNPs

* MODE: P (for prediction) or S (for evaluation summary)
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A.2 F-SNP-Score

Server: redtape.cs.queensu.ca

Home Directory: /fs/hs/projects/F-SNP/perl/batch

A.2.1 To prepare datasets

(1) As a primary dataset, save a list of gene symbols to the following path as a text file

delimited by newlines.

PATH

/fs/hs/projects/F-SNP/data/gene/GENE SYMBOL FILE NAME

(2) Suppose that the name of the gene symbol file, saved as stated above, is all gene.txt.

Then, its absolute path should be as follows: /fs/hs/projects/F-SNP/data/gene/all gene.txt.

To prepare secondary gene datasets (indexed from zero to 4) with a specified upstream/downstream

region (in this example, 10000), execute the following four commands sequentially.

COMMANDs

/opt/perl5/bin/perl MainDataPreparation.cgi list2gene all gene.txt no yes

/opt/perl5/bin/perl -w MainDataPreparation.cgi gene2snp snp list no all gene.out.txt 10000

10000

/opt/perl5/bin/perl -w MainDataPreparation.cgi gene2snp hapmap no all gene.out.txt 10000

10000

/opt/perl5/bin/perl MainDataPreparation.cgi gene2snp no function yes all gene.out.txt 10000

10000 no
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A.2.2 To run F-SNP batch services

COMMAND

perl MainRunFSNP.cgi FILE IX (or ”all”) PROGRAM (or ”all”) all gene.out.txt 10000

10000

COMMAND OPTIONS:

* FILE IX

VALUE MEANING

zero or 3 Run java programs such as ns/NSMain, sr/SRMain, pt/PTMain

1 or 2 Run java program, tr/TRMain

4 Run java program, sr/SRMain

* PROGRAM:

type the name of a specific program to run, e.g., PolyPhen, Consite

COMMAND EXAMPLES

To run all integrated programs using all functional files indexed from 0 to 4

/opt/perl5/bin/perl -w MainRunFSNP.cgi all all all gene.out.txt 10000 10000

To run all integrated programs using each functional file

/opt/perl5/bin/perl -w MainRunFSNP.cgi zero all all gene.out.txt 10000 10000

/opt/perl5/bin/perl -w MainRunFSNP.cgi 1 all all gene.out.txt 10000 10000

/opt/perl5/bin/perl -w MainRunFSNP.cgi 2 all all gene.out.txt 10000 10000

/opt/perl5/bin/perl -w MainRunFSNP.cgi 3 all all gene.out.txt 10000 10000

/opt/perl5/bin/perl -w MainRunFSNP.cgi 4 all all gene.out.txt 10000 10000
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To run an individual program

phd/snp function prediction/tools/COMMAND LIST [j] redtape PROGRAM SNP LIST FILE

• Prerequisite: setenv CLASSPATH .:/fs/hs/projects/F-SNP/perl/batch/phd/ext/mysql-

connector-java-3.1.8-bin.jar

• Input: SNP LIST FILE CommonVar::FSNP dir . GENE LIST FILE.up pos.function.

FILE IX.txt

• Output: CommonVar::fsnp prediction dir . TOOL CATEGORY . GENE LIST FILE.

up pos.function.FILE IX . TOOL.txt

A.2.3 To update F-SNP db

COMMAND

perl MainUpdateFSNP.cgi all gene.out.txt TOOL CATEGORY MODE UP DOWN FUNC IX

COMMAND OPTIONS:

* TOOL CATEGORY

VALUE MEANING

0 protein coding

1 splicing regulation

2 post translation

3 transcriptional regulation

-1 all categories

* MODE

either upload result, upload file, upload summary, or all



APPENDIX A. PROGRAM SOURCE CODES 197

COMMAND EXAMPLES

/opt/perl5/bin/perl -w MainUpdateFSNP.cgi all gene.out.txt 3 all 10000 10000 1

/opt/perl5/bin/perl -w MainUpdateFSNP.cgi all gene.out.txt 3 all 10000 10000 2

/opt/perl5/bin/perl -w MainUpdateFSNP.cgi all gene.out.txt 1 all 10000 10000 4

/opt/perl5/bin/perl -w MainUpdateFSNP.cgi all gene.out.txt -1 all 10000 10000 3

/opt/perl5/bin/perl -w MainUpdateFSNP.cgi all gene.out.txt -1 all 10000 10000 0

A.3 FITS-Selector

Server: redtape.cs.queensu.ca

Home Directory: /fs/hs/projects/BNTagger

COMMAND

java phd.evaluation.FBNTagger.FBNTaggerEvaluator

A.4 SA1

Server: redtape.cs.queensu.ca

Home Directory: /fs/hs/projects/FITagger/perl/pareto

COMMAND

To select functionally informative tag SNPs

/fs/hs/projects/FITagger/perl/pareto/main.cgi GENE LIST FILE

To analyze the performance of the selected functionally informative tag SNPs

/fs/hs/projects/FITagger/perl/pareto/main.cgi GENE IX


