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Abstract 

Pervasive Developmental Disorders (PDDs) are neurodevelopmental disorders 

characterized by impairments in social interaction, communication and behaviour [Str04]. 

Given the diversity and varying severity of PDDs, diagnostic tools attempt to identify 

homogeneous subtypes within PDDs.  

The diagnostic system Diagnostic and Statistical Manual of Mental Disorders - 

Fourth Edition (DSM-IV) divides PDDs into five subtypes. Several limitations have been 

identified with the categorical diagnostic criteria of the DSM-IV. The goal of this study is 

to identify putative subtypes in the multidimensional data collected from a group of 

patients with PDDs, by using cluster analysis. 

Cluster analysis is an unsupervised machine learning method. It offers a way to 

partition a dataset into subsets that share common patterns. We apply cluster analysis to 

data collected from 358 children with PDDs, and validate the resulting clusters. Notably, 

there are many cluster analysis algorithms to choose from, each making certain 

assumptions about the data and about how clusters should be formed. A way to arrive at a 

meaningful solution is to use consensus clustering to integrate results from several 

clustering attempts that form a cluster ensemble into a unified consensus answer, and can 

provide robust and accurate results [TJPA05]. 

In this study, using cluster analysis, cluster validation, and consensus clustering, we 

identify four clusters that are similar to – and further refine − three of the five subtypes 

defined in the DSM-IV. This study thus confirms the existence of these three subtypes 

among patients with PDDs.  
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Chapter 1   

Introduction 

Pervasive Developmental Disorders (PDDs) are a group of neurodevelopmental 

disorders of varying severity that affect three core areas: communication skills, social 

interaction, and behaviour patterns [Str94]. They have a large range of manifestations 

without a well-understood aetiology, although multi-genetic factors are believed to play a 

key role in causing PDDs [MTR04]. Dividing PDDs into homogeneous subgroups 

through the examination of symptomatic behaviours of subjects with PDDs can shed light 

on the discovery of genetic causes behind them, and guide clinicians to select appropriate 

treatments. Given the diversity of PDDs, current diagnostic standards, such as those 

included in the widely used Diagnostic and Statistical Manual of Mental Disorders - 4th 

Edition (DSM-IV) [APA94] attempt to provide diagnostic criteria to divide PDDs into 

relatively homogeneous subtypes by evaluating the three core areas affected by PDDs. 

The DSM-IV distinguishes among five categories: Autistic disorder (Autism), Childhood 

disintegrative disorder, Rett's disorder, Asperger's disorder, and Pervasive Developmental 

Disorder - Not Otherwise Specified (PDD-NOS).  

The DSM-IV assigns one of the above five subtypes to patients, based on whether a 

cut-off threshold for certain criteria is met or not, and sets discrete boundaries among 

subtypes and between normal and abnormal conditions. However, empirical findings 

suggest that the subtypes thus defined may not represent distinct diagnostic groups [TD05, 

SOBD05, MCC01]. Moreover, using a cut-off threshold to categorically distinguish 

normal from abnormal values may cause the loss of potentially important information. 
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This thesis is about using Cluster Analysis to find subtypes for PDDs. Cluster analysis 

is a multivariate unsupervised machine learning method that partitions a dataset into 

subsets sharing common patterns. In contrast to the DSM-IV which divides PDDs into 

subgroups based on discrete and mutually exclusive impairments, cluster analysis 

evaluates the condition of patients based on a continuous view. That is, it partitions 

subjects according to the severity of their impairment, without using a cut-off value as a 

threshold to distinguish between the normal and the abnormal conditions [Kes02].  

In cluster analysis, the underlying cluster structure of the data is a-priori unknown. 

Almost every clustering algorithm will find clusters in a dataset, even if there is no 

cluster structure in it.  Moreover, the discovered subsets can be arbitrary when clustering 

methods are applied to the data. Therefore, we want to evaluate the clustering solutions 

quantitatively and objectively, a process called Cluster Validation [JD98]. Another issue 

with cluster analysis is that different algorithms may lead to different partitions of the 

data into clusters. Recent studies on cluster analysis attempt to circumvent this problem 

using consensus clustering, which puts multiple clustering results in a cluster ensemble to 

reach a single consensus solution [HK06]. 

Previous studies that employed cluster analysis for the subtyping of PDDs either used 

a very small dataset (30-50 cases) [SOHH99], used non-standard diagnostic tools 

[SACB86], or included in their studies patients with other conditions that are not PDDs 

[Res88], thus making the results less applicable to PDDs. Many of the previous studies 

did not use objective validation methods that are well-justified [SACB86, WMAD96, 

SFDW00], or did not use validation methods at all [Res88, PBM04]. In addition, 

previous studies on the subtyping of PDDs all employ a single clustering method.  
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1.1 Motivation 

Our work is motivated by the need to build a well-validated diagnostic framework that 

employs a continuous view of the data, to identify the subtypes in PDDs. Such a 

framework may be an alternative to the diagnostic criteria for categorizing the subtypes 

of PDDs in the DSM-IV [APA94]. 

As part of our diagnostic framework, multiple clustering results produced with cluster 

analysis are validated and combined into one unique solution using consensus clustering. 

Formal methods of cluster validation examine how well a clustering fits a dataset (fitness 

validation) and how robust the clustering is in the face of perturbation in the data 

(stability validation) [TSK05]. Consensus clustering then puts multiple validated 

clustering results into an ensemble and combines them into a single consensus solution 

[HK06a]. Thus, consensus clustering can improve clustering performance by 

consolidating the output on which several clustering algorithms agree, typically leading 

to more robust results than those produced by any individual method [TLJF04].  

The goal of this thesis is to identify the subtypes of PDDs using the combination of 

cluster analysis, cluster validation, and consensus clustering.  

1.2 Contribution 

In this thesis, we make several contributions. We first provide a broad survey of the 

general background of PDDs, including previous work on the subtyping of PDDs. We 

then review cluster analysis, cluster validation, and consensus clustering, which are 

applied to the data collected using a well-validated tool called the Autism Diagnostic 

Interview – Revised (ADI-R) to identify the subtypes in PDDs. To the best of our 
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knowledge, this is the largest study performed so far on subtyping PDDs based on the 

ADI-R data. It is also the first one to apply consensus clustering and a full-scale internal 

cluster validation, as discussed in Section 2.3. We identify four clusters that roughly 

correspond to – and further refine – three main subtypes of PDDs, namely Autism, 

Asperger’s disorder, and PDD-NOS. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: An overview of PDDs and cluster analysis, 

cluster validation, consensus clustering, and related work on the subtyping of PDDs is 

presented in Chapter 2. Raw data collected from patients suffering from PDDs using the 

ADI-R, as well as the pre-processing procedure performed on the raw data, are described 

in Chapter 3. Chapter 4 discusses in detail the methodology of clustering the pre-

processed data, focusing on cluster analysis, cluster validation, and consensus clustering. 

Experimental results and analysis are provided in Chapter 5, followed by conclusions and 

future study in Chapter 6. 
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Chapter 2 

Pervasive Developmental Disorders and Cluster Analysis: 

Background  

Our study on subtype identification of pervasive developmental disorders lies in the 

intersection of research on these disorders and on cluster analysis. In this chapter, we 

introduce pervasive developmental disorders, their diagnostic criteria, and previous 

research on the subtype identification of them. We then survey cluster analysis, cluster 

validation, and consensus clustering, which are the three major components of the 

methodology used in this thesis. We conclude this chapter with a survey of applications 

of cluster analysis in the subtyping of pervasive developmental disorders.  

2.1 Pervasive Developmental Disorders 

Pervasive developmental disorders (PDDs) are characterized by impairment in three core 

areas, namely communication skills, social interaction, and behaviour patterns, and may 

also be accompanied by deficiencies in cognitive ability, usually reflected by a lower IQ 

compared to the general population, epilepsy, and other co-morbidities [SLC03]. 

Consequently, individuals suffering from PDDs form a heterogeneous group which 

shows a wide range of social impairments, behavioural problems, communicational and 

cognitive difficulties [ASC05].  

Current research suggests that multiple genes are associated with these disorders 

[FH05, SLMT07]. Different combinations of damaged genes interact with multiple 

environmental factors to cause PDDs [FRS01]. In fact, PDDs may be the final common 
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result for several different genetic abnormalities that share similar symptoms [Ash07]. 

Due to the wide-range of symptoms related to PDDs, a good diagnostic system is desired 

in order to divide PDDs into more homogenous subtypes.  

2.1.1 Clinical Subtypes of PDDs 

Since there is no confirmed biological/medical indicator for PDDs, diagnosis relies on 

experienced evaluators to identify predictive features based on medical history, 

observation, and the use of assessment tools [MCBM03].  

Current psychiatric classification standards, such as the widely-used Diagnostic and 

Statistical Manual of Mental Disorders – 4th Edition (DSM-IV), provide diagnostic 

criteria by evaluating the three core areas affected by PDDs [APA94]. The five clinical 

subtypes of PDDs proposed by the DSM-IV are: 

(1) Childhood disintegrative disorder; 

(2) Rett's disorder; 

(3) Autistic disorder , which is also referred to as Autism1 in the DSM-IV; 

(4) Pervasive developmental disorder - not otherwise specified (PDD-NOS); 

(5) Asperger's disorder.  

Subtypes (3) to (5) are the three subtypes of PDDs that are commonly observed, 

while Subtypes (1) and (2) are rare. Assessment tools are applied to individuals to collect 

information for making diagnoses on the subtypes of PDDs. 

 
                                                 
1 Although autism is frequently used as a broad term to refer to PDDs in literatures, we adhere to its DSM-
IV definition to reduce confusion.  
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2.1.2 Assessment Tools 

Three main types of assessment tools are developed to gather clinical information and to 

enforce uniformity of assessment and diagnosis among clinicians: questionnaires, 

observational schedules, and interviews. Questionnaires are forms containing a fixed set 

of questions. They are submitted to patients (or caregivers who know the developmental 

history of the patients well) to collect responses. Interviews are performed by researchers 

who pose interviewees (patients or caregivers) with questions. In an interview, the 

researchers can clarify the interviewees’ understanding of a given question. The 

interviewees are allowed to respond in their own words, and in greater detail. Interviews 

can result in much more information than questionnaires. Observational schedules are 

sessions designed for the researchers to observe and evaluate the behaviours of the 

subjects. Questionnaires are more suitable for screening for potential patients with PDDs 

before formal diagnosis can be made. Interviews and observational schedules are often 

used as diagnostic tools to decide whether an individual has PDDs or not, and what 

subtype of PDDs he has. Observational schedules are essential in a diagnostic process, 

but they are limited to evaluating behaviours at the point of observation without taking 

history into account; this limitation can be overcome using interviews [LCRL89].  

Among many assessment tools, a few are diagnostic tools, and may be used as part of 

a formal diagnosis process. Here we introduce two representative diagnostic tools: an 

interview called Autism Diagnostic Interview-Revised (ADI-R) [LRC94] and an 

observational schedule called Autism Diagnostic Observation Schedule (ADOS) 

[LRGH89].  
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Both the ADI-R and the ADOS assessment tools use diagnostic algorithms based on 

separate cut-offs for scores received along the communicational, social, and behavioural 

areas, allowing for separate quantification of severity in each of these areas. The ADI-R 

also takes into consideration early history of development such as the time of the start of 

symptoms. 

In the ADI-R, each of the three core areas is divided into four sub-areas that address 

different aspects of the same area. Each of the sub-areas is further divided into two to five 

specific impairments. According to the algorithm accompanying the ADI-R, scores are 

computed for the sub-areas, then the areas. That is, the scores of the specific two to five 

impairments in a sub-area are summed up to be the score of this sub-area; the scores of 

the four sub-areas in each area are then summed up to be the score of this area [LRL94].  

By comparing the computed area scores and the starting time of the abnormalities2 for an 

individual to the corresponding thresholds, this accompanying algorithm of the ADI-R 

effectively distinguishes between Autism and all other subtypes of PDDs, as well as 

between PDDs and other psychological disorders [Lor95, DBSK04]. However, it does 

not identify the subtypes of PDDs other than Autism. Notably, this algorithm is not the 

only approach to analyzing the ADI-R data. Researchers have taken advantage of the raw 

ADI-R scores to perform additional analysis [ZSNH03, VGRR06, TRD98].  

Aside from its good performance in diagnosing Autism, the ADI-R also includes 

questions about the early development history of the subjects. Therefore, the data 

collected with the ADI-R have been widely used in assessing boundaries between the 

subtypes of PDDs, identifying new subgroups of PDDs, and quantifying symptoms 

                                                 
2 For a diagnosis of Autism to be made, the starting time of abnormalities should be before an individual is 
36 months old. 
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related to PDDs [TRD98, SGBZ06]. Data analyzed in our study are collected using the 

ADI-R, and are therefore considered standardized, comprehensive, and truly reflect the 

impairments of the patients with PDDs.  

The ADOS is a test based on the direct observation of the behaviour of a child by her 

examiner. It consists of a semi-structured assessment of play, interaction, and social 

communication. Among the observation-based diagnostic tools for PDDs, the ADOS is 

the most widely supported by researchers [LRLC00]. Algorithms for the diagnosis of 

Autism for the ADI-R and the ADOS both employ a particular view on PDDs called the 

categorical view, which is discussed in detail in the next section. 

2.1.3 Categorical View 

The categorical view is held by researchers who consider mental illnesses as discrete 

conditions with clear boundaries, represented by cut-off thresholds, between different 

types and subtypes, and between normal and abnormal conditions [TD05]. The 

categorical view is employed by the diagnostic criteria in the DSM-IV, and determines 

how the diagnostic subtypes of PDDs are defined.  For example, as shown in Appendix A, 

a subtype of PDDs is usually defined as having abnormalities in n items among the 

required diagnostic items. In such a definition, the value of n is an explicit threshold. An 

implicit threshold lies in the use of “abnormalities” because a cut-off value is used to 

separate the normal from the abnormal. The DSM-IV tries to clearly define each subtype 

of PDDs as a distinct entity that can be separated from other subtypes of PDDs.  

The categorical view is reflected in the diagnostic tools which implement the DSM-

IV. For example, the accompanying algorithm of the ADI-R sets a cut-off threshold 

 9



specific for each area of PDDs. If an individual’s score of an area exceeds the 

corresponding threshold, he is considered to be abnormal with respect to this area; 

otherwise, the score is considered to be normal. For an individual to be diagnosed with a 

specific subtype, for example Autism, he should show abnormality in all of the three 

cores areas, and the abnormality should begin before the age of 36 months.  

Empirical findings suggest that the disorders described according to the categorical 

view may not represent distinct diagnostic entities [TD05, SOBD05, MCC01]. Moreover, 

using an arbitrary threshold to categorically distinguish normal from abnormal values 

may cause the loss of potentially important information [SOBD05]. In fact, the American 

Psychiatric Association, which publishes the DSM-IV, acknowledges that an “alternative 

perspective to the categorical approach is the dimensional perspective that personality 

disorders represent maladaptive variants of personality traits that merge imperceptibly 

into normality and into one another” [TD05].  Some empirical data analysis methods, 

such as cluster analysis, are based on a “dimensional perspective”. In this thesis, we refer 

to this perspective as a continuous view of the subgroups, and introduce it in the 

following section.  

2.1.4 Continuous View 

According to the continuous view, the severity of symptoms has a continuous distribution 

in a population, and there is no attempt to enforce a cut-off threshold to distinguish 

between the normal and abnormal individuals [SOBD05].  

Consequently, an individual suffering from PDDs can be viewed as demonstrating 

impairments of varying degrees. For example, the impairment in social interaction can 
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include seeking affection inappropriately, having problems with imitation and joint 

referencing, or complete withdrawal. We do not identify them as normal or abnormal by 

using a threshold [Myh98].  

Cluster analysis [HMS01], which will be reviewed in Section 2.2, and factor 

analysis3 are two of the approaches that are developed based on a continuous view of the 

data being analyzed, and are commonly used by researchers. Some researchers collected 

data on symptoms related to PDDs, and performed factor analysis to identify major 

factors underlying these symptoms [TRD98, WE05]; others performed cluster analysis to 

identify sub-groups of patients [EHE94, PELW98, VGRR06].  

Aside from using different subtyping techniques, researchers also obtained data from 

multiple areas where irregularities related to PDDs can be identified.  There are three 

main source areas as introduced in the next section. 

2.1.5 Data Sources for the Subtyping of PDDs 

Subtyping studies aim to provide more homogeneous groups of PDDs or to verify the 

subtypes already identified. These studies usually focus on one of the three following 

areas or their combination [BS01]:  

(1) Social interaction/communication/behaviours; 

(2) Intellectual or adaptive functioning abilities; 

(3) Medical/biological conditions. 

 

                                                 
3  Factor analysis is a statistical approach that can be used to analyze inter-relationships among a large 
number of variables, based on their common underlying dimensions (factors). The approach involves 
mapping the original variables into a smaller set of representative dimensions (factors) with a minimum 
loss of information [Hai92]. 
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Social interaction/communication/behaviour 

This is the area that is currently used to characterize and diagnose PDDs, as discussed 

previously in Section 2.1. In 1979, Wing and Gould [WG79] identified three subtypes of 

PDDs in this area. These subtypes were defined by specific patterns of symptoms which 

the investigators called: aloof, passive, or active-but-odd. The aloof subtype characterized 

the highest proportion of children with Autism and a lower range of IQs. Children of the 

passive subtype did not initiate social interaction themselves, but could accept it when 

others initiate it. Children of the active-but-odd subtype sought interactions with others to 

serve their own narrow interests rather than regular social needs.  

Wing and Gould broadened the concept of Autism to a spectrum of Autism-like 

disorders, which are characterized by impairments of different severity in the three core 

areas of Autism, and were later named Autism Spectrum Disorders (ASDs) or PDDs. 

They also suggested that there was no clear separation between Autism and other 

disorders on the autism spectrum, which was a fundamental change in the 

conceptualization of PDDs [WG79], and supported the continuous view in the subtyping 

of PDDs.   

Wing and Gould’s subtypes received extensive examination, and were generally 

supported. In most studies, two phenomena were observed. First, these subtypes did not 

map to the five diagnostic categories in the DSM-IV. Second, the existence of the aloof 

and active-but-odd groups was more evident, as found by later studies, than that of the 

passive group [BO94, BS01].  
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IQ and adaptive functioning 

Pre-treatment IQ scores and language ability prior to the age of 5 or 6 were identified by 

some researchers to be effective predictive variables related to the outcome of PDDs 

[GS97, Rog98]. The strong relationship between subtype assignment and the level of 

intellectual functioning was also supported by other studies [WG79, VCBH89]. 

Therefore, although IQ data are not part of the data we analyze, we may include them in 

future work to verify the subtypes obtained in this study.  

Medical/biological conditions 

In one of their reviews, Rutter et al. [RBBL94] concluded that among the patients with 

PDDs, some medical conditions such as rubella encephalitis and fragile X syndrome 

which affected the central nervous system were associated with PDDs, and were 

suspected to have aetiological relationship with PDDs [RMFP90]. The rate of such 

conditions was about 10%, and might be even higher in the cases of PDDs associated 

with profound mental retardation, as well as in the cases of PDD-NOS.  

Reviews of sibling, twin and family studies all concluded that a genetic aetiology 

existed for many cases of PDDs. However, since the identity and number of genes 

involved in PDDs was unknown, there were no conclusions as to whether the presence of 

specific genetic abnormalities was associated with particular subtypes of PDDs [BS01].  

2.1.6 Current Status of the Subtyping of PDDs 

A number of different subtyping approaches have led to several consistent findings:  

 (1) Developmental level (measured using the IQ score) and the three core areas of 

PDDs, including communication, social interaction, and behaviour patterns, are 
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the most important factors in explaining the variation in the manifestation of 

PDDs [GS97, VCBH89]. 

(2) The number of subtypes tends to be similar across studies, usually three subtypes 

when the three core areas of PDDs are measured and analyzed. When the IQ is 

also taken into consideration, the number of subtypes identified tends to increase 

to four [BS01].  

(3) Most research supports the continuous view that different subtypes of PDDs fall 

along a continuum of severity ranging from almost normal to severely impaired 

rather than having distinct symptom profiles [PELW98].  

As mentioned in Section 2.1.4, some researchers apply techniques such as cluster 

analysis to data collected from patients with PDDs in order to identify the subtypes of 

PDDs following the continuous view. Cluster analysis is also one of the main techniques 

– the other two being cluster validation and consensus clustering – we employ in this 

thesis. Cluster analysis and validation as well as consensus clustering are discussed in the 

next sections.  

2.2 Cluster Analysis 

Clustering methods partition objects into groups so that the objects in one group are 

similar to each other, and as dissimilar as possible from the objects in other groups 

[HMS01]. These objects are usually represented by multi-dimensional variables, also 

known as features or attributes. The similarity, or dissimilarity, between two data objects 

is typically measured as the distance between the multi-dimensional feature vectors that 

represent the objects. In this thesis, the feature vectors to be clustered are also referred to 
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as data points or data items. The larger the distance between two data points, the less 

similar they are to each other. We focus on three categories of clustering methods which 

are summarized by Han and Kamberand [HK06a], and are employed in our study:  

(1) Partitioning methods [HK06].  

These methods partition data into k subsets, where each subset is a cluster. Each 

object must belong to exactly one cluster, and no cluster can be empty. There are 

various objective functions that are optimized under this type of methods, with the 

most common being the sum of squared distances between every data point and 

its cluster centroid4. Clusters found with this type of methods are spherical. A 

typical example for such a method is the k-means clustering [KR90].  

(2) Hierarchical methods [Joh67]. 

There are two main types of hierarchical methods: agglomerative or divisive. 

Agglomerative clustering starts with each data point forming its own singleton 

cluster, and iteratively merges pairs of clusters that are closest to one another, 

until one cluster is formed. The divisive approach goes in the opposite direction. 

That is, it starts with a single cluster with all the data points in it, and iteratively 

divides it into two clusters that are furthest apart from one another. There are 

several methods to calculate the distance between two clusters, such as single, 

complete, or average linkage [Joh67], and Ward’s method [War63], which 

minimizes the increase in total within-cluster sum of squared distances when two 

                                                 
4 Centroid is the centre, or representative, of a cluster. The definition of centroid may depend on the 
clustering algorithm being used. It is often the mean vector of the objects (feature vectors) in the cluster 
[HK06].  
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clusters are merged. Cluster structure found using hierarchical clustering can be 

represented graphically by a dendrogram.  

(3) Model-based methods. 

Model-based methods generate distribution models for data. There are k 

distributions in each model; each distribution represents one of the k clusters. The 

whole dataset is assumed to be a sample from the k distributions. Objective 

functions used for such methods typically favour models that are likely to 

generate the given dataset. A representative of these methods is Expectation 

maximization for Gaussian mixture model (EM for GMM, or EM for brevity) 

[DLR77]. 

K-means, agglomerative hierarchical (hierarchical for short in this study), and EM 

clustering will be introduced in detail in Chapter 4. Aside from these three categories of 

clustering methods, other methods have also been discussed in the literature [HK06a].  

2.3 Cluster Validation 

The process of evaluating the results of cluster analysis in a quantitative and objective 

way is called cluster validation [JD88]. It has four main components [TSK05]:  

(1) Determine whether there is non-random structure in the data; 

(2) Determine the number of clusters; 

(3) Evaluate how well a clustering solution fits the given data when the data is the 

only information available; 

(4) Evaluate how well a clustering solution agrees with partitions obtained based on 

other data sources. 
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Among these, Component (3) is known as internal validation while Component (4) is 

referred to as external validation.  

Component (1) is fundamental for cluster analysis because almost every clustering 

algorithm will find clusters in a dataset, even if there is no cluster structure in it. However, 

this component is not the focus of this study because earlier research on the subtyping of 

PDDs has shown that there are subgroups of symptom profiles which correspond to the 

subtypes of PDDs [BS01].   

We can use internal and/or external validation to determine the number of clusters in 

a dataset. In the context of this study, we do not have a ground-truth partition of the data 

to which we can compare our solution. Therefore, the number of clusters in our data is 

determined using internal validation only. We hence focus on introduction to internal 

validation methods first, and briefly discuss external validation in Section 2.3.2. We 

demonstrate the use of internal validation to determine the number of clusters in our data 

in Chapter 4.  

2.3.1 Internal Validation 

Two main measures are used to evaluate clustering solutions internally: fitness and 

stability, both of which are employed in this study.  

Evaluating the fitness of a clustering solution 

Fitness refers to the quality of a clustering solution, usually evaluated by indices that are 

based on geometrical properties of clusters such as compactness, separation, and 

connectedness, because these criteria are the ones being optimized by most clustering 

methods [HK06b, EKX96, KR90, Joh67, DLR77].  
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Using hierarchical clustering, Milligan and Cooper offered the most comprehensive 

comparative study of 30 validation indices [MC85]. They found six indices that were 

shown to be better than the rest as the measure of fitness, but also pointed out that since 

their study was performed on a dataset generated in a specific way, one would not expect 

to find the same best indices if a different data generating strategy was adopted. Besides, 

this early study did not include indices devised and popularized in the last 20 years, 

which means the indices we use in our study were not explored in that survey.  

Aside from the 30 validation indices mentioned above, other fitness indices exist for 

the purpose of estimating the number of clusters, including Average Silhouette Width, and 

Bayesian information criterion (BIC) [KR90, Raf00b], both of which are employed in 

this study, and are discussed in detail in Chapter 4. The average silhouette width 

evaluates the quality of a clustering solution by considering both compactness (distance 

between data points within the same cluster) and separation (distance between data 

points in two neighbouring clusters) [KR90]. The BIC is derived from Bayes' theorem 

[Sti82], and is used to determine which probability-based mixture model is the most 

appropriate [Raf00b].   

Evaluating the stability of a clustering solution 

The stability of a clustering solution, which usually refers to how robust a clustering 

solution is under perturbation or sub-sampling of the original data [BMC00, BEG02, 

LRB04, LD01, FD01], is another commonly-used validation criterion. A stable clustering 

solution is considered to have captured the underlying structure of a dataset, under the 

assumption that the clustering solution which captures the actual structure of the data 

source should be reproducible on other datasets drawn from the same source [LRB04].  
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In this study, one of the methods we use to estimate the number of clusters for our 

dataset is to assess the stability of clustering results. The assessment is based on the early 

work by Breckenridge [Bre89], and on the extensions by other researchers [TWBB01, 

LRB04, Wu04], all of which are introduced in this section. The procedure proposed by 

Breckenridge [Bre89] is called Replication Analysis. To perform replication analysis, a 

dataset is split into two equal subsets. As the core part of the analysis, the partition 

performed on one subset is used as the “ground truth” to group the items in the other 

subset via a machine learning technique called Classification. Therefore, we introduce 

classification first before we describe replication analysis in detail. 

Classification is a supervised machine learning method. A classification algorithm is 

also called a classifier. In classification, each data item in the given dataset has a class 

label usually assigned to it by an expert or obtained from previous knowledge. The 

complete set is thus partitioned into several subgroups called classes. Typically the data 

are separated into two subsets called training set and test set. The training set provides 

the ground truth of the class membership of the data items in it. A model is built by 

learning a predictive pattern from the classified data in the training set, and is then used 

to predict class membership for the data items in the test set [HMS01]. The predicted 

membership of the test set is then compared to the membership that is assigned to it by an 

expert or obtained from previous knowledge to evaluate the performance of the 

classification. Classification is an important step in replication analysis, whose procedure 

is defined as follows:  
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1. Two disjoint subsets, A and B, are selected at random from a dataset D; 

2. Subset A is grouped into k disjoint clusters, <A1, A2…Ak>, such that A = ; 

we denote this partition of subset A as Clu(A); 

U
ki

iA
≤≤1

3. Subset B is also grouped into k disjoint clusters, <BB1, B2…Bk>, such that B = 

; We denote this partition of subset B as Clu(B); U
ki

iB
≤≤1

4. A classification model is built to learn the class structure of subset A, assuming A 

is the training set, and Clu(A) is ground truth;   

5. The data points in subset B are classified using the classification model learnt in 

Step 4. We denote the partition of subset B by Pred(B); 

6. The degree of replication between A and B is measured by the agreement between 

the two partitions of subset B, Pred(B) and Clu(B). 

In a simulation study, Breckenridge measured both the degree of replication and the 

actual recovery of the underlying cluster structure of the data he analyzed, and found that 

the two were positively correlated – the level of cluster replication from one part of the 

data to the other indicated the ability of a clustering method to recover the real cluster 

structure. Other researchers made use of Breckenridge’s result to validate the stability of 

clustering solutions with varying number of clusters, and chose kopt to be the k in the most 

stable solution [TWBB01, LRB04, Wu04]. In their studies of stability validation, the 

procedure described above for replication analysis was repeated multiple times for each 

number of clusters k. During each repetition, the original dataset was randomly split into 

two disjoint subsets A and B of equal size as mentioned in Step (1) of cluster replication. 

In Step (6), a pair of partitions Pred(B) and Clu(B) was produced before the agreement 
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between them was measured. That is, for each k, there were multiple pairs Pred(B) and 

Clu(B), and hence multiple evaluations of the agreement between them. The k that led to 

the best agreement between Pred(B) and Clu(B) is considered to be kopt for the original 

dataset. Since there were multiple evaluations of the agreement for each k, a certain 

method, such as taking their average, was used in order to compare the agreement 

between Pred(B) and Clu(B) for every two k values. The k value that was associated with 

a higher agreement was considered to be more appropriate.  

Previous researchers used different types of classification algorithms to produce 

Pred(B), and employed various measures to assess the agreement between Pred(B) and 

Clu(B) [Bre89, TWBB01, LRB04, Wu04]. These algorithms and measures are 

summarized in Table 2.1, and are introduced next. 

In Step (4) of the procedure of replication analysis, a strong classification algorithm 

which has a small empirical classification error is needed, so that the agreement between 

Pred(B) and Clu(B) can be attributed to the intrinsic stability of the clustering solution, 

without considering the influence a poor classifier may have on the agreement. However, 

there is no known and agreed-upon optimal classification algorithm [Bre89, LR04].  

Lange et al. suggested that an intuitive choice was a classifier that mimicked the 

clustering algorithm used to analyze subsets A and B. When no such choice was available, 

they suggested that the k-nearest neighbour classifier, which assigned a class label to a 

new data item by examining the k neighbours nearest to it (with known class labels), 

could be employed [LR04]. Following these guidelines, if the clustering method used was 

k-means clustering, Lange et al. chose to use the nearest centroid classification algorithm, 

which assigned each new data item to the class whose centroid was closest to this new 
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item. If other clustering methods were used, they chose the k-nearest neighbour algorithm. 

They pointed out that the nearest centroid classifier used by Tibshirani et al. [TWBB01] 

was only suitable for clustering methods which employed the concept of centroids, such 

as k-means clustering [LRB04]. 

Since the choice of the classifier in stability assessment is based on empirical 

considerations, we experiment with other types of strong classifiers such as Random 

Forests [Bre01], to classify subset B based on subset A and the cluster labels for subset A. 

The Random Forest classification method is discussed in detail in Chapter 4. 

After using the classification algorithms mentioned above to produce Pred(B), 

previous researchers used a variety of measures to evaluate the agreement between 

Pred(B) and Clu(B) [TWBB01, LRB04, Wu04]. These measures are introduced next.  

Aside from the classification algorithms, Table 2.1 also included two main categories 

of measures used in previous studies to evaluate the agreement between two partitions. 

The first category assumes that the clusters in Pred(B) can be mapped to those in Clu(B) 

in a one-to-one fashion. The agreement is then based on directly counting the total 

number of data items that are assigned to the corresponding clusters, one in Pred(B) and 

the other one in Clu(B). The other measure is based on viewing all the data points in 

pairs, and counting all the events when the two data points in each pair are put in the 

same cluster, in both Pred(B) and Clu(B).    

 

 

 

 

 22



Table 2.1: Four studies (column 1) using different classification algorithms (column 2) 
and measures of the agreement between Pred(B) and Clu(B) (column 3). 

Name of study Classification  
algorithm 

Measure of the agreement 
between Pred(B) and Clu(B) 

Replication analysis 
(Breckenridge) 

K-nearest 
neighbour 

Cluster mapping, 
Sum of overlapping objects 

Prediction strength 
(Tibshirani et al.) Nearest centroid Co-membership 

Stability-based validation 
(Lange & Roth) 

Nearest centroid, 
K-nearest 
neighbour 

Cluster mapping, 
Normalized sum of non-overlapping 

objects (disagreement) 
Bootstrapping-based 

validation (Wu) Study specific Adjusted Rand Index 

 

The measure used by Breckenridge and by Lange et al. belongs to the first category, 

which does not lie in the core of this study. The second category of measures was 

employed by Tibshirani et al. who performed cluster validation using prediction strength, 

and Wu who carried out bootstrapping-based validation (shown in Table 2.1). To be 

specific, Tibshirani et al. evaluated the agreement between Clu(B) and Pred(B) by 

examining co-membership of the data points [TWBB01], which was the relationship of 

objects falling into the same subset in a grouping process. The more data pairs assigned 

to the same cluster in both Pred(B) and Clu(B), the higher the agreement was between the 

two partitions.  

Wu et al. employed the average of the Adjusted Rand Index (ARI) to measure the 

agreement between Clu(B) and Pred(B) [Wu04]. The ARI was calculated by counting the 

number of events in which pairs of objects belonged to the same or to different clusters in 

both Clu(B) and Pred(B), and correcting the count for chance agreement [AH85]. In 

Wu’s study, the representative agreement between Pred(B) and Clu(B) for each k was the 

mean of the multiple evaluations.  
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The ARI was shown to be a robust index, and has been widely used [AH86]. While 

this is an interesting and succinct approach, we argue that taking the mean of multiple 

values of the ARI implies that the distribution of these values is unimodal, which is not 

necessarily true in all cases. We use the ARI as the measure of agreement between Clu(B) 

and Pred(B) in our study, but replace the calculation of the average ARI with a statistical 

significance test, as discussed in Chapter 4.  

So far we have introduced the measures for fitness and stability validation, both of 

which are internal validation methods for cluster analysis, and are the focus of our study. 

We next briefly discuss external validation, as it is another important part of cluster 

validation. 

2.3.2 External Validation 

External validation is used to compare a clustering result to another set of membership 

labels (for the same objects) derived from a different data source. It can share measures 

used in stability validation as describe above, since both external validation and stability 

validation are concerned with measuring the agreement between two partitions. Other 

stability-validation measures that were not discussed above, such as contingency tables 

[EM97] and entropy-related indices [TSK05] can be employed for external validation as 

well.  

Other than cluster analysis and cluster validation, consensus clustering is the third 

major component of the methodology we use in this study. The next section surveys the 

application of consensus clustering for combining multiple clustering results.  
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2.4 Consensus Clustering and Cluster Ensemble 

Consensus clustering combines multiple individual clustering results into a single 

consensus solution to improve the accuracy and stability of clustering.  

In practice, we may use a variety of clustering algorithms to partition a dataset into 

several clusters. Each of these clustering algorithms has its own clustering criteria, and 

imposes partitions on the data based on certain assumptions. Due to the lack of prior 

information about the underlying cluster structure, which is inherent to cluster analysis, 

we usually do not know which algorithm to choose in order to correctly identify this 

structure. Researchers have thus attempted to avoid selecting one particular 

criterion/algorithm by using instead a set of clustering solutions produced by different 

algorithms, called a cluster ensemble, and then incorporate them into a single partition 

referred to as the consensus solution [LOS04, SG02].  

In general, the individual clustering solutions comprising the cluster ensemble can 

come from many different sources such as multiple clustering algorithms, multiple runs 

with random initializations of one clustering algorithm, subsets re-sampled from a dataset,  

various feature sets, etc. [LOS04]. A cluster ensemble improves clustering performance, 

as it can compensate for possible errors made by some clustering solutions by introducing 

the correct output of others; hence it can be more accurate and robust than each of the 

individual components [SSC98, SG02].   

To arrive at a unique clustering solution based on a cluster ensemble with p best 

solutions obtained from cluster analysis and validation, each data point is represented as a 

p-dimensional vector, where the ith position in the vector is the cluster label assigned to 

the data point by the ith clustering solution (where 1 ≤ i ≤ p). Consequently, the cluster 

 25



ensemble can be viewed as a p-dimensional categorical dataset, called the ensemble 

dataset, with the same number of objects as in each of the component clustering 

solutions. As an example, the ensemble dataset in Table 2.2 represents a cluster ensemble 

that contains six data points (rows) and four component clustering solutions (columns).  

Minaei-Bidgoli et al. [MTP04] summarized five main categories of consensus 

functions that were used to map multiple individual clustering solutions to a consensus 

solution. We introduce three of them in this thesis, based on co-association, voting, and 

categorical clustering. The remaining two categories are based on information theory and 

on graph theory, and are not discussed here.  

 Table 2.2:  An ensemble dataset for a cluster ensemble with four component clustering 
solutions and six data points. 

 Solution 1 Solution 2 Solution 3 Solution 4 
x1 2 2 1 1 
x2 1 2 1 2 
x3 1 2 2 2 
x4 2 3 2 1 
x5 1 3 3 2 
x6 3 1 3 1 

 

In co-association-based consensus clustering [FJ02], the co-association of each pair 

of data points is simply the count of events when the two points are assigned to the same 

cluster among all clustering solutions. An n x n co-association matrix can thus be 

constructed from the ensemble dataset with n data points and p clustering solutions to 

represent the similarity between each pair of data points in the ensemble dataset. The 

final clusters can be obtained by applying a similarity-based algorithm, such as the 
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commonly used hierarchical clustering (which is employed in this study), to the vectors 

in the co-association matrix.  

A voting approach requires that the p clustering solutions in the ensemble have the 

same number of clusters, so that the clusters in each solution can be mapped to those in 

other solutions in a one-to-one fashion. To predict the cluster label of a data point using 

the voting mechanism, the cluster that is assigned to this point by the largest number of 

solutions is taken to be the cluster to which the point belongs [TLJF04].  

In the categorical clustering approach, the combination of multiple partitions is 

viewed as a clustering task in and of itself [TJP03]. That is, each data point is represented 

by a categorical vector composed of cluster labels as shown in Table 2.2. These objects 

are clustered again using clustering methods such as k-modes [Hua98]; the clustering 

result then becomes the consensus solution.   

Each consensus approach explores the structure of a cluster ensemble in its own way. 

Similar to choosing a clustering algorithm, choosing the best consensus approach greatly 

depends on the underlying structure of the ensemble dataset, which is not known. A 

reasonable approach is to use multiple consensus approaches to obtain several consensus 

solutions, and combine these solutions yet again [MTP04]. However, this is out of the 

scope of this study, and we do not pursue it here. In this study, we employ the co-

association-based approach to build a similarity matrix from the ensemble dataset, and 

use hierarchical clustering to cluster the objects in the ensemble, as discussed in Chapter 

4.  

Among the three core parts of our methodology, that is, cluster analysis, cluster 

validation, and consensus clustering, cluster analysis has been applied by several groups 

 27



to identify the subtypes of PDDs [PBGP75, Res88, EHE94, PELW98, VGRR06], while 

cluster validation has been applied to a limited extent [SACB86, EHE94, WMAD96, 

SFDW00]. To the best of our knowledge, consensus clustering has not been previously 

performed in this area.  In the following section, we review some of the previous studies 

that are most closely related to ours. 

2.5 Previous Studies of the Subtyping of PDDs Using Cluster Analysis 

In the studies of the subtyping of PDDs using cluster analysis, typically datasets contain n 

subjects (i.e. patients), each of which is represented by a p-dimensional feature vector. 

These feature values represent the characteristics of the patients in one or more of the 

three areas introduced in Section 2.1.5, namely social 

interaction/communication/behaviours, intellectual or adaptive functioning abilities, and 

medical/biological conditions.  

We surveyed previous studies on the subtyping of PDDs using cluster analysis along 

some important factors such as the size of samples, the condition of subjects, the power 

of data-collection tools, and the cluster analysis and validation method used for 

subtyping. As no previous cluster analysis study for the subtyping of PDDs used 

consensus clustering, this topic is not surveyed here.  

Regarding the sample size, most previous studies included between 100-200 subjects 

[BS01], but some included fewer than 50 patients [SACB86, SMCL95, SOHH99, 

PBM04]. Such small samples are unlikely to faithfully reflect the actual subgroup 

structure of the population that suffer from PDDs.  
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Regarding the condition of subjects for the subtyping of PDDs, it is clearly desirable 

to include patients with various forms of PDDs, and exclude subjects with conditions that 

are not PDDs, as the purpose of this study, and of several others, is to identify subtypes 

within PDDs. However, some of the previous studies included subjects with other 

conditions such as mental retardation, psychosis, schizophrenia, and language disorders 

[PBGP75, Res88, PBM04]. In such cases, refined subtypes within PDDs are difficult to 

identify due to the heterogeneity of the data.  

Some data-collection instruments under different categories of assessment tools are 

reviewed in Section 2.1.2. Many assessment tools have been used, some of which were 

validated by more studies than others for the purpose of collecting data related to PDDs. 

The latter include the Wing Subgroups Questionnaire [CD93], the ADI-R [LRL94], and 

the ADOS [LRGH89]. However, many of the previous studies based their analysis on 

data collected using tools that were not specifically designed for identifying subtypes of 

PDDs [PBGP75, SACB86, PBM04, Res88], or using other non-standardized information 

sources such as hospital records [EHE94]. Since the subtypes identified by cluster 

analysis depend primarily on the initial raw data, non-standardized, non-specific, or 

inaccurate raw data cannot generate valid subtypes.  

All previous studies of the subtyping of PDDs used a single clustering method, such 

as k-means [Res88, EHE94, PBM04], hierarchical clustering [SACB86, SFDW00, 

VGRR06], or model-based clustering [PBGP75, PELW98], without an explanation as to 

why the specific method was used. When choosing a clustering solution, many of them 

did not employ validation methods that were well-justified [SACB86, WMAD96, 

SFDW00], or did not use validation methods at all [Res88, PBM04].  
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Compared to previous studies (some of which we introduced above), our study is, to 

the best of our knowledge, the largest study done so far on subtyping PDDs based on data 

collected with the well-validated ADI-R. In the next chapter, we discuss the pre-

processing of the raw data. Through the pre-processing, we obtain the dataset to which 

we apply the cluster analysis.   
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Chapter 3  

Data Pre-processing1

The raw data for this study were obtained from 394 patients (referred to as subjects) with 

pervasive developmental disorders, collected by the Autism Genetic Resource Exchange 

project. To apply cluster analysis to the data, we pre-process and represent each subject 

as a feature vector. In this chapter we extend the discussion about the Autism Diagnostic 

Interview – Revised (ADI-R), introduced in Chapter 2, to provide information necessary 

for understanding the data pre-processing, and describe how we construct the dataset 

used for cluster analysis from the raw data collected using the ADI-R.  

For 36 out of the 394 patients, there are certain questions that were not answered. The 

number of such questions ranges from 26 to 72. These patients are excluded from our 

dataset because of the high percentage of missing answers, leaving 358 subjects, each 

with a complete set of answers. The age of the 358 subjects ranges from 2 to 21 (mean = 

6.9, std = 3.5, distribution shown in Figure 3.1); male to female ratio is 6:1 2 . 

Representing the subjects as feature vectors requires an in-depth understanding of the 

interview and its accompanying algorithm, which are discussed in the following section. 

 

Figure 3.1: Age distribution of the 358 subjects. 
                                                 
1 Special thanks to Drs. Jeanette Holden, Heidi Penning, and Ira Cohen, and Ms. Phil Hyoun Lee for 
helping me understand and pre-process the data.  
2 This male to female ratio is higher than seen in the PDD population. This higher ratio is an artifact of the 
preference for families with boy siblings in the original study that gave rise to this dataset. 
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3.1 Introduction to the Autism Diagnostic Interview − Revised 

The Autism Diagnostic Interview – Revised (ADI-R) is an interview that consists of 3 

parts. Part (1) includes 28 opening questions concerned with the early development of a 

child such as the starting time of the manifestation of PDDs. Part (2) forms the main 

component of the interview, containing 51 questions about the three core areas of PDDs, 

namely communication, social interaction, and behaviour patterns. Part (3) consists of 14 

questions about general behaviours that do not belong to the core areas of PDDs, such as 

memory skills, motor skills, and fainting. The interview is administered by a person who 

is trained to administer the talks with a parent or another caregiver who is familiar with 

both the developmental history and the current behaviour of the subject.  

The ADI-R is accompanied by three versions of a validated algorithm that were 

developed solely for the diagnosis of Autism, as follows: 

(1) A lifetime version for assessing a patient’s entire developmental history;  

(2) A current version for evaluating a patient’s current behaviour;  

(3) A version specifically designed for patients younger than 4 years old.  

The presence (or absence) of Autism is diagnosed using the version appropriate for 

the patient. All three versions of algorithm are structured the same: each of the three core 

areas of PDDs is further divided into four sub-areas, each of which is represented by 2 to 

5 questions in the ADI-R [LLR03]. The structure is demonstrated in Figure 3.2 using the 

area of social interaction in the algorithm version for children younger than 4 years old. 

The answers provided by the caregiver are scored by the interviewer according to criteria 

shown in Table 3.1 [LRL94]. A summary score is calculated for each sub-area by 

summing up all corresponding answers to the questions belonging to this sub-area.  
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Figure 3.2 Structure of the area of social interaction in the accompanying ADI-R 
algorithm for children younger than 4 years old. Grey rectangle: core area of social 
interaction. Clear rectangle: sub-area. Specific questions are listed under each sub-area. 

 

Table 3.1: Scoring criteria for answers provided by the caregiver to questions in the 
ADI-R. Left column:  answer provided by the caregiver. Right column: score given by the 
interviewer.

Answer Score 
No definite behaviour of the type specified. 0 
Behaviour of the type specified probably present but defining  
criteria not fully met. 1 

Definite or extreme abnormal behaviour of the type described. 2 
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Similarly, a summary score is computed for each area based on the scores of the 

respective sub-areas. A child is diagnosed as having Autism if each of her scores for the 

three core areas reaches some pre-defined threshold, and her early manifestation of PDDs 

starts before the age of 36 months [LRL94]. Notably, only questions in Parts (1) and (2) 

of the ADI-R, but not those in Part (3) which ask about a patient's general behaviour, are 

included in the accompanying algorithm for diagnosing Autism.  

It is important to note that some questions in the ADI-R consist of two alternative 

sub-questions. Specifically, if a question is about the presence of an abnormal behaviour, 

it contains two sub-questions that ask about the current condition and about the condition 

when the behaviour persisted in the history of a subject for at least 3 months. If a question 

is about the absence of a normal behaviour, it contains two sub-questions that ask about 

the current condition and about the condition that existed when the subject was between 

the ages of 4 and 5 years, which is the period when the behaviour of an individual with 

PDDs is likely to be the most abnormal [RLL03]. Depending on which version of the 

accompanying ADI-R algorithms is used by the interviewer, the answer to one of the two 

alternative sub-questions is taken to be the answer to the question. Figure 3.3 

demonstrates the two types of questions (ellipses) in the ADI-R: some of the questions 

have two sub-questions (circles); the rest of the questions do not contain sub-questions. 

The answers to the questions or sub-questions represented by darkened ellipses and 

circles are used to construct the dataset for the subtyping of PDDs. Note that only one of 

the sub-questions for each question is selected. 

In this study, we construct the dataset for cluster analysis using the raw ADI-R data 

gathered from 358 subjects following a scheme that is extended from the accompanying 
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ADI-R algorithm lifetime version, with reference to the version that is designed for 

children younger than 4 years old, both proposed by Lord et al. [LRL94]. In the next 

section we discuss the choice of sub-questions used in this study in order to obtain the 

data for our cluster analysis. 

 Questions 

Sub-questions 
 

Figure 3.3 Structure of the questions in the ADI-R. Ellipse: question. Circle: sub-
question.  The filled items represent the questions or sub-questions whose answers are 
used by a specific version of the ADI-R algorithm. 

3.2 Selection of Sub-questions 

Based on the lifetime version of the accompanying ADI-R algorithm, if a question is 

about the absence of a certain normal behaviour, the score that denotes the condition of 

the child when she is 4 to 5 years old is used. For children that are younger than 4 years 

old, according to the version of the algorithm for this age group, the score that denotes 

the current condition is used. If a question is about the presence of a certain abnormal 

behaviour, the score that denotes the condition of the child when he initially exhibited 

this behaviour is used. Two exceptions are the questions about “reciprocal conversation” 

and “social chat”, whose scores for the current condition are always used regardless of 

the version of the algorithm, because they have been proven to have high distinguishing 

power [LLR94]. For questions that do not contain two sub-questions, the score for the 

answer is directly used.  
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It has been proposed [YSF94] that relying on the caregiver’s retrospection for 

answering questions about a child’s earlier conduct may lead to errors. For example, 

parents may tend to recall fewer symptoms if their child is currently functioning well, and 

more symptoms otherwise, thus biasing the answer. A study included an external 

validation to justify the use of retrospective data, by assessing the agreement between the 

parental retrospective reports and independent ratings based on previous medical charts 

[YSF94]. The two correlated at r = 0.72 (p < 0.05), which suggested that the ratings 

based on the parents’ recollection of their children’s symptoms were positively correlated 

with those objectively measured, and could thus be used to assess past behaviours 

[YSF94]. Indeed, many other studies included parental recollection as a data source and 

showed meaningful and justifiable results [BP95, GOF03, GMPC98, CTDC05].  

After the selection of sub-questions, our dataset contains 93 variables, each of which 

represents the severity of an impairment obtained as an answer to a question or to a sub-

question in the ADI-R. We then perform feature selection and feature extraction to 

reduce the dimensionality of the dataset, as discussed next. 

3.3 Dimensionality Reduction 

There are many benefits for dimensionality reduction including easier data visualization, 

reduced storage requirements, increased computing speed and improved 

classification/clustering performance [GE03].  

To perform feature selection, domain knowledge can be used to determine the subset 

of attributes that are relevant to the data analysis task. Such knowledge can also be 

employed to combine multiple attributes into new features to accomplish feature 
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extraction [WH03]. Both feature selection and feature extraction are practiced in the 

diagnosis of Autism using the accompanying ADI-R algorithm [LRL94, RLL03]. For 

example, the algorithm only uses the scores of a portion of the 93 questions in the ADI-R. 

This is a form of feature selection. Specifically, depending on its version, the algorithm 

chooses 39 to 42 questions from Parts (1) and (2) of the ADI-R. As shown in Figure 3.2, 

the scores of the answers to the chosen questions are combined first to obtain scores for 

the sub-areas, and then for the areas to which the sub-areas belong. That is, feature 

extraction is performed on these questions to generate features to represent the sub-areas 

and the areas. 

With the guidance of an expert on the diagnostic procedures for PDDs [HP05], we 

use much more of the data than is typically used by any version of the accompanying 

ADI-R algorithm. Particularly, we use 64 of the 93 questions in the ADI-R, and combine 

them into 22 features for cluster analysis (Appendix B). These features are conceptually 

similar to the sub-areas in the accompanying ADI-R algorithm, and are therefore named 

according to the sub-areas to which they correspond. Since we use more questions than 

the accompanying ADI-R algorithm, some of the 22 features do not have corresponding 

sub-areas. We refer to these features as add-on features, and name them according to the 

impairments described by the questions pertaining to them. The 22 features are:  

(1)  Early onset of symptoms; 

(2)  Impaired early development; 

(3)  Delayed acquisition age of language; 

(4)  Abnormal conversational interchange; 

(5)  Stereotyped speech; 
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(6)  Impaired receptive communication; 

(7)  Impaired gesture expressive communication; 

(8)  Impaired behaviours to regulate social interaction; 

(9)  Poor peer relationships; 

(10)  Impaired shared enjoyment; 

(11)  Impaired socio-emotional reciprocity; 

(12)  Impaired social development; 

(13)  Lack of initiation of activities; 

(14)  Encompassing preoccupation; 

(15)  Stereotyped motor mannerisms; 

(16)  Ritualistic behaviour; 

(17)  Sensory issues; 

(18)  Adherence to routine; 

(19)  Symptoms of Rett’s disorder; 

(20)  Aggression; 

(21)  Epilepsy; 

(22)  Demonstrated savant skills. 

As shown above, we include the add-on features such as those pertaining to 

aggression (Feature 20) and demonstrated savant skills (Feature 22). We also include a 

few non-redundant questions that are not used by the accompanying ADI-R algorithm in 

several sub-areas, such as questions pertaining to attention to voice (Question 46) and 

unusual attachment to objects (Question 76). There are four main reasons for including 

more questions and features in this study than those included in the accompanying ADI-R 
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algorithm. First, it has been pointed out that certain behaviours, such as hyperactivity, 

aggressiveness, and destructiveness, are currently not included in the diagnosis of Autism, 

while they are likely to be relevant [FMBB03]. Second, some researchers observed that 

symptoms such as isolated (savant) skills and epilepsy are related to certain subtypes or 

severity levels of PDDs [OWL05, GPA05, NDTH03]. Third, the questions about mid-

line hand movement3 and hyperventilation are included because they are symptomatic of 

Rett’s disorder. Fourth, some questions about the impairment of early development, such 

as delayed walking, are also included because early development is related to certain 

subtypes of PDDs such as Autism and Childhood disintegrative disorder [LRL94].  

Questions about age-specific manifestation are not used to form the feature set in our 

study because these questions only apply to patients of certain ages. We also do not add 

on the features that are about the regression of symptoms in patients. In the ADI-R, the 

questions about relapse aim to provide more accurate information for differential 

diagnosis between Autism, Rett’s disorder, and Childhood disintegrative disorder 

[LRL94]. Meanwhile, Feature 1, which asks about the “early onset of symptoms” in a 

patient, and Feature 19, which asks about some unique symptoms associated with Rett’s 

disorder, are already included to differentiate these three subtypes of PDDs. Besides, the 

regression is not unique to patients with Rett’s disorder, nor is it unique to those with 

Childhood disintegrative disorder. It is also common among patients with Autism with an 

occurrence rate ranging from 20% to 50% [FC01].  

Similar to the way the score of a sub-area is calculated in the accompanying ADI-R 

algorithm, the value of a feature in our study is obtained by summing the scores for the 

                                                 
3  A particular way of moving one’s hands in front of one’s body. For example, hand wringing or turning 
hands from side to side together as if washing them.  
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questions pertaining to the feature. The scores for all features are then normalized to the 

range [0, 1], by mapping the maximum score to 1, the minimum to 0, and the 

intermediate values linearly to the (0, 1) interval. 

After applying the data pre-processing steps described above to the raw ADI-R data, 

we obtain a dataset corresponding to the 358 subjects, each of which is represented by a 

22-dimensional feature vector, where each feature is a real number in the range [0, 1]. 

Cluster analysis, cluster validation and consensus clustering can then be performed, as 

shown in the next chapter, to identify the subtypes of PDDs based on the dataset.  
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Chapter 4 

Methods 

The pre-processing stage, described in Chapter 3, results in a set of feature vectors to 

which we apply the actual analysis. Three clustering methods, representative of three 

categories of clustering algorithms, are applied to partition this dataset into subsets as 

shown in Section 4.2. Two validation methods introduced in Sections 4.3 and 4.4 are 

used to evaluate the clustering results. The results obtained by using different 

combinations of clustering and validation methods are then integrated into a unified 

consensus solution, as shown in Section 4.5, in order to reach an agreement on the 

assignments of subjects into clusters. In Section 4.6, the clusters in the consensus solution 

are identified, analyzed and compared to clinical diagnoses previously obtained for the 

subjects. The complete pipeline diagram is included in Appendix C.  

4.1 Overview of Methods 

As described in Chapter 3, we pre-process the original data to obtain a set representing 

the 358 subjects using 22 numerical features (ranging in value from 0 to 1). Each feature 

value represents the severity of impairment in one of the 22 areas listed in Section 3.3 for 

the patients suffering from PDDs. The three clustering methods we apply to the set are k-

means, agglomerative hierarchical (hierarchical for short), and EM for Gaussian mixture 

model (EM for short), which represent three categories of algorithms: partitioning, 

hierarchical and model-based, respectively. One of the core issues in our study is to find 

the appropriate number of clusters, kopt, through cluster validation. This is achieved by 
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checking the fitness and the stability of the partitions produced by each of the three 

clustering methods. The combination of the three clustering methods and two validation 

criteria produces six best partitions of the dataset, each of which has the number of 

clusters that is considered to be the most appropriate for the specific combination of 

clustering method and validation criterion. The other core issue in our study is to 

consolidate these best results. To achieve this, the six best partitions are treated as the 

components of a cluster ensemble, and are integrated to form one consensus solution.  

In the following sections, we introduce the criteria and procedures that we use for 

clustering, validation and result integration.  

4.2 Clustering Methods 

 
In this section, we provide the details of the k-means, the hierarchical, and the EM 

clustering algorithms which have been briefly presented in Section 2.2. We use the 

implementation of the k-means [Tek06] and of the hierarchical clustering methods 

provided in Matlab [MW05], and the implementation of the EM method provided in the 

Weka machine learning software package [WF05]. Throughout the description, we 

frequently use the term data point to refer to a feature vector in an n-dimensional space. 

4.2.1 K-means Clustering  

In the term k-means clustering, k represents the number of clusters. The value of k is 

usually unknown a priori and has to be chosen by the user. Each cluster has a centroid, 

which is usually computed as the mean of the feature vectors in the cluster. The cluster 
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membership of each data point under the k-means clustering algorithm is decided based 

on the cluster-centroid nearest to the point. As centroids cannot be directly calculated 

until clusters are formed, the user specifies k initial values for the centroids at the 

beginning of the clustering process. The actual centroid values are calculated once 

clusters have been formed.  

The k-means algorithm partitions a dataset into k clusters using the following steps 

[Mac67]:  

(1) Initialize the cluster centroids with k initial values.  

(2) For each data point in the dataset, find the closest centroid, and assign the point to 

the cluster associated with this centroid. 

(3) Calculate the centroid for each of the k clusters based on the new cluster 

memberships.  

(4) Iterate through steps (2) and (3) until a termination condition is met.  

Several termination conditions can be used in step (4). Each condition compares the 

value(s) of a certain measure computed in the current iteration to the value(s) of the same 

measure computed in the previous iteration. Three commonly-used conditions are:  

(i) The centroids do not change; 

(ii) The sum of squared distances from each of the data points to their respective 

centroids does not change; 

(iii) The cluster membership of the data points does not change. 

We apply Condition (iii) as the termination condition for k-means clustering. When 

the memberships of the data points do not change, the centroids computed based on these 
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memberships do not change. Consequently, the sum of squared distances from the data 

points to their centroids does not change either.  

In Step (2) of the clustering procedure, the k-means algorithm finds the nearest 

centroid for each point. The word “nearest” is meaningful only when there is a pre-

defined distance metric. The metric we use is the Euclidean distance. Although many 

other metrics can be used, we adopt the Euclidean distance for both k-means and 

hierarchical clustering because it was used in several previous studies in which cluster 

analysis was employed to find subtypes in PDDs, and led to meaningful results [Les88, 

CT85]. 

The  Euclidean distance between two data points X1 and X2 , each represented by a p-

dimensional vector, X1 = ( ) and X
p

XXX
121 111 ,...,, 2 = ( ), is denoted as 

d_Euc (X

p
XXX 222 ,...,,

21

1, X2), and defined as follows: 
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21 )( .                             (4.1) 

The k-means clustering procedure iteratively moves data points between clusters, 

minimizing the sum of squared distances, denoted by J, from each data point to its cluster 

centroid. Denote the ith cluster by Ci, then the sum of squared distances for Ci, denoted by 

Ji, is defined as follows: 

Ji = ∑
∈ iCX

iYXEucd 2),(_  , 

      where  is the Euclidean distance from a data point X in C),(_ iYXEucd i to Ci’s 

centroid Yi.  
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We can then calculate the sum of squared distances for all the k clusters, denoted by J, 

as:  

                             J = ∑                                                     (4.2) 
=

k

i
iJ

1

Starting the k-means algorithm from various sets of initial values may lead to varying 

local minima of J. We wish to find the one that is the global minimum. However, it is 

unrealistic to exhaust all the sets of initial values. Therefore, we run k-means clustering 

multiple times, starting from different initial values at each run and choose the solution 

that minimizes the sum of squared distances, J. By using multiple runs, the algorithm is 

more likely to converge to the global minimum of J, or at least to a local minimum that is 

the closest to the global minimum among the multiple local minima.  

4.2.2 Hierarchical Clustering  

To perform hierarchical clustering on a set of n data points, a symmetric n x n distance 

matrix consisting of pair-wise distances between the data points is generated. The main 

steps of hierarchical clustering are [Joh67]: 

(1) Assign each data point to a separate cluster to obtain n clusters, each of which 

contains one data point (a singleton).  

(2) Find the closest pair of clusters; merge the two clusters to form a new cluster.  

(3) Compute distances between the new cluster formed in step (2) and each of the 

remaining clusters; 

(4) Iterate through steps (2) and (3) until all of the n points in the dataset are merged 

into a single cluster. 
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In addition to a metric for measuring distance between individual data points, which 

is the Euclidean distance in this study, we also need a method to compute the distance 

between clusters in Step (2), so that the two most similar clusters can be merged. Such a 

method is referred to as linkage [Joh67]. 

The linkage method we employ here is called average link [SS73]. Let C1 and C2 be 

two clusters; denote the distance between any two data points X1 and X2 by d(X1, X2); the 

distance between clusters C1 and C2, measured by the average link method, is defined as 

the average distance between all pairs of points from C1 and C2, where one point in the 

pair is in C1 and the other is in C2. The distance is denoted by davg(C1, C2) and is 

calculated as:  

                                          davg(C1, C2) = 
21

2212

*

 ),(
,

21

CC

CXCX

nn

XXd∑
∈∈ ,                                      (4.3) 

where  and denote the number of points in clusters C
1Cn

2Cn 1 and C2, respectively. 

Agglomerative hierarchical clustering, as introduced in Section 2.2, merges all the 

data points in a dataset into sub-trees, and ultimately into one single tree. Figure 4.1 

shows this process. There are 20 sub-trees (clusters, labelled from 1 to 20) on the x-axis. 

The y-axis represents the distance between sub-trees measured with the average linkage 

method. Two sub-trees that are closest to each other are then connected to form one 

larger sub-tree; this process is iterated until a single tree that includes all the data points 

in the dataset is formed. In general, when employing hierarchical clustering to build a 

single tree, the user does not need to specify the desired number of clusters, k. However, 

to obtain a clustering result with a specific number of clusters, the user does need to 

provide the value of k, so that the algorithm can cut the tree at a certain level where there 
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are exactly k sub-trees under this level. Figure 4.1 shows how to obtain three clusters, 

marked as clusters 1, 2, and 3, from the complete tree.  
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Figure 4.1: A hierarchical tree built from 20 sub-trees, then cut at a certain level (shown 
by a horizontal dashed line), resulting in three clusters marked as Clusters 1, 2 and 3 
under the x-axis. 

4.2.3 Expectation Maximization for Gaussian Mixture Models 

Expectation maximization for Gaussian mixture models (referred to here as EM for short), 

is a probabilistic clustering algorithm that makes use of the finite Gaussian mixture 

model. There are k multivariate probability distributions in the model, where each 

distribution represents a cluster. As in k-means and in hierarchical clustering, k is 

specified by the user. In the implementation of the EM algorithm in the Weka package, it 
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is assumed that all features are independent random variables given the cluster. The main 

steps of the EM method are [DLR77]:  

(1) Initialize the parameters (mean and variance) for the k Gaussian distributions. 

(2) Compute the probability density for each feature vector under each of the k clusters, 

using the probability density function of the Gaussian distribution for each cluster. 

(3) Re-estimate the parameters for each of the k Gaussian distributions using the 

probability densities computed in Step (2).  

(4) Iterate through Steps (2) and (3) until convergence.  

By updating the mean and variance of the Gaussian distribution for each cluster in 

step (3), the probability of the data given the parameters, also known as the likelihood of 

the parameters to generate the data, is maximized. The higher the likelihood is, the better 

the clustering model fits the data.  

We now show how the likelihood (L) is calculated with respect to the parameters (θ) 

for two clusters C1 and C2, modeled by two Gaussian distributions. Let {X1, X2, …, Xn} be 

the n feature vectors (data points) in a dataset D; the probability density value of a feature 

vector Xi under the distribution model associated with cluster C1 is denoted as p(Xi | C1), 

while the prior probability of C1 is p(C1). The likelihood, denoted by L, is the probability 

density of the data, D, given the parameters, denoted by )|( θDp . The latter is computed 

as the joint probability density of the data points in D given the two Gaussian 

distributions that model the two clusters C1 and C2. Therefore, L is expressed as:  

    L = )|( θDp =∏  
=

n

i
iXp

1
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Similar to k-means clustering, the EM algorithm may converge to the local maxima of 

the likelihood function L [DHS01]. The maximum to which the EM algorithm converges 

depends on the initial values assigned to the parameters in step (1) above. By using 

multiple sets of starting parameters and taking the solution that yields the highest L, EM 

clustering is more likely to converge to a global optimum or an optimum that is the 

closest to the global optimum among the multiple values of L we obtain.  

As discussed previously in Sections 4.2.1 to 4.2.3, the three clustering algorithms we 

use all require the user to specify the number of clusters, k. For the k-means and the EM 

algorithms, k needs to be specified before the clustering process starts; while for 

hierarchical clustering, it can be specified after the process is finished. Although, as is the 

case for most clustering problems, we do not know the exact value for k, we do know the 

range of the values for k based on previous research on the subtypes of PDDs. In this 

study, we set the range of k to be from 3 to 7, based on the a priori knowledge obtained 

about the number of clusters from more than 15 studies on the subtyping of PDDs 

[BS01]. We then use the two validation methods, fitness validation and stability 

validation, which are briefly introduced in Section 2.3.1, to locate the most appropriate 

number of clusters, kopt, for each of the three clustering algorithms. The two validation 

methods are discussed in further detail next. 

4.3 Fitness Validation 

In this section, we talk about the measures and procedures that we use in the fitness 

validation of the 3 clustering algorithms. 

 49



4.3.1 Fitness Measures  

For clustering methods such as k-means and hierarchical clustering, in which each 

element is assigned to exactly one cluster, fitness is usually evaluated based on 

geometrical properties such as the compactness and separation of clusters. For 

probabilistic methods such as EM clustering, fitness can be evaluated using measures 

derived from probability [LD01]. When a partition produced by a clustering method 

results in an optimal value of the fitness measure for this method among multiple 

partitions examined, this partition is considered to be the best; kopt is then set to be the 

number of clusters in this partition. We summarize the measures used for the fitness 

validation methods of the three clustering methods in Table 4.1. The range of values for 

these two measures is also listed in the table. For the k-means and hierarchical clustering 

methods, a fitness measure called the average silhouette width is used. For EM 

clustering, a measure called Bayesian Information Criterion (BIC), which is derived from 

the likelihood L, is used. Both of the measures are introduced in detail next.  

           Table 4.1: Measures for the fitness validation of the three clustering methods 

Method Measure Value range 
K-means Average silhouette width [-1, 1] 

Hierarchical Average silhouette width [-1, 1] 
EM BIC NA 

 

Average Silhouette Width 

Silhouette width measures how much more similar a data point is to the points in its own 

cluster than to points in a neighbour cluster. The average silhouette width is calculated as 

the average of the silhouette width for all the points in the data [KR90]. To formally 
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define the average silhouette width, we first formally define the terms neighbour cluster 

and silhouette width.  

In a clustering solution, a neighbour cluster for a data point X in a cluster C, is the 

cluster whose data points have the shortest average distance to X among all the clusters 

other than C. Let {X1, X2, …, Xn} be the n data points in a dataset D, and d(Xi, Xj) be the 

distance between two data points Xi and Xj. If C(Xi) is the cluster to which Xi belongs, 

then the neighbour cluster for Xi, denoted by Cneig(Xi), is defined as: 

           

(4.5) 
                                                                                                                                

 

where mC
)

is the cluster whose points have the minimum average distance to Xi. 

The silhouette width for Xi, denoted by Si, is defined as: 
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That is, ai is the average distance between Xi and the points in the same cluster as Xi, 

and bi is the average distance between Xi and the points in Xi's neighbour cluster. The 

value of Si ranges from -1 to +1. When it is close to -1, Xi is likely to be assigned to the 

wrong cluster; when it is close to 0, Xi is equally likely to be assigned to any of the two 

clusters; when it is close to +1, Xi is considered to be clustered correctly.  
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The average silhouette width of a dataset is calculated as the mean of the silhouette 

widths over all data points in a set. Formally, it is defined as:  

Average silhouette width = 
n

S
n

i
i∑

=1 . 

This measure evaluates the quality of the clustering by taking into consideration both 

the compactness and the separation of the clusters. 

Bayesian Information Criterion  

Given the observed data, the EM algorithm maximizes the likelihood of the parameters to 

generate the data for the k Gaussian distributions, where k is the number of clusters 

assumed for the data. When we use a large number of Gaussian distributions, they can 

then model the data very well and yield high likelihood. However, in most cases, the 

objective of cluster analysis is to describe the general population from which the data are 

sampled, rather than the specific dataset. The phenomenon of an over-complex model 

fitting the observed data too closely and not being able to generalize to unseen data is 

called overfitting [HMS01]. Therefore, we usually want to avoid over-complex clustering 

models..  

The Bayesian information criterion (BIC) is devised to avoid overfitting, and is 

defined as [Raf86]:  

                                               BIC = -2ln(L) + v ln(n),                                                                   (4.7)                                     

where n is the number of data points, L is the  likelihood of the parameters to 

generate the data in the model, as illustrated in Section 4.2.3, and v is the number of free 

parameters (means and standard deviations) in the Gaussian mixture model. The BIC 

takes into account both the fit of the model to the data and the complexity of the model. 
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A model that has a smaller BIC is preferred. In this study, we take the inverse of the BIC 

so that a model that has a larger 1/BIC is preferred, which is consistent with the criterion 

that a larger average silhouette width is preferred for the k-means and the hierarchical 

methods. Based on Eq. 4.7, the 1/BIC is expressed as: 

1/BIC = (-2 ln(L) + v ln(n))-1   .                                                               (4.8) 

In the computation of the 1/BIC, vln(n) is a penalty term because it penalizes a model 

for its complexity in order to avoid overfitting. While the likelihood term, (-2ln(L) in 

Formula 4.8), causes the 1/BIC to favour a more complex model because a more complex 

model can increase the likelihood L, the penalty term causes the 1/BIC to favour a 

simpler model because a smaller v decreases the penalty.  

We use the above measures to introduce the procedures used for fitness validation.   

4.3.2 Procedure for Fitness Validation  

Two major differences exist between the procedures used for the fitness validation of k-

means/EM clustering, and the validation procedure used for hierarchical clustering. First, 

for methods such as the k-means and the EM clustering methods, we need to specify the 

number of clusters, k, before starting the clustering process. In contrast, a hierarchical 

method can build a dendrogram without a pre-specified k. Second, the k-means and the 

EM algorithms should be started with multiple initial values in order to obtain a close-to-

optimal solution.  

Hierarchical clustering may also produce different solutions under certain conditions. 

However, the cause for the variability is not the same as the cause in the cases of the k-

means and EM algorithms. In hierarchical clustering, multiple solutions can be generated 
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when the distance between two sub-trees1, measured by the linkage method introduced in 

Section 4.2.2, is equal to the linkage distance between another pair of sub-trees, and thus 

creates a tie of distances. The existence of such ties for multiple pairs of sub-trees means 

that a decision of which pair of sub-trees to merge among equally good candidates should 

be made. If the decision is made arbitrarily, the clustering results may change accordingly. 

Different implementations of hierarchical clustering use different decision rules, which 

can lead to different solutions. For the implementation we use in Matlab, when ties exist, 

changing the order of the data points may change the memberships of the points involved 

in the ties due to the method of tie-handling in this implementation. This is not a desired 

phenomenon as the order of the subjects in our study, represented by the data points, 

should not affect their membership. Therefore, we use a number of random permutations 

of the input data to find whether they result in different clustering solutions [VSH05]. For 

each k (number of clusters), we performed 10 random permutations on the data points to 

verify that the permutations make no difference to results. Therefore, we do not use 

multiple runs of hierarchical clustering in this study.  

 For the k-means and the EM methods, pseudocode for the fitness validation 

procedure is shown in Table 4.2. The following notation is used:  

(1) D: the dataset; 

(2) k: the number of clusters;  

(3) C: the clustering solution that has the smallest sum of squared distances or the 

largest likelihood for a fixed k; 

                                                 
1 In this context, sub-trees also include those that have a single data point in them when agglomerative 
hierarchical clustering first starts.  
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(4) optimum: the smallest sum of squared distances for k-means clustering, or the 

largest likelihood of the parameters for EM clustering. It is initialized as infinite 

for k-means clustering, and negative infinite for EM clustering. 

(5) fitness: the value of the fitness measure for the solution, C.  

Table 4.2: Pseudocode for the fitness validation of the k-means and the EM clustering 

for k = 3 to 7                                                                % We assume 3 to 7 clusters in the dataset. 

Initialize optimum;  

% Use 20 sets of different initial values to cluster the dataset, D, using k-means/EM clustering. 
% For k-means, the k initial centroids are selected at random from D. 
% For EM, the initial means and variances are computed from clusters obtained by running k- 
% means on D.  
for i = 1 to 20   

temp1 = cluster(D, the i-th set of initial values); % temp1 stores the cluster membership of D 

% For k-means, temp2 is the sum of squared distances. For EM, it is the likelihood of the  
% data given the parameters 
temp2 = cost_fuction(D, temp1)              

% For k-means,  find_optimum is a min() function. For EM, it is a max() function. 
optimum = find_optimum(temp2, optimum);                 

if (optimum is updated)  

C = temp1; 

endif; 

endfor i; 

% calculate_fitness calculates the average silhouette width for k-means and the 1/BIC for EM. 

 

fitness =  calculate_fitness(C);                                           

output fitness and C; 

endfor k. 
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As shown in Table 4.2, for the k-means and the EM methods, k is specified before the 

clustering procedure starts. For each k, 20 different settings of the initial values are used. 

The clustering solution that minimizes the sum of squared distances (for k-means 

clustering) or maximizes the likelihood (for EM clustering) is taken to be the k-cluster 

solution, and a fitness measure value is calculated for it.  

For hierarchical clustering, pseudocode for fitness validation is shown in Table 4.3. 

There is no need for the variables i and optimum since no multiple starting points are used 

in this procedure. A variable, tree, is used to represent the single hierarchical tree with all 

the data points in D merged into it. As shown in the pseudocode, a dendrogram is built 

based on the data, and the value of the average silhouette width is computed for the 

clustering solutions with 3 to 7 clusters.   

                Table 4.3: Pseudocode for the fitness validation of hierarchical clustering  

% Build a hierarchical tree from dataset D using hierarchical clustering 
tree = build_tree(D); 

for k = 3 to 7 

% Cut the tree at a certain level to obtain k clusters. 
C = cut_tree(tree, k)  

% calculate_fitness calculates the average silhouette width for hierarchical clustering 
fitness =  calculate_fitness(C);                                                     

Output fitness and C; 

endfor k. 
 

Experimental conditions for the three clustering methods are summarized in Table 4.4. 

Both the k-means and the hierarchical methods use the Euclidean distance as the distance 
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metric, and both use 20 different sets of initial values. The linkage method used by 

hierarchical clustering is the average link defined in Section 4.2.2.   

Table 4.4: Experimental conditions for the three clustering algorithms 

 Distance metric Multiple Starting 
points 

Linkage method 

K-means Euclidean 20 NA 
Hierarchical Euclidean NA Average link 

EM NA 20 NA 
 

As we have shown, to find the appropriate number of clusters, kopt, we perform fitness 

validation on clustering solutions with different number of clusters. The number of 

clusters in the solution that has the best fitness score is taken to be the kopt. The procedure 

for stability validation is presented in the next section.  

4.4 Stability Validation 

The procedure we use for stability validation extends the method called replication 

analysis, which was carried out by Breckenridge [Bre89] and has been introduced in 

detail in Section 2.3.1. Our procedure is also closely related to several other stability 

validation methods previously proposed by Lange et al. [LRB04], Tibshirani et al. 

[TW05], and Wu [Wu04], all of which are also based on cluster replication analysis and 

have been introduced in Section 2.3.1. We provide a formal description of our procedure 

next.  

As before, {X1, X2, …, Xn} are the n feature vectors in the dataset D. Let k be the 

number of clusters. Denote the cluster labels of the n vectors by B, where B = {b1,..bn}. 

To be more specific, if the feature vector Xi is assigned to cluster Cj (1 ≤ j ≤ k) then bi = 
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Cj. When a clustering method M assigns the set of labels B to the data set D, we denote it 

as B = M(D). Pseudocode for the validation procedure is first listed in Table 4.5 and 

explained in more detail in the following two paragraphs. 

                   Table 4.5: The pseudocode of the procedure for stability validation 

for i = 1 to N 

for k = 3 to 7 

% Split D into two disjoint subsets D1 and D2, where |D1| = |D2|. 
{D1, D2} = split_in_half(D); 

BB1 = M(D1); B2 = M(D2); % k clusters in both D1 and in D2

Use (D1, B1) to train a classifier φ; 

BB2’ = φ(D2); % k classes in D2

% agreement() evaluates the agreement on the cluster memberships of the  
% data points between BB2 and B2B ’. 
Output agreement(BB2, B2’); 

endfor k; 

endfor i. 
  

The core of the pseudocode, namely, the inner loop, includes the main steps of 

replication analysis discussed in Section 2.3.1. To be specific, a dataset D is split into two 

equal subsets denoted by D1 and D2. D1 and D2 are partitioned into k clusters 

independently using a clustering method to obtain cluster labels BB1 and B2B , respectively. 

The cluster labels obtained for the D1 set, BB1, are viewed as “ground truth”, and 

supervised learning is used to train a classifier based on this clustering solution, where 

the cluster labels are viewed as the classes. In this work we use Random Forests [Bre01] 

as the classifier. The classifier is then used to classify the D2 set and obtain class labels 
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B2B ’. Agreement between the cluster labels assigned to the D2 dataset by the unsupervised 

clustering algorithm, BB2, and by the Random Forest classifier, B2B ’, is calculated.  

As shown in the pseudocode, the split of the dataset is repeated N times. That is, for 

each of the N splits of the dataset, we compute the agreement between the cluster labels 

(BB2) and class labels (B2B ’) under each of the five values of k (from 3 to 7). As a result, we 

have an N x 5 matrix in which the rows are the N data splits, the columns are the different 

k values from 3 to 7, and the elements are the agreement values calculated between BB2 

and B2’.  

In this study, we measure the agreement value using the adjusted Rand index (ARI). 

The higher the agreement, the higher the ARI score. The number of clusters for which the 

ARI values are statistically significantly larger than those produced for any other number 

of clusters, checked by the Wilcoxon signed rank test [RDCT05], is taken to be the 

optimal number of clusters, kopt. The best clustering solution with kopt clusters is used as a 

component in the cluster ensemble in this study. 

To explain the procedure for stability validation in detail, we introduce Random 

Forest and the ARI next.  

4.4.1 Random Forest 

Random forest is a classifier formed by an ensemble of Decision Trees [Kir02]. Each tree 

is constructed based on sub-samples randomly drawn from the training set with 

replacement. That is, a data item can be sampled multiple times. This process is known as 

Bootstrap Aggregating, which ensures that the sample is drawn independently from the 
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same distribution for building each of the trees in the forest. Bootstrap aggregating 

improves the accuracy and the stability of classification [Bre96].  

To predict the class label of a data item, each tree in the random forest assigns a class 

label to the item, and the class assigned by the largest number of trees is taken to be the 

class to which the item belongs.  

The performance of random forest classifiers was demonstrated to be at least as good 

as that of other classifiers such as decision tree, Support Vector Machine [SLTW04], and 

the highly accurate classification ensemble Adaboost [FS96]. The random forest 

classifiers are also more robust with respect to noise, and have only a small number of 

parameters to tune [Bre01]. Therefore, we use a random forest classifier as part of the 

stability validation procedure.  

4.4.2 Adjusted Rand Index  

As discussed in Section 2.3.1, there are multiple ways to calculate agreement between 

partitions. The ARI calculates it by computing the percentage of pairs of objects 

belonging to the same or to different subsets in each of the two partitions among all pairs 

of data points, and correcting for chance agreement. The ARI is defined as follows. 

For a dataset D, let C and Q be two partitions: C={C1,..CN} and Q={Q1,..QM}, where  
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Let Xi∈D be a data point in D. We denote by C(Xi) the subset to which Xi belongs 

under partition C, and Q(Xi) the subset to which Xi belongs under partition Q. Let A be 
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the set of pairs of points Xi, Xj∈D that are placed in the same subset according to both 

partitions, formally:  

A ={<Xi, Xj>| C(Xi) = C(Xj) AND Q(Xi) = Q(Xj)}, 

and B be the set of pairs of points Xi, Xj∈D, that are placed in different subsets according 

to both partitions, formally:  

      B ={< Xi, Xj>| C(Xi) ≠ C(Xj) AND Q(Xi) ≠  Q(Xj)}. 

Denote by |A| and |B| the number of pairs in the sets A and B, respectively. The ARI is 

then defined as:  
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chance agreement between C and Q, and 1 is the maximum value that R can obtain (when 

C and Q are the same). The value of the ARI ranges between -1 and 1. The larger the ARI 

is, the better the agreement between the partitions C and Q.  

By applying three clustering methods to our ADI-R dataset, and evaluating the 

clustering results of each method using fitness and stability validation, we obtain six best 

solutions, each of which is the result of applying the combination of a clustering method 

and a validation procedure to the dataset. We then use the six solutions as components of 

the cluster ensemble we construct.  
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4.5 Consensus Clustering and Cluster Ensemble 

As described in Section 2.4, we represent each of the 358 subjects as a 6-dimensional 

vector, where the ith  position in the vector is the cluster label assigned to the subject by 

the ith clustering solution (where 1≤ i ≤6). We call the dataset formed by these 358 six-

dimensional vectors the ensemble dataset. A consensus function is then applied to this 

dataset to reach a unified solution.  

In our ensemble dataset, the cluster labels that make up the feature vectors are 

nominal rather than numerical. Nominal data consist of a finite number of distinct, non-

ordinal values that do not have a numerical meaning, and can only be tested for equality 

[HMS01]. Therefore, the similarity of two objects represented by nominal vectors cannot 

be simply measured by standard metrics such as the Euclidean distance. For the 

consensus approach we employ in this study, which is co-association-based and is 

introduced in Section 2.3.1 and Section 2.4, the similarity of the feature vectors in the 

cluster ensemble can be represented by their co-membership [TJP03]. A similarity-based 

clustering algorithm, typically hierarchical clustering, can then be used to find the 

consensus solution for the ensemble dataset. However, we modify the co-association-

based approach slightly to suit the specific implementation of hierarchical clustering.  

The merging of the clusters in hierarchical clustering, as introduced in Section 4.2.2, 

is based on the n x n distance matrix which stores the distances between every two data 

points, where n is the number of data points in a dataset. The distances in fact measure 

the dissimilarities rather than the similarities between the data points. Therefore, rather 

than evaluating the similarity between every two nominal objects in the ensemble dataset 

with their co-membership, we measure the dissimilarity between them. That is, we 
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examine whether the two objects share a cluster in each component solution in an 

ensemble, and count the times that they do not belong to the same cluster. The ratio 

between this sum and the total number of the component solutions in an ensemble is the 

measure of dissimilarity between the two objects. In other words, the distance between 

every two feature vectors in the ensemble dataset is represented by the lack of co-

association between them, and is formally defined next. 

For the n nominal vectors in a dataset, the distances between every two of them form 

an n x n distance matrix, denoted by S. As before, Xi and Xj represent two p-dimensional 

vectors, where Xi = (Xi_1, Xi_2, …, Xi_p), Xj = (Xj_1, Xj_2,…, Xj_p), and p is the dimensionality 

of the ensemble dataset.  The distance between Xi and Xj is then denoted by Sij, and is 

defined as:  

 

                                                                 ,                                    (4.9) 
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We can then use hierarchical clustering to partition the ensemble dataset into several 

clusters based on the n x n distance matrix defined by Eq. 4.9. This is another clustering 

problem where the number of clusters in the consensus solution is unknown. Another 

round of fitness and stability validation, similar to what we introduced in Sections 4.3 and 

4.4, is carried out to determine the most appropriate number of clusters, kopt, for the 

ensemble dataset.  
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Each of the fitness and stability validation methods is able to find a consensus 

solution for the ensemble dataset. If the two methods agree with each other, the common 

solution can be taken to be the final partition of the dataset; otherwise, further analysis is 

performed to find a solution that can balance the fitness and the stability, and shows good 

results in regard to both criteria. Statistical tests and domain knowledge are then applied 

to this unique final consensus to analyze the characteristics of the clusters.  

4.6 Analyzing the Clusters in the Consensus Solution 

We characterize the impairments shared by subjects within each cluster based on the 

magnitude of the feature values for each cluster, statistical significance tests on the 

difference in feature values between every two clusters, and domain knowledge. The 

magnitude of a feature value for a cluster is represented by the mean of the feature values 

for the individual subjects in the cluster. The statistical significance test we use in this 

context is the Wilcoxon rank-sum test [MW05]. For each cluster, we compare its 

distribution of every feature value to that of another cluster, and find the features that 

have statistically significantly different distributions between the two clusters.  

Among the 358 subjects in this study, the Autism Genetic Resource Exchange project 

provides clinical diagnoses assigned to 168 of them according to the DSM-IV diagnostic 

criteria. To demonstrate the agreement and discrepancy between the clinical diagnoses 

and cluster assignments, we use a contingency table2 [EM97], and analyze the table with 

the Chi-square test [Che54] and with Fisher’s exact test [Fis22].

                                                 
2 A contingency table is a table of counts or frequencies. It lists the number of times that 
an entity falls into a variety of different categories. 
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Chapter 5  

Results and Analysis 

In this chapter, we present the results obtained by applying cluster analysis, cluster 

validation, and consensus clustering to our pre-processed multi-dimensional dataset of 

358 patients with PDDs. We first present in Section 5.1 the six best clustering solutions 

obtained using the k-means, hierarchical, and EM clustering methods and the fitness and 

the stability validation methods. In Sections 5.2 and 5.3, we discuss the integration of 

these solutions into a single consistent clustering consensus. In Section 5.4, we 

characterize each cluster in the consensus, and associate it with a subtype of PDDs 

according to its characteristics. Since some of the subjects in this study have been 

previously assigned a clinical diagnosis, we compare the cluster assignments to the 

clinically diagnoses of these subjects. 

5.1 Results from Cluster Analysis and Cluster Validation 

The results obtained using k-means clustering are presented first, followed by those 

obtained using hierarchical and EM clustering. All these results are validated using 

fitness and stability validation. For each method, we first present the results obtained 

using fitness validation, followed by those obtained using stability validation.  

5.1.1 K-means Clustering Results Obtained Using Fitness Validation  

In this study, the k-means clustering process stops iterating once the cluster assignment of 

the data points stops changing. As shown in Table 4.3.4, 20 sets of random initial values 
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are used for each k, each of which leads to a clustering solution. Among the 20 solutions, 

the one that produces the lowest sum of squared distances between the data points and 

their respective cluster centroids, denoted by SqDistmin, is taken to be the solution with 

respect to the specified number of clusters, k.  

Figure 5.1 shows a plot of the SqDistmin as a function of the number of clusters, k. 

Clearly, the value of SqDistmin monotonically decreases as k increases. This is expected, 

because as the number of clusters increases, the algorithm can find more compact clusters 

for the data. In the extreme case, every point forms its own cluster and the sum of 

squared distances becomes zero. Therefore, the sum of squared distances is not a suitable 

criterion in-and-of-itself for determining the correct number of clusters, kopt, when we use 

k-means clustering. As discussed in Section 4.3.1, we employ the average silhouette 

width measure.  
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Figure 5.1: The value of SqDistmin for each k, obtained using k-means clustering, as a 
function of the number of clusters. 
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 Figure 5.2 shows a plot of the value of the average silhouette width for k-means 

clustering, as a function of the number of clusters, k. The average silhouette width for a 

given k is calculated based on the clustering solution that has the lowest sum of squared 

distances, SqDistmin, among the 20 clustering solutions produced for this k using different 

sets of initial values. The value of the average silhouette width is highest when k is 3; 

therefore, the value kopt for our dataset, based on k-means clustering with fitness 

validation, is 3. The corresponding clustering solution is saved as one of the components 

in the cluster ensemble described in Section 5.2.  
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Figure 5.2: The average silhouette width (for k-means clustering) as a function of the 
number of clusters. 

5.1.2 K-means Clustering Results Obtained Using Stability Validation 

We use 200 random splits of the data to identify the number of clusters k for which the 

Adjusted Rand index (ARI) values are statistically significantly larger than those 
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produced for any other value of k (3 ≤ k ≤ 7) according to the Wilcoxon signed-rank test, 

which is a non-parametric form of the paired t-test. The identified k is then taken as the 

most appropriate number of clusters, kopt. Each split is used to compare the stability of 

clustering solutions obtained under every two options of k (3 ≤ k ≤ 7). We decide on the 

number of random splits of the data in an ad hoc manner by gradually increasing it until 

at least the ARI values for a certain k (3 ≤ k ≤ 7) are statistically significant larger than 

the ARI values for each of the other options of k (3 ≤ k ≤ 7).  

As shown in Table 4.5, for each value of k, the N splits of the data lead to N values of 

the measure that evaluates the agreement between the two halves, namely BB2 and B2B ’, 

obtained from each split. In the current context, N = 200 and the measure that evaluates 

the agreement is the ARI. Figure 5.3 shows the plot of the mean and the median taken 

over the 200 values of the ARI as a function of k. When there are 3 clusters, the 

corresponding mean and median are the largest.  
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Figure 5.3: The mean and median of the 200 values of the ARI (obtained using k-means 
clustering) as a function of the number of clusters. 

 

Since 200 ARI values are produced for each k, there are 200 pairs of the ARI values 

for every two values of k being compared using the Wilcoxon signed-rank test, each pair 

coming from the same split of the dataset. The Wilcoxon test is used to compare the ARI 

values in pairs. Table 5.1 contains the p values calculated using the test. If the p value in 

the row where k = k1 (3 ≤ k1 ≤ 7) and in the column where k = k2 (3 ≤ k2 ≤ 7) is greater 

than 0.05, there is insufficient evidence to reject the hypothesis that there is no difference 

between the 200 ARI values for the clustering solution with k1 clusters and those for the 

solution with k2 clusters. The alternative hypothesis is that the 200 ARI values obtained 

for the clustering solution with k1 clusters are greater than those obtained for the solution 

with k2 clusters. The p values on the diagonal of Table 5.1 are obtained when the ARI 

values for a solution are compared to themselves using the Wilcoxon signed-rank test. 
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These p values do not contribute to choosing the solution with the most appropriate 

number of clusters for a dataset, and are therefore not provided. As observed in the table, 

all the off-diagonal values in the first row show p ≤ 0.05. This means that the ARI values 

obtained for k = 3 are statistically significantly higher than those obtained for 4 ≤ k ≤ 7. 

Therefore, the best clustering solution with 3 clusters is used as a component in the 

cluster ensemble in this study.  

Table 5.1: The p values obtained from the Wilcoxon signed-rank test on every 200 pairs 
of the ARI values obtained using k-means clustering. The k values are the numbers of 
clusters in the clustering solutions.  

k 3   4   5   6   7   
3   NA 0.0003 0.0047 0.0034 0.0093 
4   0.9997 NA 0.8184 0.7853 0.9185 
5   0.9953 0.1818 NA 0.3930 0.6145 
6   0.9966 0.2151 0.6075 NA 0.7870 
7   0.9907 0.0817 0.3860 0.2133 NA 

 

In the previous section, we showed that kopt was identified to be 3 as well using the 

fitness measure. Hence, when we use k-means clustering as the clustering method, the 

two criteria, fitness and stability, arrive at the same number of clusters, namely 3. This 

means that the two solutions obtained using k-means clustering for the cluster ensemble 

are identical, because there is only one candidate clustering solution for each k (3 ≤ k ≤ 

7), which yields the smallest SqDist (denoted by SqDistmin) when 20 sets of initial values 

are tested, as shown in Section 5.1. We consider them both as distinct solutions in the 

integration step, as two separate criteria identified this solution as optimal, and as such it 

should carry twice the weight in the integration step.  
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5.1.3 Hierarchical Clustering Results Obtained Using Fitness Validation 

Figure 5.4 shows a plot of the value of the average silhouette width as a function of the 

number of clusters k. When k is 3, the clustering yields the highest value of the average 

silhouette width. Therefore, kopt based on hierarchical clustering using fitness validation 

is 3. The corresponding clustering is saved as one of the components for the cluster 

ensemble.  
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Figure 5.4: The average silhouette width (obtained using hierarchical clustering) as a 
function of the number of clusters. 

5.1.4 Hierarchical Clustering Results Obtained Using Stability Validation 

Similar to the stability validation of k-means clustering, we use 500 random splits of the 

data to identify the most appropriate number of clusters kopt. Since the number of splits is 

decided in an ad hoc manner as mentioned in Section 5.1.2, it can have a varying value in 

different contexts. This explains why 200 and 500 splits are used for k-means and 
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hierarchical clustering, respectively. Figure 5.5 shows a plot of the mean and median 

taken over the 500 ARI values as a function of the number of clusters. The median for k = 

6 and the mean for k = 7 are the highest among those obtained for all values of k (3 ≤ k ≤ 

7).  

Similar to Table 5.1, Table 5.2 shows the p values obtained from the comparison of 

the ARI values, produced by every two clustering solutions with different number of 

clusters k (3 ≤ k ≤ 7), using the Wilcoxon signed-rank test. When k = 6 (4th row), the p 

values off the diagonal are all smaller than 0.05. This means that the ARI values obtained 

for k = 6 are statistically significantly larger than those obtained for k=3, 4, 5, or 7. 

Therefore, the best clustering solution with 6 clusters is used as a component of the 

cluster ensemble.  
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Figure 5.5: The mean and median taken over 500 ARI values (obtained using 
hierarchical clustering) as a function of the number of clusters. 
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Table 5.2: The p values from the Wilcoxon signed-rank test on 500 pairs of ARI values 
obtained using hierarchical clustering. The k values are the numbers of clusters in the 
clustering solutions.  

k 3   4   5   6   7   
3   NA 0.9380 0.9999 0.9999 0.9999 
4   0.0621 NA 0.9999 0.9999 0.9999 
5   0.0000 0.0000 NA 0.9627 0.9894 
6   0.0000 0.0000 0.0373 NA 0.0000 
7   0.0000 0.0000 0.0106 0.9999 NA 

 

5.1.5 EM Clustering Results Obtained Using Fitness Validation 

Figure 5.6 shows a plot of the 1/BIC value as a function of the number of clusters k. 

When k is 3, the clustering solution attains the highest 1/BIC value; therefore, kopt  based 

on EM clustering and fitness validation is 3. The corresponding solution is then used as a 

component in the cluster ensemble. 
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Figure 5.6: The value of the 1/BIC (obtained using EM clustering) as a function of the 
number of clusters. 
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5.1.6 EM Clustering Results Obtained Using Stability Validation 

Similar to what we have demonstrated with the k-mean and hierarchical methods, 200 

random data splits are employed to find kopt using the stability validation of EM clustering. 

Figure 5.7 shows a plot of the mean and median taken over the 200 ARI values as a 

function of the number of clusters. The mean and median are the highest for the 3-

clusters solution. Similar to Tables 5.1 and 5.2, Table 5.3 shows the p values when the 

ARI values, produced by every two clustering solutions with different number of clusters 

k (3 ≤ k ≤ 7), are compared in pairs using the Wilcoxon signed-rank test. We observe that 

when k = 3 (1st row), the off-diagonal p values are all smaller than 0.05. This means that 

the ARI values obtained when k is 3 are statistically significantly larger than those 

obtained for k from 4 to 7. Therefore, kopt  is taken to be 3 when EM clustering and 

stability validation are used. The clustering result with three clusters is then included as 

one of the six components for the cluster ensemble. Similar to what has been explained 

for k-means clustering, the two solutions obtained using EM clustering for the cluster 

ensemble are identical, with the number of clusters being 3 in both cases.  
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Figure 5.7: The mean and median taken over the 200 ARI values (obtained using EM 
clustering) as a function of the number of clusters. 

Table 5.3: The p values from the Wilcoxon signed-rank test on 200 pairs of the ARI 
values obtained using EM clustering. The k values are the numbers of clusters in the 
clustering solutions.  

k 3   4   5   6   7   
3    NA 0.0000 0.0000 0.0000 0.0000 
4   0.9999  NA 0.0067 0.0010 0.0000 
5   0.9999 0.9933  NA 0.3206 0.0185 
6   0.9999 0.9990 0.6794  NA 0.0247 
7   0.9999 0.9999 0.9815 0.9753  NA 

5.2 Consensus Clustering Solution 

The six best clustering solutions described above form a cluster ensemble. We follow the 

process described in Section 4.5 to construct an ensemble dataset. There are 358 subjects 

in this dataset, each of which is represented as a 6-dimensional categorical vector, where 

the ith  position in the vector is the cluster label assigned to the subject by the ith clustering 
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solution (where 1≤ i ≤6). We obtain two consensus solutions using hierarchical clustering 

(with the average linkage method) and the fitness and stability validation methods as 

discussed in Section 4.5. The fitness and stability validation methods, similar to the 

validation performed on the ADI-R dataset, are used to determine the optimal number of 

clusters, kopt, for the ensemble dataset. Ideally, the values of kopt obtained using the two 

validation methods are the same, so that we can simply use the clustering solution with 

the number of clusters set to kopt. In our study, however, the two validation methods lead 

to two different values of kopt . Therefore, we choose a solution that can balance the 

fitness and the stability, and performs well when both the fitness and the stability 

measures are taken into consideration. In the following sections, we first present the 

solution obtained using hierarchical clustering and fitness validation for the ensemble 

dataset, followed by the solution obtained using the same clustering method and stability 

validation. 

5.2.1 Hierarchical Clustering and Fitness Validation for the Ensemble Dataset  

Figure 5.8 shows a plot of the value of the average silhouette width as a function of the 

number of clusters. When k is 7, the clustering yields the highest average silhouette width. 

Therefore, kopt is taken to be 7 when hierarchical clustering and fitness validation are 

applied to the ensemble dataset. 
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Figure 5.8: The average silhouette width obtained for the ensemble dataset using 
hierarchical clustering, as a function of the number of clusters 

5.2.2 Hierarchical Clustering and Stability Validation for the Ensemble Dataset  

We use 200 random data splits to find kopt using stability validation for the ensemble 

dataset. Figure 5.9 shows a plot of the mean and median taken over the 200 ARI values 

as a function of the number of clusters. The mean is highest when there are three clusters, 

while the median is highest when there are four. Similar to what has been described for 

Tables 5.1, 5.2 and 5.3, in Table 5.4, each row corresponds to a clustering solution with 

k1 clusters (3 ≤ k1 ≤ 7).  In each cell of the row in Table 5.4, the ARI values of the solution 

with k1 clusters are compared to the ARI values of the solutions with k2 (3 ≤ k2 ≤ 7) 

clusters as specified in the column using the Wilcoxon signed rank test, which yields a p 

value. The more cells with p ≤ 0.05 in a row, the higher the ARI values of the solution 

this row corresponds to compared to the solutions other rows correspond to. We observe 
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that when k = 3 (1st row), the off-diagonal p values are all smaller than 0.05, which 

suggests that the ARI values of the solution with three clusters are larger than those of the 

solutions with 4 to 7 clusters. Consequently, kopt based on hierarchical clustering and 

stability validation is 3.  
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Figure 5.9: The mean and median taken over the 200 ARI  values (obtained for the 
ensemble dataset using hierarchical clustering) as a function of the number of clusters. 

Table 5.4: The p values from the Wilcoxon signed-rank test on 200 pairs of the ARI 
values obtained for the ensemble dataset using hierarchical clustering. 

 
k 3   4   5   6   7   
3    NA 0.0002 0.0000 0.0045 0.0000 
4   0.9998  NA 0.0000 0.9790 0.9741 
5   0.9999 0.9999  NA 0.9999 0.9999 
6   0.9955 0.0210 0.0000  NA 0.0021 
7   0.9999 0.0259 0.0000 0.9979  NA 
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As the two consensus partitions identified using the two validation methods are 

different from each other, one with 7 and the other with 3 clusters, it is practically 

reasonable to choose a solution that performs well when both the fitness and the stability 

measures are taken into consideration.  

5.3 Choosing a Clustering Solution 

To decide on a clustering solution that is considered to be the best when both validation 

methods are taken into account, we rank the different clustering solutions obtained 

according to their fitness and the stability1, and assign them score values equal to their 

ranks. Thus, for each value of k, the clustering solution with k clusters obtains two rank 

scores since there are two validation measures used to evaluate the solutions.  We then 

take the sum of the two rank scores, and take the solution that has the largest sum as the 

consensus solution.  

5.3.1 Scoring Solutions based on Ranks 

The rank scores of the solutions in the first row in Table 5.5 are based on the fitness of 

the solutions as measured by the average silhouette width (Figure 5.8). Each cell in the 

first row has a value equal to the fitness-rank of the solution, ranging from 1 to 5. For the 

five clustering solutions, each having a different number of clusters ranging from 3 to 7, 

the higher the average silhouette width for a solution, the higher this solution is ranked 

with respect to its fitness, therefore the higher its rank score in the first row of Table 5.5.   

                                                 
1 For the five clustering solutions with 3 ≤ k ≤ 7, the ranks are from 1 to 5. A solution that is considered to 
be the best receives a rank of 5; a solution that is considered to be the poorest receives a rank of 1. 
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The rank scores in the second row in Table 5.5 are obtained from Table 5.4 based on 

the number of the cells in each row of Table 5.4 that have p≤ 0.05. These scores are again 

integers ranging from 1 to 5. As shown in Table 5.4 and discussed in Section 5.2.2, each 

row corresponds to a clustering solution with k1 clusters (3 ≤ k1 ≤ 7).  The larger the 

number of cells that have p ≤ 0.05 in a row, the higher the solution corresponding to this 

row is ranked among the five solutions with three to seven clusters, and the higher the 

rank score given to the solution.  

Table 5.5: The rank scores obtained for the clustering solutions with different number of 
clusters. The k values are the numbers of clusters in the clustering solutions.  

 k=3   k=4   k=5   k=6   k=7   
Rank score (fitness)  3 2 1 4 5 

Rank score (stability) 5 2 1 4 3 
Sum of rank scores 8 4 2 8 8 

 

We sum up the rank scores in the first and the second row to obtain the scores in the 

3rd row in Table 5.5. As three different solutions, namely those with three, six, or seven 

clusters, all have the same (highest) sum of rank scores (8), we perform further selection 

to obtain a single solution.  

We choose the solution with 6 clusters, based on the following three reasons: First, it 

balances the fitness and the stability, as reflected by the second highest scores along both 

these criteria, as shown in the first and second rows of Table 5.5. In contrast, the 3-cluster 

or the 7-cluster solution scores the highest according one of the criteria. Second, when we 

compare the 6-cluster solution and the 3-cluster solution, the 6-cluster solution scores 

much higher in terms of fitness than the 3-cluster solution, while it scores only slightly 

lower in terms of stability than the 3-cluster solution. To be specific, while the 3-cluster 
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solution is ranked one place lower than the 6-cluster solution along the stability 

dimension, as shown in Table 5.4 and in the 2nd row of Table 5.5 and, the mean and the 

median of the 200 ARI values of the 6-cluster solution are not much lower than those of 

the 3-cluster solution, as shown in Figure 5.9. In contrast, while the 6-cluster solution is 

ranked only one place higher than the 3-cluster solution according to the fitness score, as 

shown in the 1st row of Table 5.5, the value of the average silhouette width of the 6-

cluster solution is much higher than that of the 3-cluster solution as shown in Figure 5.8. 

Therefore, we deem the six-cluster solution to be better than the 3-cluster solution when 

both their fitness and stability are considered. Third, Figures 5.8 and 5.9 both show that 

the solutions with six and seven clusters indeed have similar average silhouette width 

values, and obtain similar mean and median values for the ARI. Since the two solutions 

have the same sum of scores and similar overall performance with respect to both the 

fitness and the stability, for parsimony reasons we prefer the solution with fewer clusters. 

The six-cluster solution is analyzed in detail in the next section. 

5.3.2 Analysis of the Six-cluster Solution  

Table 5.6 shows the distribution of the 358 subjects across the 6 clusters. Aside from 

four large clusters with at least 48 subjects in each, there are two very small clusters, one 

containing 2 and the other 6 subjects. Given the small cluster size, these subjects are as 

likely to be outliers as to represent distinct subgroups. Indeed, cluster analysis is 

commonly known as a method for outlier detection [LTS04]. Therefore, our study 

focuses on the four larger clusters, which contain the majority, (350 out of 358), of the 

subjects. We refer to a vector that acts as a representative of all the data points assigned 
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to a cluster as a prototype. The distinction among these four major clusters is then 

confirmed by the distribution of the major prototypes in Table 5.7, and is discussed in the 

following paragraph.  

Table 5.6: The number of the subjects (and respective percentage) in each cluster within 
the six-cluster consensus solution. 

Cluster Number of subjects (percentage) 

1 139 (38.83%) 

2 48 (13.41%) 

3 6 (1.68%) 

4 2 (0.56%) 

5 108 (30.17%) 

6 55 (15.36%) 
 

Each prototype in Table 5.7 is a unique 6-dimensional nominal vector. The table 

shows the distribution of prototypes across the data where the leftmost column shows the 

frequency of each prototype. There are 22 unique prototypes in the table. The majority, 

287 out of 358, of the subjects are represented by the first four distinct prototype vectors 

(shown in the first 4 rows of Table 5.7), each of which has at least two feature values that 

are different from the feature values of the other three prototypes. The remaining 18 

prototypes either have low frequencies (fewer than 10), or are only different from one of 

the four major prototypes by a single feature value. Therefore, the cluster structure of the 

ensemble dataset, judged by the prototype vectors, is 4-modal. Each mode corresponds to 

one of the four major prototypes, and is the centre of a cluster. The subjects characterized 
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by each of the remaining prototypes, denoted by P, join the subjects characterized by the 

prototype that is the most similar to P among the four major prototypes. 

Table 5.7: The frequencies of the prototypes in the ensemble dataset (the 4 modes are 
shown in boldface) 

Prototype No. Prototype Vector Subject Frequency 
1 1 1 1 3 3 3 123
2 2 2 1 2 2 2 90
3 3 3 1 2 2 2 51
4 3 3 1 2 1 1 23
5 3 3 1 3 1 1 12 
6 3 3 1 1 1 1 9 
7 1 1 1 3 2 2 9 
8 2 2 3 6 2 2 8 
9 2 2 1 3 2 2 6 
10 1 1 1 3 1 1 5 
11 2 2 2 5 2 2 4 
12 2 2 1 2 1 1 4 
13 3 3 2 4 1 1 3 
14 3 3 1 3 2 2 3 
15 3 3 2 5 1 1 1 
16 3 3 1 3 3 3 1 
17 3 3 1 1 2 2 1 
18 2 2 1 3 3 3 1 
19 2 2 1 3 1 1 1 
20 2 2 1 2 3 3 1 
21 2 2 1 1 1 1 1 
22 1 1 1 2 1 1 1 

 

We observe that the four modes identified from analyzing the distribution of the 

prototypes in the dataset correspond to the four large clusters in the six-cluster solution 

found using hierarchical clustering. Specifically, mode 1 corresponds to cluster 1, and 

modes 2, 3, and 4 correspond to clusters 5, 6, and 2, respectively.  

Next, to better understand the results, we summarize the characteristics of the patients 

in the four large clusters, namely clusters 1, 2, 5 and 6 in the six-cluster solution. 
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5.4 The Characteristics of the Four Large Clusters 

Figure 5.10 shows the feature values associated with each of the four large clusters in the 

six-cluster solution. The rows correspond to the 22 features of PDDs; the columns 

correspond to the four clusters. The names of the 22 features are listed beside the rows, 

and the cluster labels are listed above the columns in the figure. The number of subjects 

in each cluster is shown underneath each column. As shown by the horizontal bar at the 

bottom of the figure, the values of the features range from 0 to 1 with darker shades 

corresponding to higher feature values. The Wilcoxon rank-sum test, a non-parametric 

form of the t-test, in the R package for statistical computing [RDCT05], is used to 

evaluate the statistical significance of the difference between the distributions of feature 

values for every two clusters. In this section, “significant” and “statistically significant” 

are thus used interchangeably.  

Each feature is referred to as f followed by its ordinal number in the 22-feature list 

in Figure 5.10. For example, “early onset of symptoms” is the first feature on the list, and 

is thus referred to as f1. Each of the three core areas of PDDs, namely communicational, 

social, and behavioural, as well as the area of early development, is represented by 

several features. The communicational area includes features f4 - f7; the social area 

includes features f8- f13; the behavioural area includes features f14 - f18; the area of early 

development is represented by features f1 - f3. Features f19 - f22 are mostly add-on 

features about general behaviours that are related to PDDs, as discussed in Section 3.3. 

Each cluster is denoted by Ci where i is the ordinal number of the cluster in Table 5.6 and 

in Figure 5.10. The four clusters we discuss are thus denoted by C1, C2, C5 and C6. We 
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first give an overview of the characteristics of the four clusters; and then analyze each in 

detail.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster    1          2           5           6     

1. Early onset of symptoms 
2. Impaired early development 
3. Late acquisition of language 
4. Abnormal conversational interchange 
5. Stereotyped speech 
6. Impaired receptive communication 
7. Impaired gesture communication 
8. Impaired behaviour to regulate interaction 
9. Poor peer relationship 
10. Impaired shared enjoyment 
11. Impaired social reciprocity 
12. Impaired social development 
13. Lack of initiation of activities  
14. Encompassing preoccupation 
15. Stereotyped motor mannerism 
16. Ritualistic behaviour 
17. Sensory issues 
18. Adherence to routine 
19. Symptoms of Rett’s disorder 
20. Aggression  
21. Epilepsy  
22. Demonstration of savant skills   

1

    Count     139       48       108       55

0 
          

Figure 5.10: Feature values for the four large clusters in the six-cluster solution 
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5.4.1 Overview of Cluster Characteristics  

Each of the clusters shown in Figure 5.10 is characterized by a distinct distribution of 

feature values. Certain patterns are clearly visible in the figure. First, Cluster C5 is 

distinctly different from the other three by having low feature values on the whole. 

Second, Cluster C1 has extremely low values for Features f4 and f5 that represent verbal 

abnormality. Third, some of the features have high values across all the clusters, such as 

“early onset of symptoms”, while others have low values across all the clusters, such as 

“symptoms of Rett’s disorder”. Fourth, the general trend of the severity of impairment 

among the four clusters, from highest to lowest, is: C1, C2, C6 and C5.  

According to the results obtained using the Wilcoxon rank-sum test implemented in 

Matlab [MW05], with the exception of feature f11 ("impaired social reciprocity"), no 

single feature is statistically significantly different for every pair of compared clusters. 

Feature f11 is the only feature whose values show significantly different distribution 

between every two clusters. As shown in Figure 5.10, subjects in C1 show the most 

severely impaired social reciprocity, followed by those in clusters C2, C6 and C5, 

ordered by the severity of the impairment from high to low. This order is consistent with 

the overall order of the severity of impairments across the four clusters mentioned in the 

previous paragraph. Social reciprocity, such as offering comfort and showing appropriate 

social responses, is one of the cornerstones of healthy development in children [Gro02, 

CT00]. Aside for identifying the general patterns for the four clusters, we also 

characterize each of them in the following section. 
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5.4.2 Analysis of the Individual Clusters 

Clusters C1 and C2 group together the most severely impaired patients, corresponding to 

the typical Autism subtype in the DSM-IV. Patients in both clusters show highly 

impaired social function (f8-13), “stereotyped motor mannerism” (f15) and are 

hypersensitive to stimuli (f17). However, the two clusters are still distinct.  

Subjects in Cluster C1 demonstrate late language acquisition and language 

impairment so severe that they are considered non-verbal. They have no functional use of 

three-word phrases, and at times are completely mute. Their scores on features f4 and f5 

are close to zero, as almost all of them cannot be evaluated for their impairment in 

spoken language due to the lack of speech. Almost two thirds of them have problems 

understanding other people’s language (f6), and their social reciprocity is significantly 

lower than that of the subjects in C2.  

In contrast, the subjects in Cluster C2 exhibit overly persistent (f16) and aggressive 

behaviours (f20), which are significantly different from those present among subjects in 

C1. While they do demonstrate some language skills, their verbal development is still 

delayed (f3), and severely impaired as demonstrated by stereotyped speech and poor 

conversational ability (f4, f5).  

Cluster C5 contains the least impaired subjects, corresponding to the typical subtype 

of the Asperger’s disorder in the DSM-IV. Although these subjects also show early onset 

of symptoms (f1) and impaired early development (f2), the feature values for these 

subjects are lower compared to those for the subjects in all other three clusters. This 

difference is tested to be significant except when C5 is compared to C6 on early 

development (f2). Notably, subjects in C5 show a close-to-normal age of language 

 87



acquisition (f3). However, they cannot be called normal because their social and 

communicational abilities (f4, f7-13) are still impaired, and they are hypersensitive to 

stimuli (f17).  

Cluster C6 is characterized by an intermediate level of severity. It is similar in 

characteristics to C2, but shows lower scores for almost all features except for delayed 

language acquisition (f3). For 10 of the features, the lower scores compared to C2 are 

highly statistically significant (p ≤ 0.05). We note that the characteristics of the subjects 

in this cluster are generally those of PDD-NOS, which stands for PDD-Not Otherwise 

Specified. 

5.4.3 Comparison between Clinical Diagnosis and Cluster Assignment 

For 168 of the 358 subjects studied here, the Autism Genetic Resource Exchange [AGRE] 

provides clinical diagnoses made by physicians based on the DSM-IV criteria. Some of 

the 168 subjects are assigned multiple diagnoses. In such cases, we use as the clinical 

diagnosis for each subject the one that is a subtype of PDDs and is listed first among the 

diagnoses for the subject. For example, when a subject is diagnosed to have “Behaviour 

disorder, Depression, Bi-polar, Asperger’s disorder, Autism”, we consider Asperger’s 

disorder to be her clinical diagnosis because it is a subtype of PDDs, and is listed before 

the other subtype diagnoses of PDDs (Autism in this case).  

Each of the two smaller clusters among the six-cluster consensus solution we 

identified, namely Clusters C3 and C4, has only one subject that previously received a 

clinical diagnosis. Therefore, there are 166 subjects with clinical diagnoses among the 
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350 subjects in the four large clusters analyzed here. These 166 subjects are the focus of 

the comparison between clinical diagnoses and cluster assignments in this section.  

Table 5.8 shows the correspondence between the clinical diagnoses (rows) and the 

cluster memberships (columns) for the four large clusters. Clusters C1, C2 and C6 are 

dominated by Autism diagnoses, while Cluster C5 is dominated by Asperger’s disorder 

diagnoses. The Chi-square test (or Fisher’s exact test2) shows that the distributions of the 

clinical diagnoses are statistically significantly different (p ≤ 0.05) between Clusters C1, 

C5 and either C2 or C6, which means that we can reject the hypothesis that the cluster 

assignments are independent of the clinical diagnoses for these comparisons, and accept 

the hypothesis that the assignments and the diagnoses are related by more than chance. 

Such a significant difference is expected because the feature patterns of C1, C5 and either 

C2 or C6 are notably distinct as shown in Figure 5.10. However, there is no statistically 

significant difference between the distributions of the clinical diagnoses for clusters C2 

and C6.  

Table 5.8: Correspondence between the clinical diagnoses (rows) and the cluster 
memberships (columns) 

 
 C1 C2 C5 C6 Total

Autism 75 16 18 14 123 
Asperger’s 0 4 21 2 27 
PDD-NOS 2 3 9 2 16 

Total 77 23 48 18 166 
  

 

                                                 
2 Fisher’s exact test is used in place of the Chi-square test when there is at least one cell in a contingency 
table that has count zero, or more than 80% of the cells have counts fewer than 5 because the Chi-squared 
probabilities do not apply to these situations.  
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To summarize, using an ensemble of validated clustering solutions, we identified four 

clusters that roughly correspond to – and further refine – three main subtypes of PDDs, 

namely Autism, PDD-NOS and Asperger’s disorder. In the next chapter, we conclude the 

thesis with a brief summary of our work, and then extend the discussion to future studies 

we plan to perform. 
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Chapter 6 

Conclusion and Future Work 

Cluster analysis for identifying subtypes of PDDs can lead to targeted aetiology studies 

and to effective type-specific intervention. The study presented throughout this work 

proposes a framework for subtyping PDDs based on the integration of multiple validated 

clustering results from three clustering methods. We identified six clusters, four of which 

are analyzed in detail based on the distribution of feature scores and certain domain 

knowledge of autism..  

The dataset used here is the largest ADI-R dataset analyzed so far. Our clusters are 

characterized by a distribution of scores along many features, and thus distinguish among 

subgroups based on finer criteria than those defined by the DSM-IV.  The clusters form a 

continuum of severity along the different impairments and thus agree with the opinion 

held by many researchers that the subtypes of PDDs should not be distinguished based on 

discrete, mutually exclusive, impairments but rather form a spectrum of disorders varying 

in severity from almost normal to highly impaired [BS01]. The difference we find 

between the cluster memberships and clinical diagnoses highlights the value of cluster 

analysis as a method for identifying subtypes in the data that may not be identified using 

a rule-based algorithm such as that defined for the ADI-R. 

In future studies we plan to include data from other sources so that we can validate 

our clustering results externally. Data sources such as genomic data obtained in 

molecular biology labs, family information collected from the siblings of the patients in 

this study, and IQ data collected via IQ tests can be used for the purpose of external 
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validation1 because genetic aetiology exists for many cases of PDDs, as concluded by 

major reviews of sibling, twin and family studies [MTR04]. The IQ data may also be 

used as a source of validation data because IQ is one of the most important factors (the 

other being language ability) in explaining the different symptoms of PDDs [GS97, 

VCBH89].  

Alternatively, we can add clustering solutions obtained from other data sources to the 

cluster ensemble we built in this study. To achieve this, the data obtained from other 

sources should also be clustered, so that the resulting clustering solutions can then be 

treated as additional components in the cluster ensemble used in this study to produce a 

consensus clustering.  

We may also assign different weights to different features according to their 

importance in the diagnosis of the subtypes of PDDs. This idea is reasonable because it is 

based on the finding that some of the features, such as those concerning language 

development and ability, and social reciprocity are more important than other features, 

such as aggression and epilepsy, in the diagnosis of the subtypes of PDDs [MSNA01, 

LRL94]. By giving the more important features higher weights, we may be able to detect 

clustering structure that is more suitable for the particular problem of finding the 

subtypes of PDDs.   

By including data from the sources mentioned above, we will be able to base our 

clustering results on more comprehensive information than used in our present study to 

reach a potentially more objective and fully validated (both internally and externally) 

solution. This is important because PDDs are disorders that affect many aspects other 

                                                 
1 Thanks to Dr. Ira Cohen for this suggestion.  
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than social interaction, communication, and behaviour. By weighing the features, we can 

exploit more of the in-depth knowledge previously gained about PDDs, by the numerous 

studies carried out by other groups. This process will require a close collaboration 

between researchers working in the areas of data analysis and autism.  

Another direction of future work is to employ soft clustering. Soft clustering typically 

assigns a data point to belong to multiple clusters with different probabilities. This 

approach is likely to be a better fit for the continuous view of PDDs than the 

deterministic clustering method presented in this thesis, because it not only circumvents 

the need to fix a cut-off threshold for feature values, but also avoids setting strict 

boundaries between the resulting clusters.  
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Appendix A 

DSM-IV Definition of the Autistic Spectrum Disorders 

 
The full diagnostic criteria defined by the Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (DSM-IV) for Pervasive Development Disorders are outlined 
below. They are available on many websites about PDDs. The following content is 
copied from http://www.autismsocietyofwa.org/DSMIV.html in September, 2007.  
 

DSM-IV Criteria, Pervasive Developmental Disorders 
 
299.00 Autistic disorder  
A. A total of six (or more) items from (1), (2), and (3), with at least two from (1), and one 

each from (2) and (3):  
(1) qualitative impairment in social interaction, as manifested by at least two of the 

following:  
(a) marked impairment in the use of multiple nonverbal behaviours, such as eye-to- 

eye gaze, facial expression, body postures, and gestures to regulate social 
interaction.  

(b) failure to develop peer relationships appropriate to developmental level.  
(c) a lack of spontaneous seeking to share enjoyment, interests, or achievements 

with other people (e.g., by a lack of showing, bringing, or pointing out objects of 
interest).  

(d) lack of social or emotional reciprocity. 
(2) qualitative impairments in communication, as manifested by at least one of the 

following:  
(a) delay in, or total lack of, the development of spoken language (not accompanied 

by an attempt to compensate through alternative modes of communication such 
as gesture or mime).  

(b) in individuals with adequate speech, marked impairment in the ability to initiate 
or sustain a conversation with others.  

(c) stereotyped and repetitive use of language or idiosyncratic language. 
(d) lack of varied, spontaneous make-believe play or social imitative play 

appropriate to developmental level. 
(3) restricted, repetitive, and stereotyped patterns of behaviour, interests, and activities 

as manifested by at least one of the following:  
(a) encompassing preoccupation with one or more stereotyped and restricted 

patterns of interest that is abnormal either in intensity or focus.  
(b) apparently inflexible adherence to specific, nonfunctional routines or rituals  
(c) stereotyped and repetitive motor mannerisms (e.g., hand or finger flapping or 

twisting or complex whole-body movements).  
(d) persistent preoccupation with parts of objects.  

 
B. Delays or abnormal functioning in at least one of the following areas, with onset prior 

to age 3 years:  
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(1) social interaction. 
(2) language as used in social communication.  
(3) symbolic or imaginative play.  

 
C. The disturbance is not better accounted for by Rett's disorder or childhood 

disintegrative disorder.  
 
299.80 Pervasive developmental disorder, not otherwise specified  
This category should be used when there is a severe and pervasive impairment in the 
development of reciprocal social interaction or verbal and nonverbal communication 
skills, or when stereotyped behaviour, interests, and activities are present, but the criteria 
are not met for a specific pervasive developmental disorder, schizophrenia, schizotypal 
personality disorder, or avoidant personality disorder. For example, this category includes 
"atypical autism" --presentations that do not meet the criteria for autistic disorder because 
of late age of onset, atypical symptomatology, or subthreshold symptomatology, or all of 
these.  
 
299.80 Asperger's disorder  
A. Qualitative impairment in social interaction, as manifested by at least two of the 
following:  

(1) marked impairment in the use of multiple nonverbal behaviours, such as eye-to-
eye gaze, facial expression, body postures, and gestures to regulate social 
interaction.  

(2) failure to develop peer relationships appropriate to developmental level.  
(3) a lack of spontaneous seeking to share enjoyment, interests, or achievements with 

other people (e.g., by a lack of showing, bringing, or pointing out objects of 
interest to other people).  

(4) lack of social or emotional reciprocity.  
B. Restricted, repetitive, and stereotyped patterns of behaviour, interests, and activities, 

as manifested by at least one of the following:  
(1) encompassing preoccupation with one or more stereotyped and restricted patterns 

of interest that is abnormal either in intensity or focus.  
(2) apparently inflexible adherence to specific, nonfunctional routines or rituals.  
(3) stereotyped and repetitive motor mannerisms (e.g., hand or finger flapping or 

twisting, or complex whole-body movements).  
(4) persistent preoccupation with parts of objects.  

C. The disturbance causes clinically significant impairment in social, occupational, or 
other important areas of functioning.  

D. There is no clinically significant general delay in language (e.g., single words used by 
age 2 years, communicative phrases used by age 3 years).  

E. There is no clinically significant delay in cognitive development or in the development 
of age-appropriate self-help skills, adaptive behaviour (other than in social interaction), 
and curiosity about the environment in childhood.  

F. Criteria are not met for another specific pervasive developmental disorder or 
schizophrenia.  
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299.80 Rett's disorder  
A. All of the following:  

(1) apparently normal prenatal and perinatal development.  
(2) apparently normal psychomotor development through the first 5 months after birth.  
(3) normal head circumference at birth.  

B. Onset of all of the following after the period of normal development:  
(1) deceleration of head growth between ages 5 and 48 months.  
(2) loss of previously acquired purposeful hand skills between ages 5 and 30 months 

with the subsequent development of stereotyped hand movements (i.e., hand-
wringing or hand washing).  

(3) loss of social engagement early in the course (although often social interaction 
develops later).  

(4) appearance of poorly coordinated gait or trunk movements.  
(5) severely impaired expressive and receptive language development with severe 

psychomotor retardation.  
 
299.10 Childhood disintegrative disorder  
A. Apparently normal development for at least the first 2 years after birth as manifested 

by the presence of age-appropriate verbal and nonverbal communication, social 
relationships, play, and adaptive behaviour.  

B. Clinically significant loss of previously acquired skills (before age 10 years) in at least 
two of the following areas:  
(1) expressive or receptive language.  
(2) social skills or adaptive behaviour.  
(3) bowel or bladder control.  
(4) play.  
(5) motor skills.  

C. Abnormalities of functioning in at least two of the following areas:  
(1) qualitative impairment in social interaction (e.g., impairment in nonverbal 

behaviours, failure to develop peer relationships, lack of social or emotional 
reciprocity).  

(2) qualitative impairments in communication (e.g., delay or lack of spoken language, 
inability to initiate or sustain a conversation, stereotyped and repetitive use of 
language, lack of varied make-believe play).  

(3) restricted, repetitive, and stereotyped patterns of behaviour, interests, and activities, 
including motor stereotypies and mannerisms.  

D. The disturbance is not better accounted for by another specific pervasive 
developmental disorder or by schizophrenia. 
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Appendix B 

Features extracted from the ADI-R questionnaire 

Below are the 22 features we use in this study. The 22 items in bold face are the features. 
The items listed under each feature are the questions in the ADI-R that pertain to the 
feature.  
 
1. Early onset of symptoms  
 
2. Age when parents first noticed that something is not quite right in language, 

relationships or behaviour 
4. Onset as perceived with hindsight 
86. Age when abnormality first evident  
87. Interviewer's judgment on age when developmental abnormalities probably first 
manifest (code in months) 
 
2. Impaired early development 

5. Walked unaided 
6. Acquisition of bladder control: daytime 
7. Acquisition of bladder control: night 
8. Acquisition of bowel control 
 
3. Late acquisition age of language 
 
9. Age of first single words 
10. Age of first phrases 
 
4. Abnormal conversational interchange 
 
34. Social vocalization/ "chat" 
35. Reciprocal conversation (at whatever verbal level of complexity possible) 
 
5. Stereotyped speech 
 
33. Stereotyped utterances and delayed echolalia 
36. Inappropriate questions or statements 
37. Pronominal reversal 
38. Neologisms/idiosyncratic language 
 
6. Impaired receptive communication 
 
29. Comprehension of simple language 
 
7. Impaired gesture expressive communication 
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42. Pointing to express interest 
43. Nodding 
44. Head shaking 
45. Conventional/ instrumental gestures 
 
8. Impaired behaviours to regulate social interaction 
 
50. Direct gaze 
51. Social smiling 
57. Appropriateness of social responses 
 
9. Poor peer relationships 
 
49. Imaginative play with peers 
62. Interest in children 
63. Response to approaches of other children 
 
10. Impaired shared enjoyment 
 
52. Range of facial expressions used to communicate 
53. Offering to share 
54. Seeking to share his/her enjoyment with others 
 
11. Impaired socioemotional reciprocity 
 
31. Use of other's body to communicate 
55. Offers comfort 
56. Quality of social overtures 
58. Inappropriate facial expressions 
59. Appropriateness of social responses 
 
12. Impaired social development 
 
46. Attention to voice 
47. Spontaneous imitation of actions 
48. Imaginative play 
61. Imitative social play 
 
13. Lack of initiation of activities  

60. Initiation of appropriate activities 
 
14. Encompassing preoccupation 
 
67. Unusual preoccupations 
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76. Unusual attachment to objects 
 
15. Stereotyped motor mannerisms 
 
77. Hand and finger mannerisms 
78. Other complex mannerisms or stereotyped body movements (do not include isolated 
rocking) 
 
16. Ritualistic behaviour 
 
39. Verbal rituals 
70. Compulsions/rituals 
 
17. Sensory issues 
 
69. Repetitive use of objects or interest in parts of objects 
71. Unusual sensory interests 
72. Undue general sensitivity to noise 
73. Abnormal idiosyncratic negative response to specific sensory stimuli 
 
18. Adherence to routine 
 
74. Difficulties with minor changes in subject's own routines or personal environment 
75. Resistance to trivial changes in the environment (not directly affecting the subject) 
 
19. Symptoms of Rett’s disorder 
 
79. Mid-line hand movements 
84. Hyperventilation 
 
20. Aggression 
 
81. Aggression to caregivers or family members 
82. Aggression to non-caregivers or non-family members 
83. Self injury 
 
21. Epilepsy             
 
85. Faints/fits/blackouts 
 
22. Demonstration of savant skills 
 
88. Visual-spatial ability (i.e. in puzzles, jigsaws, shapes, patterns, etc.) 
89. Memory skill (accurate memory for detail, as of dates or timetables) 
90. Musical ability (recognition, composition, absolute pitch or performance) 
91. Drawing skill (unusually skilled use of perspective or creative approach) 
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92. Reading ability (e.g. early sight reading) 
93. Computational ability (e.g. mental arithmetic) 
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Appendix C 

Pipeline Diagram 

 

Analyzing the clusters in the consensus

Consensus clustering 

Cluster analysis and validation 

Data pre-processing

 

k-means clustering  
K. Teknomo (Matlab) 

Hierarchical clustering 
Stats toolbox (Matlab) 

EM clustering  
Weka (Java) 

Fitness validation 
Average silhouette width:  

Stats toolbox (Matlab) 
 

1/BIC: J. Shen (Matlab) 
   

Stability validation  
Multiple random splits of the dataset: J. Shen (Matlab) 

 Random forest classifier: A. Liaw (R) 
Statistical significance test: R-package (R) 

Integrating multiple runs of replication analysis:  
J. Shen (Matlab and Java) 

Co-association calculation: J. Shen; Matlab 
Consensus clustering (hierarchical clustering):  Stats toolbox (Matlab) 

Plotting and statistically testing the feature values of the clusters in the consensus 
solution:  J. Shen (Matlab), Stats toolbox (Matlab), and R-package (R) 

Feature selection 
 H. Penning, I. Cohen, 

P. H. Lee, J. Shen 

Feature scoring  
P. H. Lee (Matlab) 
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