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Abstract 

Automated text categorization is the task of automatically assigning input text to a set of 

categories. With the increasing availability of large collections of scientific literature, text 

categorization plays a critical role in managing information and knowledge, and 

biomedical text categorization is becoming an important area of research. The work 

presented here is motivated by the possibility of using automated text categorization to 

identify and characterize information-bearing text within biomedical literature. Under a 

recently suggested classification scheme [ShWR06], we examine the feasibility of using 

machine learning methods to automatically classify biomedical sentence fragments into a 

set of categories, which were defined to characterize and accommodate certain types of 

information needs. The categories are grouped into five dimensions: Focus, Polarity, 

Certainty, Evidence, and Trend. We conduct experiments using a set of manually 

annotated sentences that were sampled from different sections of biomedical journal 

articles. A classification model based on Maximum Entropy, designed specifically for this 

purpose, as well as two other popular algorithms in the area of text categorization, Naïve 

Bayes and Support Vector Machine (SVM), are trained and evaluated on the manually 

annotated dataset. The preliminary results show that machine learning methods can 

classify biomedical text along certain dimensions with good accuracy. 
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Chapter 1 

Introduction 

Automated text categorization can be defined as the task of automatically assigning input 

text to a set of categories. The categories can be either pre-defined, a task usually called 

text classification, or automatically identified, a task called text clustering. With the 

increasing availability of large collections of scientific literature, automated text 

categorization plays a critical role in managing information and knowledge, and therefore 

becomes an important area of research. The work presented here focuses on the 

categorization of biomedical text. 

 

1.1 Background 

Text categorization dates back to the early 60’s. At an early stage, the most popular 

approach to categorize text was to manually build a classifier (e.g. an expert system) 

consisting of a set of pre-defined rules. Building classifiers by hand requires domain 

knowledge and is time consuming. Moreover, when the categories or the nature of the 

data changes over time, it is difficult to update existing classifiers. Therefore, it is 

desirable to build and update a classifier automatically from existing data examples.  

Since the early 90’s, the machine learning approach has gradually gained 

popularity. Machine learning is concerned with constructing computer programs that can 

adapt and learn from past experience to solve a given problem. The programs are usually 

based on a learning algorithm. Using machine learning terminology, the process that deals 
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with classification is called supervised learning, whereas the process that deals with 

clustering is called unsupervised learning.  

Most work on text categorization focuses on supervised learning. Within this 

framework, a set of data examples are first manually classified and labeled with 

predefined categories by human experts. A learning algorithm is then applied to learn the 

characteristics of each category, and finally a classification model (classifier) is 

automatically built to decide the categories of future unknown data. Usually the sample 

dataset is divided into two parts, a training set, which is used to build classifiers by 

learning the characteristics of the categories, and a test set, which is used to test the 

performance of the classifiers. Nowadays, classifiers automatically built using machine 

learning techniques achieve high level of effectiveness and are dominant in the area of 

text categorization [Yang97, Seba99]. 

Text categorization has been applied to many tasks such as document indexing 

[YaCh92], document filtering [TRFT02], and database annotation [TRGN05]. This study 

addresses the possibility of using text categorization to identify information-bearing text 

within biomedical literature. Specifically, we examine the feasibility of using machine 

learning methods to automatically classify sentence fragments into a set of categories that 

are defined to characterize certain types of information needs.  

 

1.2 Motivation 

Our work is motivated by the need to locate important scientific facts within large amount 

of biomedical text. With the tremendous growth in the number of biomedical publications, 

it is becoming increasingly challenging to access valuable and reliable knowledge from 
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an overwhelming range of text resources. Several recent evaluation efforts focusing on 

biomedical text mining [KDDC02, BioC04, TRGN05] suggest that there is much room 

and need for improvement. To identify and characterize text that satisfies certain types of 

information needs within biomedical literature, Wilbur et al. [WiRS06, ShWR06] 

propose a scheme to manually annotate text along five dimensions. These dimensions are 

defined as: the Focus of a fragment (Scientific finding, General knowledge, or 

Methodology), the Polarity (Positive vs. Negative) of a statement, the Certainty degree of 

an assertion (Complete uncertainty, Low certainty, High likelihood, and Complete 

certainty), the availability of supporting Evidence (No evidence, Implication of evidence, 

Explicit citation, and Explicit evidence), and the future Trend (Increase or Decrease) of a 

certain phenomenon. Since the value along each dimension can change mid-sentence, the 

basic annotation unit is defined as a sentence fragment. The user can customize his/her 

own scoring scheme to highlight categories of interest. Based on the annotation, the 

importance of a fragment can be evaluated and informative fragments that best satisfy the 

user’s needs can be identified.  

Our general goal is to automatically identify information-bearing sentence 

fragments within scientific text, that is, automatically annotate sentence fragments. The 

task of automatic fragment annotation can be divided into three subtasks. First, a sizable 

training corpus is manually annotated. Second, automated text classifiers are trained on 

the annotated data to classify fragments along the five dimensions defined above. Third, 

raw text files are automatically fragmented and annotated with the trained classifiers. This 

study addresses the second subtask.  

  The goal of this thesis is to examine the feasibility and reliability of automatic 

fragment annotation, that is, using machine learning methods to automatically categorize 
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sentence fragments along multiple dimensions. We refer to this work as multi-

dimensional fragment classification. Multi-dimensional fragment classification 

characterizes each fragment from various perspectives and enables the substantiation of 

knowledge at the sentential level, which is likely to serve a variety of applications and 

lead to more accurate extraction or retrieval of information from text. The classification 

scheme [WiRS06, ShWR06] is originally designed for biomedical literature, but it can be 

extended to other domains. 

 

1.3 Related Work 

Many existing methods, although different from our intent, can be used to look for 

specific information within a document, for example, named entity and relation extraction 

[Leek97, CoNT00, RaCr01], rhetorical analysis [TeMo99, MaEc02, McSr03, MiCo04b], 

and text summarization [Luhn58, Edmu68, KuPC95]. However, these approaches have 

some limitations. 

The tasks of named entity and relation extraction aim to find structured data from 

unstructured text, for example, the identification of text related to genes, proteins, cells, as 

well as their interactions from biomedical literature. As the methods used in such tasks 

are tailored to specific needs, they typically involve specific terminology and accordingly 

their applicability is limited.  

Rhetorical analysis of text units, which differentiates among rhetorical relations 

such as antithesis, cause, elaboration, and recognizes rhetorical zones such as 

background, related work, method, and result, enables the characterization of the 

sentence topic and allows the selection of particular sentence types. However, the 
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definition of rhetorical categories needs to be comprehensive enough to distinguish 

sentences of interest from others. With the expansion of the categories, the complexity of 

the rhetorical analysis increases, and the feasibility of automating it decreases. 

Automatic text summarization is concerned with selecting important text from 

documents. It typically measures the importance of a sentence based on a set of features 

including the frequencies of thematic words, sentence length and location, and the 

presence or absence of cue phrases (e.g. in conclusion, this article) or title/header words. 

This approach has several drawbacks for identifying important sentences. First, the 

criteria for importance are not specific enough to characterize individual sentences. 

Consequently, some important sentences may not be identified. Second, the definition of 

importance cannot discriminate among different types of informative sentences. Third, 

the way of determining importance is fixed, and cannot be customized according to a 

user’s specific requirements. 

Compared with existing work, the method we are investigating aims to 

characterize various types of information needs without losing generality, feasibility, and 

flexibility. The notion of multi-dimensional classification allows a comprehensive 

description of an entity from multiple perspectives, while maintaining sufficient 

generality of the category definition along each dimension. Accordingly, a broad range of 

factual information can be characterized at a relatively low level of complexity.  

 

1.4 Contribution 

In this thesis, we make several contributions. We first provide a broad survey of text 

categorization, followed by a comprehensive review of previous research on sentence 
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classification. Under a recently suggested annotation scheme [ShWR06], we investigate a 

novel approach to classify the same text entity from several relatively independent 

dimensions. To the best of our knowledge, this idea has not been tried before. We study 

several techniques to preprocess the unstructured, free form text along different 

dimensions to optimize classification performance. To address several special challenges 

in the fragment classification task, we design a classification model that can take into 

account correlation within categories, correlation between dimensions, and dependence 

among fragments. We also propose a performance measure that can be applied to general 

multi-label classification tasks. Our experiments on a new and quite extensive dataset 

suggest that machine learning methods can automatically perform fragment annotation 

along certain dimensions with good accuracy.  

 

1.5 Thesis Organization 

This thesis is organized as follows: An overall review of text categorization and related 

work on sentence classification is presented in Chapter 2. An introduction to multi-

dimensional fragment classification and its potential applications follow in Chapter 3. 

Chapters 4-5 discuss in detail the choice of preprocessing procedures and classification 

algorithms for each dimension. Experimental results and analysis are provided in Chapter 

6, followed by future extensions and conclusions in chapters 7-8. 
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Chapter 2 

Text Categorization: Background 

In this chapter, we first define text categorization and briefly introduce the type of tasks it 

covers. We then discuss in detail the procedures involved in automatic text categorization, 

including text representation, classifier construction, and performance evaluation. Finally, 

we survey the related work on sentence categorization. 

 

2.1 Introduction to Text Categorization 

Text categorization can be defined as the task of automatically assigning input text to a 

set of categories. The categories can be either pre-defined, a task usually called text 

classification, or automatically identified, a task called text clustering. More formally, let 

 be a set of categories, and},...,{ ||1 CccC = },...,{ ||1 DddD =  be a set of data examples. Text 

categorization can be defined as the task of finding a function, , which assigns a 

Boolean value to each pair 

f

CDcd ij ×∈),( , with the value True indicating that data 

example  should be classified under category , and the value False indicating that  

does not belong to category . The function  is called the classifier. 

jd ic jd

ic f

Text categorization can be further divided into several subtypes based on the 

constraints enforced on the tasks, such as the number of categories assigned to a data 

example, the structure of the categories, or the basic unit of classification. 
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2.1.1 Single-label vs. Multi-label Text Categorization 

The case in which exactly one category is assigned to the input text is called single-label 

text categorization, whereas the case in which multiple categories can be assigned to the 

same input text is called multi-label text categorization [Seba99].  A simple form of 

single-label categorization is binary categorization, where each input text is either 

assigned to one category or to its complement. The most general application of binary 

categorization is text filtering, differentiating relevant documents from irrelevant ones 

according to a given topic [KOSL02, LeCL04]. An example application of multi-label 

text categorization is assigning a set of Gene Ontology (GO) terms [GO00] to an input 

document [EGJR05, RiNS05]. If the categories are mutually independent, multi-label 

categorization can be transformed into binary categorization by conducting multiple one-

vs-rest binary categorizations independently. However, when there are potential 

correlations among different categories, multi-label categorization algorithms must be 

specifically designed to better capture such statistical constraints in the data [ZJXG05]. 

 

2.1.2 Soft vs. Hard Text Categorization 

Hard categorization means clearly assigning one (or several) categories to an input 

example, while soft categorization means ranking the input examples or the output 

categories by the order of relevance, instead of making explicit assignment decision 

[Seba99]. There are two types of ranking categorization: category-ranking and data-

ranking. Category-ranking ranks all categories according to the estimated probability that 

an input example belongs to them, whereas data-ranking ranks all data examples based on 

their relevance to a certain category. Compared to hard categorization, soft categorization 
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can intuitively deliver more information about the level of certainty in the category 

assignment. Moreover, the curator can screen through the ranked list to decide whether 

the returned categories for a given data item, or the returned data examples for a specific 

category, are of interest or not.  

Category-ranking is widely used in automatic document indexing, in which a set 

of key words from a controlled vocabulary is assigned to an input document as index 

terms. Since the size of the vocabulary is typically large, for example, of order  

[YaCh92, WiYa96], only a few top ranking categories should be selected for further 

processing. Data-ranking categorization is especially helpful in the applications of 

document filtering, since it allows more flexible retrieval of relevant documents by 

returning the user-specified number of top ranking documents. 

410

 

2.1.3 Flat vs. Hierarchical Text Categorization 

Depending on the nature of the categories, text categorization can be either flat or 

hierarchical. Flat categorization treats all categories independently without considering 

any structural relation between them, while hierarchical categorization takes into account 

the semantics of a class tree or directed-acyclic graph (DAG) [SuLN03]. In some cases, 

the set of categories, for example, Gene Ontology (GO), is a hierarchy by its nature. 

Therefore a hierarchical framework that explores the semantics of the class hierarchy may 

be able to yield better performance than flat approaches.  

The classification performance of the flat and hierarchical approaches was 

compared in the task of applying text categorization to associate genes with GO codes 

[RCSA02, KiMF04, KiMF05]. Two hierarchical classification methods have been 
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investigated in an experiment by Kiritchenko et al. [KiMF04, KiMF05], global and local. 

The main idea of the global approach is to transform the hierarchical classification task 

into a multi-label classification task by expanding the initial label set with the 

corresponding ancestor label set for each data example. Only one classifier is built to 

discriminate all categories. A post-processing step is applied to re-label the examples 

whose label assignment is inconsistent with the category hierarchy. In the local approach, 

separate classifiers are built for each hierarchical level, and the classification proceeds in 

a top-down fashion. At each level, the classifier selects one or several (for the multi-label 

case) of the most likely categories and then proceeds down to inspect only the children of 

the selected nodes. The experimental result shows that a hierarchical classifier that 

incorporates the relationship among categories outperforms the flat one.  

Hierarchical text classification has been explored by a number of authors [KoSa97, 

MRMN98, SaKi98, LaFi99, DuCh00, WaZH01, ViGi02]. It is still a relatively new field 

which is being actively pursued. 

 

2.1.4 Sentence Level vs. Document Level Text Categorization 

In terms of the span of the text to be classified, text categorization can be divided into 

document level categorization, namely, categorization of full text or paragraphs, and 

sentence level categorization, that is, categorization of sentences or sentence segments. 

Document level text categorization typically considers the whole document as the 

basic classification unit and takes into account only the general subject of a document. It 

has been used in applications such as document indexing [YaCh92], document filtering 

[TRFT02], and database annotation [KDDC02, BioC04, TRGN05]. Document indexing 
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is defined as automatically assigning a set of key words from a controlled vocabulary, 

such as MeSH [MeSH06] or GO [GO00], to characterize the content of the input text 

[IbCT99, SmCl03]. Document filtering means automatically selecting, for a given topic, 

only the articles that are relevant to it [CoMS04, PNRH05]. Database annotation refers to 

assigning attributes, for instance, biological process, molecular function, or cellular 

component, to entities such as genes or proteins in the database. Example annotation tasks 

that use document level text categorization include assigning GO codes to genes 

[RCSA02, KiMF04, EGJR05, KiMF05, RiNS05], discovering relationships among genes 

[SEWB00, JJDv05], and inferring sub-cellular localizations for proteins [NaRo02, 

EsAg04, HBBD06]. Typically a set of documents associated with a gene or protein is first 

obtained and a vector of words or phrases is constructed to represent the gene or protein. 

The task of annotating genes or proteins is then transformed into that of classifying or 

clustering the associated text. 

In contrast to document level text categorization, sentence level text 

categorization breaks the classification granularity down to the sentence or sub-sentence 

level, and typically concerns the knowledge within the span of a sentence.  Sentence level 

text categorization has been applied to many tasks, such as named entity and relationship 

extraction [Leek97, BSAG98, SkCR03], automatic text summarization [KuPC95], and 

rhetorical analysis [TeMo97, TeMo99, MaEc02, MiCo04a, MiCo04b]. As all the latter 

work is closely related to this thesis, these applications will be discussed in more detail in 

Section 2.3.  
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2.2 Procedures in Text Categorization 

Typically there are three steps in automatic text categorization: text representation, 

classifier construction, and performance evaluation. We next examine each step closely.  

 

2.2.1 Text Representation 

Free text information is unstructured data. Text files vary in length and use different sets 

of words. As such, they cannot be readily interpreted by common classification 

algorithms. Therefore, preprocessing procedures that map the free text into a structured 

representation are necessary before applying classification algorithms. The most common 

way to represent text is based on the bag of words approach. It maps an input text (e.g. a 

document) to a vector of term weights, where terms can be words or phrases. The 

preprocessing thus includes term definition, term weight calculation, and term selection 

or extraction. 

 

Term Definition 

There are several ways to define terms, which may consider the lexical, semantic, 

syntactical or statistical information of the text. Among all the approaches, the most 

popular one is to generate terms based on individual words, and represent the input text as 

a vector of single words. However, this approach completely ignores the structural 

relationships among words, such as the dependencies and relative positions. To address 

this problem, a number of attempts have been made to use phrases, rather than individual 

words as terms. Phrases can be defined as either syntactical phrases or statistical phrases. 
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Syntactical phrases take into account the syntactical constraints among words, while 

statistical phrases capture their statistical co-occurrences. 

A syntactical phrase is defined as a sequence of syntactically connected words, 

such as a verb phrase or a noun phrase. Lewis [Lewi92] studied the effect of using 

syntactical phrases instead of individual words as terms to represent the input text. The 

comparison between purely word-based and phrase-based representations suggests that 

phrasal representation alone yields no performance improvement. Moreover, experiments 

have shown that only small improvements in text retrieval effectiveness are obtained 

when using syntactical phrases to supplement the word-based representation [LeCr90].  

A statistical phrase is also called an n-gram, referring to a sequence of n 

consecutive words in a sentence. The addition of statistical phrases to document 

representation demonstrates an improved classification performance [FuMR98, MlGr98]. 

A number of related experiments studying the effectiveness of phrases have also been 

conducted by others [DPHS98, CaMS01, LiAD03, BeAl04]. The results are not 

conclusive, and the investigation in this direction is still being actively pursued. 

 

Term Weight Calculation 

The bag of words approach is a simple but effective way to represent text. Formally, let 

the term space consist of k terms. A document d  can be represented as a vector of term 

weights, , where the weight  represents how much the k),...,,( 21 ktttd ≡ kt th term 

contributes to the semantics of document d  [Seba99]. The weight can be either binary or 

numerical. A binary weight indicates the presence or absence of a term in a document, 

while a numerical weight more precisely measures the relative importance of a term in 
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different documents. There are many ways to calculate a term’s weight, and the most 

frequently used weighting scheme is TF·IDF [SaBu98]. TF·IDF is calculated based on 

term frequency and document frequency. Term frequency is the number of times a term t 

occurs in a document d , denoted by . Document frequency measures the number 

of documents in which a term t occurs, denoted by . TF·IDF is typically calculated 

as: 

),( dtTF

)(tDF

)(
||log),(),(
tDF

DdtTFdtIDFTF ·· = , 

where  is the total number of documents. || D

 

Term Space Reduction 

Term space reduction is an indispensable step in text representation due to the high 

dimensionality of the term space. Some machine learning algorithms may not be able to 

handle the large number of terms, and the performance of the classification process may 

severely degrade. Moreover, when the number of training examples is limited, having too 

many terms may cause overfitting, the phenomenon that the classifier is tuned to learn the 

specific characteristics of the training data rather than the general characteristics of the 

categories. As a result, the classifier performs well on the training data, but much worse 

on unseen test data. Experiments have shown that a number of training documents 

roughly proportional to the number of terms is needed to avoid overfitting [Seba99]. 

Therefore, when the training data is insufficient, overfitting may be avoided if the number 

of terms is reduced. Typically the dimensionality reduction of the term space can be 

achieved in two ways: term selection and term extraction  [Seba99].  
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Techniques for term selection attempt to choose a subset of terms from the 

original set to yield the highest effectiveness. The simplest form of term selection is to 

remove terms that occur less than a minimum number of times. Many sophisticated 

functions are also available to score terms more accurately, such as mutual information, 

chi-square, information gain, and odds ratio. Most of these functions take into account 

the relationship between individual terms and specific categories.  Chi-square measures 

the dependence between a term and a category; information gain measures the number of 

bits of information obtained for category prediction with the presence or absence of a 

term; odds ratio takes into account the effect of a term in both a category and its 

complement. The score calculated by such functions is usually category-specific. The 

global score of a term can be obtained by the sum, the weighted sum, or the maximum of 

its local score in each individual category.  

Table 2.2.1 summarizes the definitions of several common term space reduction 

functions. The probabilities are interpreted on an event space of documents. For example, 

 denotes the probability that a random document d contains term t.  denotes the 

probability that a random document d belongs to category c. denotes the 

probability that, for a random document d, term t occurs in d and d belongs to c. 

)(tp )(cp

),( ctp

)|( ctp denotes the probability that, for a document d that belongs to c, term t does not 

occur in d. The probabilities are estimated by counting occurrences of documents in the 

training set. A comprehensive study of the score functions was performed by Yang and 

Pederson [YaPe97]. In their report, the strengths and drawbacks of several term space 

reduction functions were investigated, and the experiments with K-Nearest-Neighbour 
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(KNN) and Linear Least Square Fit (LLSF) classifiers suggested that information gain 

and chi-square are the most effective score functions for term selection. 

 

Table 2.2.1. Main functions used for term space reduction [Seba99]. t denotes a term and 
c denotes a category.  
 

Function Denoted by Mathematical form 
Information 
gain 

),( ctIG  

)()(
),(log),(

)()(
),(log),(

cptp
ctpctp

cptp
ctpctp

⋅
+

⋅
 

Chi-square ),(2 ctχ  

)()()()(
)),(),(),(),((|| 2
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⋅⋅⋅
⋅−⋅⋅

, 

where is the total number of training examples || D
Odds ratio ),( ctOR  

)|())|(1(
))|(1()|(
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⋅−

−⋅
 

Mutual 
information 
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),(log
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⋅

 

),( ctZ  Z score 

)
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1
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cc
PP
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+⋅−⋅

−
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||||

)|(||)|(||
cc

ctpcctpcP
+

⋅+⋅
= , 

  denotes the total number of examples that belong to category  || c c
 

 

In contrast to term selection, term extraction does not necessarily use terms from 

the original set. Instead, it synthesizes a set of new terms based on the existing ones. 

Some supervised or unsupervised clustering techniques are usually applied for term 

extraction. Unsupervised clustered representation was first investigated by Lewis 

[Lewi92]. In his studies, the Reciprocal Nearest Neighbor (RNN) [Murt83] clustering 

analysis was used to group together semantically related words or phrases. However, his 

experimental results showed that both the word cluster and phrase cluster representations 
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were inferior to their original counterparts, that is, pure word or phrase representation. 

Supervised clustering techniques for term extraction were later proposed by Baker and 

McCallum [BaMc98]. They applied distributional clustering, which took into account the 

associated document categories when clustering words into groups. Their experimental 

results showed that the term space dimensionality could be reduced by three orders of 

magnitude while losing only 2% accuracy.  

In addition to clustering terms based on their mutual similarities, other clustering 

techniques, such as Latent Semantic Indexing (LSI) and Principal Component Analysis 

(PCA) were also applied in term extraction tasks. LSI compresses the original high 

dimensional term space into a lower dimensional space through matrix decomposition. It 

has been proved to be an effective dimensionality reduction technique [ScHP95]. Li and 

Jain used PCA to project data from the original term space onto a lower dimensional 

subspace. They showed that the performance of a Decision Tree classifier had improved 

with this feature extraction strategy [LiJa88].  

Other preprocessing procedures, such as the removal of stop words and stemming 

can also be adopted as an effective way for dimensionality reduction. Stop words refer to 

topic-neutral words such as articles, prepositions, conjunctions, etc. Stemming means 

representing a word with its morphological root such that a group of words that share the 

same root can be treated as the same word. For example, different words such as teacher, 

teach, teaching, taught can be represented by their basic root teach. As a result, the 

number of the terms is reduced. 
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Other Representation Methods 

In addition to the bag of words approach, many other representation methods have also 

been tried. The Darmstadt Indexing Approach [Fuhr85] includes statistical information 

about words and phrases, as well as structural information about the document, for 

example, the locations (e.g., in the title, abstract, or conclusion section) of words in the 

text. WordNet [Mill90] provides semantic information about words from a pre-defined 

thesaurus. Some researchers have also tried to incorporate syntactical information into 

text representation. For example, Ray and Craven [RaCr01] use words and phrases, as 

well as their syntactical categories (e.g., part-of-speech tags) to represent sentences from 

biomedical literature. The purpose of these representation methods is to incorporate 

additional information that may lead to improved classification performance but can 

hardly be accounted for in the standard bag of words approach. 

 

2.2.2 Construction of Text Classifiers 

Many statistical classification algorithms and machine learning techniques have been 

successfully applied to text categorization. These include methods such as Naïve Bayes 

[BaMc98, McNi98], Decision Tree [LeRi94, Moul96, ChHM97], Linear Discriminant 

Analysis (LDA) [HuPS96], Neural Networks [WiPW95, RuSr97], Logistic Regression 

[ScHP95], K-Nearest-Neighbour [Yang94], Linear Least Squares Fit (LLSF) [YaCh92], 

and Hidden Markov Models [Leek97, BiSW99, CoNT00, KuJM01, DeZa01, RaCr01, 

SkCR03]. Here we introduce only those methods that are directly relevant to this work, as 

we apply them to our classification task. 
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Naïve Bayes Classifier 

A Bayesian classifier tries to estimate the conditional probability that an input document 

belongs to a category, i.e. , where d represents a document, and c  denotes a 

category. We call  the posterior probability, which can be computed from the 

product of the prior probability  and the likelihood  according to Bayes 

theorem: 

)|( dcp

)|( dcp

)(cp )|( cdp

)(
)|()()|(

dp
cdpcpdcp = . 

Since the probability that a document d occurs in the corpus, , is a fixed 

value for a given document d, we do not need to estimate it. The estimation of the 

posterior probability  is thus converted to the estimation of the prior 

probability  and the likelihood . If the terms of the input document are 

assumed to be conditionally independent given the category, the likelihood  can 

be simply calculated by multiplying the likelihood of category c with respect to each term: 

)(dp

)|( dcp

)(cp )|( cdp

)|( cdp

∏
=

=
||

1

)|()|(
T

k
k ctpcdp , 

where  is the weight of the kkt th term in document d , and is the total number of 

terms. The probability distributions (cp d (tp usually assumed to have known 

parametric forms, and the learning task is essentially the estimation of the parameters 

(See [DuHa73] for more information). 

|| T

)  an ck  )| are

Classifiers that are based on the above independence assumption are called Naïve 

Bayes classifiers, and they are often applied to text categorization tasks [LeRi94, ScHP95, 

BaMc98, McNi98]. However, the independence assumption is often violated in practice. 
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For example, the probability that the word learning occurs will be largely increased if it is 

preceded by the word machine. To capture the probabilistic dependencies between terms, 

the application of Bayesian Networks was studied [Saha96, ChHM97]. The major 

limitation of Bayesian Networks is that learning the model quickly becomes intractable as 

the number of terms grows [Saha96]. Considering the high dimension of the term space 

and the relatively limited amount of training data for most text classification tasks, it is 

very hard to learn a full, unrestricted Bayesian Network model without incorporating 

much prior knowledge. 

 

Support Vector Machines 

Support Vector Machines (SVMs) were introduced into the area of text categorization by 

Joachims [Joac98], and has become a state-of-the-art method in this field [DPHS98, 

Joac98, Joac99, YaLi99]. SVM algorithms map the training examples into a high 

dimensional feature space based on a kernel function, and try to find a hyperplane to 

separate the mapped points, such that the margin between positive and negative examples 

is maximized and the number of misclassifications is minimized. The examples closest to 

the hyperplane are called support vectors. These examples essentially determine the 

position of the hyperplane. 

As an example, we consider a binary linear SVM. Let x be a data point, w be a 

weighting vector, and b be a constant. The hyperplane for a linearly separable space can 

be defined by a linear function:  

f(x) = wx + b, 
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where wx + b > 0 for positive data and wx + b < 0 for negative data. We use  to denote 

the label of data point , with the value 1 for positive data and –1 for negative data. In 

order to minimize the number of misclassifications,  must satisfy the condition: 

iy

ix

)(xf

0)( ≥ii xfy  for i = 1,...,n. 

This general principle is called empirical risk minimization. However, SVM emphasizes 

the confidence in the classification more than the number of misclassifications, that is, the 

mapped data in the two half spaces should be far away from the hyperplane. This can be 

done by further restricting the function  to satisfy the condition: )(xf

1)( ≥ii xfy  for i = 1,...,n, 

namely, wx + b > 1 for positive data and  wx + b < 1 for negative data. In such a case, the 

margin between the two half spaces is of width 
||

2
w

. To achieve large confidence, the 

margin should be as wide as possible.  Figure 2.2.1 illustrates the hyperplane found by the 

linear SVM algorithm to separate positive and negative data examples. 

 

Figure 2.2.1. SVM uses a hyperplane to separate positive and negative examples. The 
hyperplane h is defined by the linear function f(x) = wx+b = 0. The examples close to h 

(distance from h equal or less than 
||

1
w

 ) are called support vectors. 
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So far, the solution to SVM is converted into a constrained optimization problem, 

that is, maximizing the margin 
||

2
w

 under the constraints  for i = 1,...,n. This 

constrained optimization problem can be solved by introducing Lagrange multipliers. We 

refer readers to a review by Vert et al. [VeTS04] for the detailed procedures of finding 

the optimal parameters w and b.  

1)( ≥ii xfy

According to Joachims [Joac98], SVMs outperform other classifiers, such as 

Naïve Bayes, K-Nearest-Neighbour, and Decision Tree, in text categorization. In addition, 

they have some important advantages over other text classifiers. As mentioned in Section 

2.2.1, text categorization is characterized by the high dimensional feature space. Joachims 

[Joac98] has pointed out that in many text categorization tasks, only a few features are 

irrelevant among the large number of features. In such cases, feature selection may hurt 

the classification performance. Hence, a good classifier should be able to combine a large 

number of features. Moreover, the high dimensional feature space may lead to a very 

sparse document representation, i.e. only a few entries in the feature vector are non-zero. 

Sparse data representations typically degrade classification performance, since little 

information is provided for the classifier to learn useful statistics for most of the features. 

Kivinen et al. [KiWA97] have shown, from both theoretical and empirical perspectives, 

that algorithms that have similar inductive bias 1  to SVMs are well suited for the 

classification tasks where the dimensionality of the feature space is high and the data 

representations are sparse. SVMs were initially designed to handle binary classification 

                                                 
1 The inductive bias of a machine learning algorithm refers to the hypotheses or assumptions, which are 
generated from the training examples by the learner and will be used to predict the output values for future 
unknown examples. 
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problems, but the algorithms have since been extended to deal with multi-class [CrSi01], 

hierarchical [CaHo04], and ranked [Joac02] classifications. 

 

Maximum Entropy 

The Maximum Entropy method was introduced for text classification by Nigam et al. 

[NiLM99]. The basic principle of Maximum Entropy is that without prior knowledge, the 

least informative distribution, i.e. the distribution with the maximum entropy, is preferred. 

In text classification tasks, like Bayes classifiers, Maximum Entropy classifiers estimate 

the conditional probability of the class label given the document, that is, , where 

 represents an input document, and  denotes a category.  

)|( dcp

d c

In Maximum Entropy classifiers, the training data is used to set constraints on the 

conditional distribution . According to Nigam et al. [NiLM99], if we define any 

real-valued function of the document and the class to be a feature, and restrict the 

distribution  to have the expected value for this feature as derived from the 

training data, then a unique distribution  with maximum entropy will always 

exist and conform to the exponential form.  

)|( dcp

)|( dcp

)|(* dcp

More formally, if |D| denotes the number of training examples, d denotes a 

document, c  denotes a category,  denotes the true category of document d, and  

denotes a feature function, we restrict the conditional distribution to satisfy the constraint: 

)(dc if

∑ ∑ ∑
∈ ∈ ∈

=
Dd Dd Cc

ii cdfdcPdPdcdf
D

),()|()())(,(
||

1 . 

The left part of the above equation represents the expected value of the feature  derived 

from the training examples, and the right part represents the expected value of the feature 

if
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if  calculated based on the distribution . In such a case, among all the 

distributions  that satisfy the given constraints, the optimal distribution  

with the maximum entropy exists and conforms to the exponential form: 

)|( dcp

)|( dcp )|(* dcp

}),(exp{
)(

1)|(* ∑=
i

ii cdf
dZ

dcp λ , 

where  is a feature, if iλ  is the corresponding parameter to be estimated, and Z is the 

normalizing factor, defined as ∑ ∑
∈

=
Cc i

ii cdfdZ }),(exp{)( λ . 

Many studies have been conducted on applying Maximum Entropy to text 

classification [BSAG98, NiLM99, ZJXG05], as well as to other natural language 

processing problems [RaRR94, Ratn96, McFP00]. The experimental result by Nigam 

shows that the Maximum Entropy classifier outperforms the Naïve Bayes text classifier 

[NiLM99]. In contrast to Naïve Bayes classifiers, Maximum Entropy classifiers do not 

make any independence assumptions about features. In addition, the computational 

complexity of the parameter estimation for Maximum Entropy classifiers is lower, since it 

requires merely differential calculus techniques or gradient search procedures to 

determine the best parameters [Berg97], while Bayesian learning usually needs complex 

multidimensional integration [DuHa73]. We will discuss Maximum Entropy classifiers in 

detail in Chapter 5. 

 

2.2.3 Performance Evaluation 

The performance of a text classifier is typically measured by its effectiveness, that is, its 

ability to make the right classification decision. In this section, we discuss the 

performance measures for flat text categorization and hierarchical text categorization. 
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Performance Measures for Flat Categorization 

The most commonly used measures for text categorization are Precision and Recall 

[Seba99]. Precision of a classifier, for a category c, is the ratio of documents correctly 

classified under c with respect to all the documents assigned to c by the classifier. Recall 

measures the ratio of documents correctly classified to c with respect to all the documents 

that should be classified to c.  We define , True Positive, as the number of documents 

correctly classified into category c; , False Positive, as the number of documents 

incorrectly classified into c; , True Negative, as the number correctly rejected from c; 

and , False Negative, as the number incorrectly rejected from c. The Precision and 

the Recall of category c are then defined as: 

cTP

cFP

cTN

cFN

cc
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c FNTP
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Based on the local Precision and Recall with respect to each category, the global 

Precision and Recall over the whole category space can be calculated in two ways: 

microaverage and macroaverage [Seba99]. Microaverage gives each document equal 

weight, while macroaverage gives each category equal weight: 

Microaverage:  
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However, neither Precision nor Recall can be an accurate indicator of 

effectiveness in isolation from each other. Usually high Precision can be obtained at the 
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price of low Recall and vice versa [Seba99]. Hence, a classifier should be evaluated by a 

measure which combines both. The most popular combination is called F-function or F-

measure [VanR79], which balances the relative degree of importance of Precision and 

Recall, and is defined as: 

+∞≤≤
+

+
= β

β
β 0,

*
**)1(

2

2

RecallPrecision
RecallPrecisionF . 

The parameter β  adjusts the weight assigned to Precision and Recall, and the most 

common values of β  are 0.5, 1.0, and 2.0. When β  is 0, the value of F-measure is the 

same as Precision; when β  tends to ∞ , the value of F-measure tends towards Recall.  

 

Performance Measures for Hierarchical Text Categorization 

Performance measures for flat text categorization do not take into account inter-category 

relationships. If the set of categories is hierarchical by nature, flat measures do not reward 

partial success when a document is correctly assigned to parent categories but not to child 

categories, nor do they differentiate misclassifications between close categories and 

totally unrelated categories in the category hierarchy. To address this issue, some 

frameworks specifically designed for hierarchical text categorization have been proposed. 

For example, Sun et al. [SuLN03] proposed two measures: Category Similarity measure 

and Distance-based measure. Here we give the brief concepts, and refer readers to the 

original paper for the detailed definitions of the two measures. 

Category Similarity measure gives more weight to misclassifications into similar 

categories than into totally unrelated categories. The similarity between categories, which 

can be defined manually or calculated based on the features of the categories, measures 
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their semantic closeness. The contribution of the misclassification is calculated based on 

how similar the correct and assigned categories are in comparison to the average category 

similarity. 

 Distance-based measure evaluates the classification performance based on 

distance, formally the shortest path (measured by the number of edges), between two 

categories in a category tree. To calculate the contribution of the misclassified documents, 

a threshold distance, , is first defined by the user. If the distance between two 

categories is smaller than , the contribution of the misclassification between them 

would be positive; if the distance is equal to , the contribution would be zero; if the 

distance is greater than , the contribution would be negative.  

tDis

tDis

tDis

tDis

Other performance measures have also been proposed. For example, a method that 

calculates Precision and Recall from the intersection of the predicted category set and the 

true category set is proposed by Kiritchenko et al. [KiMF05]. For any document 

belonging to a set of categories  but classified into a set of categories , the 

original category sets are extended with the corresponding ancestor categories: 
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The hierarchical Precision and Recall can then be calculated as: 
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The performance measure proposed by Kiritchenko et al. can also be applied to flat multi-

label classification tasks to reward the partially correct assignment of the label set. A 
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comprehensive study in the performance evaluation of hierarchical text categorization can 

be found in the doctoral dissertation of Kiritchenko [Kiri05]. 

 

2.3 Previous Research on Sentence Categorization 

As mentioned in Section 2.1.4, sentence level text categorization has been applied to 

many tasks, such as entity and relationship extraction, automatic text summarization, 

rhetorical analysis, and others. We next discuss in detail the applications that are related 

to our work. 

 

2.3.1 Named Entity and Relation Extraction 

Named entity and relation extraction has been a rapidly growing area in recent years. 

Bikel et al. [BiSW99] developed a statistical approach to find names and other entities in 

sentences using a variant of the standard Hidden Markov Model (HMM). A named entity 

recognition system built on the Maximum Entropy framework was presented by 

Borthwick et al. [BSAG98] to address similar recognition problems. In the biomedical 

domain, recognizing named entities such as genes, proteins, cells, as well as their 

interactions, is generating increasing interest. Work on the identification of biomedical 

named entities has been done by many authors [CoNT00, YKKM03, LeHR03].  

In the field of entity relation discoveries, hidden Markov models (HMMs) are 

often used [Leek97, RaCr01, SkCR03]. HMMs process the input text as a sequence of 

words rather than a bag of words. Hence, they can handle structural constraints as well as 

the statistics of words. Methods based on the statistical analysis of co-occurring terms in 

phrases, sentences, or abstracts [CrKu99, DBNW02], and on pattern or template matching 
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using a set of rules [OHTT01, KaMO04] are also explored to search for interactions 

among genes or proteins.  

However, the successful recognition of an entity name or the exact matching of a 

relation pattern does not assure the reliability of the information. Additional knowledge 

about the level of belief in the extracted information can be helpful to improve the 

performance of certain information extraction tasks. 

 

2.3.2 Automatic Abstract Generation 

Automatic abstract generation provides a quick mechanism for users to obtain the main 

points of an article without having to read the full text.  Extensive experiments of 

applying text categorization to automatic text summarization have been performed. For 

example, Kupiec et al. [KuPC95] used a Naïve Bayes classifier to rank sentences by the 

order of summarization quality. The features they used were first proposed by Luhn 

[Luhn58] and Edmundson [Edmu68], and include thematic word frequencies, sentence 

length and location, the presence or absence of cue phrases (e.g. in conclusion, this article) 

or title/header words. Similar approaches were adopted by others [GKMC99, NSMU01, 

NSUI02], among which, Goldstein et al. [GKMC99] incorporated query-relevant 

information to generate query-specific rather than generic summaries.  

Other automatic text summary approaches such as MEAD [RJBT00], and MMR-

MD [Gana02], initially cluster passages or documents by topics, and then select sentences 

based on their similarity to the centroid of the cluster and their dissimilarity to the already 

selected sentences. The principal merits of such cluster-based summarization lie in its 
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capability of generating summaries for multiple documents, as well as to reduce the 

redundancy between selected sentences. 

 

2.3.3 Rhetorical Relation Analysis 

Research on categorizing rhetorical relations among text units has become fairly common 

lately [KnSa98, ChYa00, MaEc02, LiBr04]. Rhetorical relations (also called discourse 

relations, or coherence relations) can be described as a set of relations that link one text 

unit to another, making the text coherent. Some typical relations are evidence, contrast, 

concession, explanation, etc. That is, one unit of text can provide evidence for the unit 

preceding it, raise a contrast to it, or further explain it. Studies show that the recognition 

of rhetorical relations can facilitate the processing of text and speed reading time. 

Analysis of the discourse relations in a scientific article has been performed by a 

number of researchers. Mann and Thompson [MaTh88] proposed Rhetorical Structure 

Theory (RST) with a catalogue of twenty-three relations (e.g. purpose, cause, 

elaboration), which had a particular influence on most of the later work. Sanders et al. 

[SaSN92] presented a method to classify the relations among sentences in terms of 

cognitive relevance (e.g. causal or additive, semantic or pragmatic, positive or negative). 

Knott et al. tried to classify relations on the basis of cue phrases (e.g. because, but, and) 

and built a taxonomy of relational phrases [KnDa94, KnSa98]. However, both methods 

relied on the analysis of human experts from a linguistic perspective. With a much 

coarser level of granularity: contrast, cause-explanation-evidence, condition, and 

elaboration, Marcu and Echihabi [MaEc02] successfully applied a machine learning 

method to the classification of rhetorical relations between sentences. Their experiments 

 30



  

were conducted on two corpora, one consisting of 41,147,805 sentences and another 

consisting of 1,796,386 sentences. A Naïve Bayes classifier was built for each rhetorical 

relation pair, and the recognition accuracy of some relations was as high as 93%. 

Rhetorical relations were used in automatic abstract generation by Chuang and 

Yang [ChYa00]. Sentences were first broken into segments by special cue markers 

[Marc98] (e.g. because, but, if, etc.). Next, each segment was represented by the set of 

features introduced by Kupiec et al. [KuPC95], as well as by rhetorical relations in the 

Rhetorical Structure Theory [MaTh88]. Then machine learning algorithms, including 

Decision Trees, Naïve Bayes, and Neural Networks [YaPH99], were applied to classify 

segments based on whether they should (or should not) be included in the abstract. On a 

dataset of nine U.S. patents, where the number of segments ranged from 19 to 139, the 

highest accuracy obtained was 78%, better than the commercial software Microsoft Word 

Summarizer, which had an accuracy of 60.8%. 

Rhetorical relation analysis can also be adopted to assist in information extraction 

tasks in order to extract the desired information more effectively and accurately. An 

attempt to further classify named entity relations according to a set of rhetorical relations 

has been reported by Light and Bradshaw [LiBr04]. 

 

2.3.4 Rhetorical Zone Analysis 

The study of categorizing sentences according to different rhetorical zones, such as 

Background, Problem, Method, and Result, was first motivated by the attempt to generate 

user-customizable abstracts. For example, abstracts aimed at novice readers typically 

provide an overview of the field and a basic introduction of the author’s work, while 
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abstracts oriented towards experienced readers may focus on the detailed problem and 

methodology. Teufel and Moens extended the work of Kupiec et al. [KuPC95] by further 

classifying the extracted sentences into seven categories according to their rhetorical 

zones: Background, Topic, Related Work, Purpose and Problem, Solution and Method, 

Result, and Conclusion [TeMo97, TeMo99, TeCM99]. In a corpus of 201 articles, they 

successfully extracted 64% of the abstract-worthy sentences, and subsequently assigned 

the right rhetorical zones to 64% of the correctly extracted sentences using a Naïve Bayes 

classifier. 

Similar work was also done by others. A study of categorizing sentence types 

from Medline abstracts was conducted by McKnight and Srinivasan [McSr03]. In their 

experiment, 7,253 abstracts of Randomized Controlled Trials from Medline were broken 

into sentences and each sentence was labeled as one of the four types: Introduction, 

Method, Result, and Conclusion. A Support Vector Machine (SVM) model was trained 

and evaluated on cross-validation data, and high classification accuracy (average F-

measure of 85%) was obtained. 

Based on Teufel and Moens’s flat structure of rhetorical zones, Mizuta and Collier 

proposed a zone analysis scheme with shallow nesting [MiCo04a, MiCo04b, MuMC05]. 

They treat sentence segments in biology articles as the basic classification units. The set 

of rhetorical zones is divided into three groups: (1) background information, problems to 

be solved, and the author’s own work including method, result, insight, implication, and 

else; (2) connection or difference between findings; (3) outline of the paper. Zones can be 

nested, that is, a sentence segment may simultaneously fit into multiple zones. For 

example, connection or difference zone typically overlap with another zone such as 

insight and implication. Two classification methods, Naïve Bayes and Support Vector 
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Machine, were used to build a set of binary classifiers for each rhetorical zone. On a 

dataset consisting of 3,637 sentences from 20 journal articles in molecular biology, an 

overall F-measure of 70% was obtained over all zones. The recognition of some specific 

rhetorical zones, for instance, Method, yielded an F-measure as high as 87%. 

Nevertheless, the sophisticated scheme made the differentiation among certain zones 

difficult. Consequently, the predictive accuracy for zones such as connection, difference, 

insight, and implication were relatively low, with an F-measure lower than 50%. 

 

2.3.5 Other Applications 

Many other interesting applications for sentence level classification have been 

investigated. Mercer and DiMarco studied the automatic classification of relationships 

between the citing and cited paper, such as contrast, supportive, and corrective. Their 

work showed that rhetorical relations, and discourse cues such as not, previously, 

although, in order to, as well as hedging cues, that is, linguistic expressions that qualify 

the confidence in a proposition such as perhaps, might, demonstrate, play an important 

role in automatic citation analysis [MeDi03, MeDK04].  

Light et al. [LiQS04] tried to explore the use of speculative language in Medline 

abstracts. Results from manual annotation experiments suggested that speculative 

sentences in the context of bioscience literature could be reliably annotated by human 

experts. In addition, they built an SVM text classifier to distinguish speculative sentences 

from definite ones. On a data set of 1,629 sentences, the Precision and the Recall were 

84% and 39% respectively. Their preliminary results showed that reliable automatic 

methods might also be developed.  

 33



  

A more comprehensive study of the semantic patterns of a sentence was 

conducted by Friedman et al. [FAAC94]. They developed a medical text processor to 

identify clinical information in radiology reports and mapped the information into a 

structured representation containing controlled vocabulary terms. In their system, the 

original sentence from radiology reports was translated into a structured form according 

to certain predefined semantic grammar rules. Then single words or multiword phrases 

were mapped into some semantic categories such as Negation (e.g. no evidence), 

Certainty (terms affecting the certainty of a finding, e.g. possible, appears), Change 

(terms defining a change in findings where a change is an improvement or worsening of a 

finding, e.g. decrease, improving), Degree (terms denoting the severity of a finding, e.g. 

mild, moderate, severe), Cfinding (terms denoting a complete radiology finding, e.g. 

cardiomegaly, pleural effusion) etc.  Evaluation on a dataset of 230 radiology reports 

showed that the system achieved promising performance in terms of Precision and Recall 

(both 85%). However, the method was limited to several clinical domains. It is hard to 

extend it to more general fields where the language structure is more complex and the 

controlled vocabulary may not be well defined.  
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Chapter 3 

Overview of Multi-dimensional Fragment Classification 

In this chapter, we give an overview of multi-dimensional fragment classification. We 

first introduce the annotation scheme proposed by Shatkay et al. [ShWR06, WiRS06], 

under which the multi-dimensional fragment classification is performed. We next briefly 

introduce the subtasks of automatic fragment annotation and the issues this work 

addresses. To illustrate the use for this type of fragment classification we conclude the 

chapter with a discussion of several potential applications for our work. 

 

3.1 Fragment Annotation: An Introduction 

To identify information-bearing text units within scientific literature, a set of categories 

are defined to characterize the text that satisfies various types of information needs. The 

categories are grouped into five dimensions, defined as follows [ShWR06]: 

 Focus: Distinguishes whether the text unit describes Scientific discoveries or 

findings, Methodology for some experiments, or Generic information such as 

general state of knowledge or the organization of the paper. 

 Polarity: Indicates whether an assertion is stated Positively or Negatively. 

 Certainty: Measures the degree of confidence regarding the validity of an 

assertion. A scale from 0 to 3 is used to measure Certainty. The lowest degree 

(0) represents Complete uncertainty, that is, the statement explicitly expresses 

there is an uncertainty or lack of knowledge. The highest degree Complete 
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certainty (3) represents a known or proven fact. The intermediate degrees (1 

and 2) represent Low certainty and High likelihood respectively. 

 Evidence: Indicates whether an assertion is supported by evidence. The types 

of evidence are defined as follows: 

o No evidence: There is no indication of evidence, denoted as E0. 

o Claim of evidence without verifying information: There is a claim of 

evidence, but no explicit verifying information is provided, denoted as 

E1. 

o Explicit citation: Explicit citations are made to support the assertion, 

denoted as E2. 

o Explicit evidence: Evidence is provided in the form of reference to 

experiments reported within the body of the paper, denoted as E3. 

 Direction/Trend: Indicates whether an assertion reports an Increase or a 

Decrease in a specific phenomenon or activity. It captures the semantic 

meaning of the observed phenomenon itself, in contrast to the Polarity 

dimension, which defines the direction of an assertion from the syntactical 

perspective. 

The process of categorizing a text unit along the five dimensions is called 

annotation. We can use a single tag to represent the category labels of a text unit along 

the five dimensions. The basic annotation unit is defined as a fragment within a sentence, 

because a paragraph or a sentence is typically too heterogeneous in contents to be 

characterized by one single tag. The fragmentation of a sentence occurs at the point where 

there is a change in any of the five dimensions defined above. Here we give two examples 

of fragmentation, with each fragment annotated by a tag. A tag consists of a sequence of 
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numbers and letters, denoting Fragment Number, Focus (S, G, M, or a combination of 

them), Polarity (P or N), Certainty (0 – 3), Evidence (E0 – E3), and Trend (+: Increase or 

-: Decrease) [ShWR06]. 

 

Furthermore, we show that the increased somal [Ca2+]i  **1SP3E3+ 

and decreased cell survival following proximal transactions  **2SP3E0- 

are not due to less frequent or slower plasmalemmal sealing or Ca2+ entry 

through plasmalemmal Na+ and Ca2+ channels. **3SN3E0- 

 

The sentence is fragmented into three parts to reflect the changes in Trend, i.e. from an 

Increase fragment (fragment 1 as specified by “increased somal”) to a Decrease fragment 

(fragment 2 as specified by “decreased cell survival”), as well as the changes in Polarity, 

i.e. from a Positive fragment (fragment 2) to a Negative fragment (fragment 3). 

 

Another potential factor in promotion of apoptosis, inducible NO synthase 

(37), **1SP2E2+ 

is limited in distribution to perivascular infiltrates at the peak of inflamma-

tion **2SP3E0 

and is unlikely to contribute to widespread neuronal loss. **3SP1E0- 

 

In the above sentence, fragmentation is motivated by the changes in Certainty, i.e. from 

High likelihood  (“potential factor” in fragment 1), to Complete certainty  (“is limited in” 

in fragment 2), to Low certainty (“unlikely” in fragment 3), as well as the changes in 

Evidence and Trend. 
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To better demonstrate the annotation criteria, Table 3.1.1 provides an example for 

each category along each dimension. All examples are cited from the Annotation 

Guidelines [ShWR06], to which we refer users for more details. 

Table 3.1.1. Annotation examples. 

Annotation Type: Focus Category 
We demonstrate that ICG-001 binds specifically to CBP. Scientific  
DNA sequence was collected and analyzed on an ABI 
Prism 377 automated DNA sequencer. 

Methodology 

To deal with them, the world needs to reformulate the 
biomolecular paradigm that has been exploited in the last 
two centuries. 

Generic  

Annotation Type: Polarity Category 
She2p forms a stable dimer in solution. Positive 
None of the NBD rats had classic Borna disease or 
meningoencephalitis. 

Negative 

Annotation Type: Certainty Category 
We sought to establish whether or not She2p 
dimerization is required for RNA binding.  

0: Complete uncertainty 

Partial inhibition of this attachment indicated that other 
pathways might also exist. 

1: Low certainty 

Reports of Purkinje and granule cell loss in Cblm (16) 
suggest overlap with this neonatal infection paradigm. 

2: High likelihood 

We determined TP53 gene mutation in two cases and the 
genome-wide allelotype, AXIN1, and CTNNB1/beta-
catenin gene mutation in one case. 

3: Complete certainty 

Annotation Type: Evidence Category 
ICG-001 has no effect on AP1 and CRE reporter 
constructs. 

0: No evidence 

At the present time, then, the available data would 
support the notion that b-catenin mutations are only 
rarely seen in sporadic colon cancer. 

1: Claim of evidence without 
verifying information 

Neonatally infected rats are reported not to have 
inflammation (6–10). 

2: Explicit citation 

Astrocytosis and microgliosis were evident in all brain 
regions by 3 wk p.i. (Fig. 7). 

3: Explicit evidence  

Annotation Type: Trend Category 
We show that treatment with ICG-001 induces apoptosis 
in colon carcinoma cells. 

+: Increase 

ICG-001 selectively blocked the beta-catenin-CBP 
interaction. 

-: Decrease 

Several lines of evidence demonstrate that I. scapularis 
TROSPA is a specific ligand for B. burgdorferi OspA. 

NA 
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The feasibility and reliability of the fragment annotation were verified by a formal 

preliminary test [WiRS06], in which 70-80% inter-annotator agreement was obtained 

among twelve independent annotators on a set of 101 sentences, suggesting the 

annotation criteria are well defined and can be followed consistently by human annotators. 

 

3.2 Multi-dimensional Fragment Classification: Toward 

Automatic Annotation of Text Fragments 

Our general goal is to automatically annotate sentence fragments. The task of automated 

fragment annotation can be divided into three subtasks. First, a sizable training corpus is 

manually annotated under the Annotation Guidelines [ShWR06].  This task is currently in 

its final stages1. In this thesis we use about 2,000 annotated sentences, and the final 

corpus will consist of 10,000 annotated sentences from the biomedical literature. Second, 

we build text classifiers on the current manually annotated corpus and automatically 

classify each fragment along the five dimensions defined above. We evaluate 

classification performance on the available part of the corpus. Finally, we plan to extend 

the work to automatically process raw documents, that is, automatically breaking 

sentences into fragments, and using our classifier to annotate each fragment according to 

the predefined criteria. This thesis focuses only on the second step, that is, training text 

classifiers on the manually annotated data and evaluating the performance of automatic 

fragment classification along the five dimensions, without considering the issue of 

                                                 
1 The data used in the experiment part of this thesis consists of parts of this annotated corpus. 

 39



  

breaking documents and sentences. We refer to this work as the multi-dimensional 

fragment classification. 

Since we are trying to classify fragments along five dimensions where the 

classification definitions vary greatly, we choose different data representations, 

classification algorithms, and evaluation methods for different dimensions. We follow the 

well-defined procedures of text categorization: text preprocessing, data representation, 

classifier construction, and performance evaluation [Seba99], described in Section 2.2. 

We discuss these procedures in detail in chapters 4-6 respectively. 

 

3.3 Applications of Multi-dimensional Fragment Classification 

The annotation based on the multi-dimensional fragment classification allows for a user-

customizable scoring scheme to calculate the utility of a fragment, and consequently 

enables the identification of high-utility (information-bearing) fragments from a 

document, as well as further differentiation among various types of important fragments. 

The fine definition of categories allows a comprehensive scoring scheme to 

measure the utility of a fragment from a variety of perspectives. A typical view of high-

utility text is a statement discussing scientific discoveries or methods with high level of 

confidence and evidence. Therefore, typically a higher score may be assigned to the 

Scientific and Methodology categories than to the Generic category, and the scores for the 

categories along the Certainty and Evidence dimensions will increase with the level of 

confidence or evidence. The scoring scheme can also be customized by the user to 

highlight certain categories of special interest. For instance, a user may want to 

investigate assumptions and conjectures in a document. In this case, the certainty levels of 
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Low certainty and High likelihood should be assigned high scores. If a user wants to focus 

on the authors’ own experimental procedures or results, the Evidence degree Explicit 

evidence will receive a high score. Alternatively, if one is interested in certain biological 

phenomena, such as biological interactions, a Decrease or an Increase Trend will be 

assigned a high score. 

  After assigning different scores to different categories, a fragment can be scored 

based on its annotation. The fragments with top ranking scores can be selected as bearing 

high utility for further processing. To better pinpoint the information that meets a user’s 

requirements, he/she can further differentiate among various types of information-bearing 

text units. For example, a user may want to separate experimental methods from scientific 

facts, or distinguish the author’s own discovery from existing work.  

There are several potential applications of the fragment annotation and the 

identification of high-utility fragments. 

First, the classification and the identification of high-utility fragments can be 

applied to automatic summarization. We can simply generate an abstract (summary) by 

selecting the fragments with top ranking utility scores within a document. We can also 

tailor the abstracts to best satisfy the requirements of the user. For example, the abstract 

can focus on a special category of fragments, such as experimental methods, experimental 

results or related work. 

Second, the identification of high-utility fragments can improve the performance 

of document categorization. We can classify documents based on the importance of 

sentences. To highlight the essential parts of a document, we can assign high weight to 

words or phrases occurring in fragments with high scores or in fragments of certain 

category. For example, we can attribute more weight to words occurring in fragments 
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whose Evidence level is Explicit evidence, namely, the author’s own experimental results, 

than to words occurring in fragments whose Evidence level is Explicit citation, that is, 

others’ work. We can also classify documents based only on the high-utility sentences, 

and ignore the sentences that are less informative. Previous experiments have shown that 

assigning different weights to individual sections [HaRL05], or basing classification on 

selected passages [BrSC05] can improve predictive accuracy. We expect that assigning 

less weight to – or completely excluding – insignificant sentences can help to accurately 

identify the main points of a document and consequently improve the performance of 

document categorization. 

Third, the identification of information-bearing fragments can improve the quality 

of certain information retrieval tasks, where documents from a corpus are ranked to 

retrieve the most relevant documents. Common experience shows that, when performing 

keyword search using a search engine, such as Google or PubMed, a large number of 

documents may be returned, and typically only the top ranking ones will be chosen for 

further analysis. Therefore, it is important to first return the most relevant documents to 

the user. To address this issue, we can use the fragment scores calculated based on the 

annotation to post-process the retrieved document. Documents can then be ranked based 

on the overall score of the fragments within them, and those documents with high scores 

will be returned first. 

We may also integrate the process of information retrieval with the identification 

of important fragments. For example, documents with keywords occurring frequently in 

high-utility sentences can be considered as more relevant than those with keywords 

uniformly distributed over the whole documents. 
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Last, the annotation of fragments can increase the reliability of certain information 

extraction tasks, such as relationship extraction [WiRS06]. Most existing work on 

relationship extraction is based on the statistical analysis of co-occurring words or phrases, 

or on pattern or template matching using a set of rules [BAOV99, CrKu99, HuDG00, 

OHTT01, DBNW02, KaMO04]. However, the presence of a gene name, the co-

occurrence of a protein name and a subcellular location, or even the exact matching of a 

pattern such as A interacts with B in the text, does not necessarily assure the reliability 

and value of the information. With the annotation indicating the statement is in the 

affirmative, as well as its high Certainty and Evidence level, we can make sure that the 

extracted fact is more accurate and reliable. 

In summary, multi-dimensional fragment classification provides a comprehensive 

description of each individual fragment and enables the substantiation of knowledge at 

the sentential level, which is likely to serve a variety of applications in the biomedical 

research community. 
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Chapter 4 

Text Preprocessing and Representation 

As surveyed in Section 2.2.1, in order to map the free-form text into a format that is 

interpretable by common machine learning algorithms, several preprocessing procedures 

need to be applied. We divide the preprocessing procedures into two steps: term 

formation and term space reduction. Term formation refers to mapping free-form text into 

a vector of terms, while term space reduction refers to selecting or extracting a smaller set 

of terms from the original term set. We next examine these two stages closely. 

 

4.1 Term Formation 

In Section 2.2.1, we have mentioned that typically terms are formed by single words or 

phrases, including statistical phrases and syntactical phrases. To map raw text to a fixed-

length vector of terms, we consider three types of preprocessing: tokenization and part-of-

speech (POS) tagging, statistical phrase generation, such as n-gram generation, and 

syntactical phrase generation, namely, text chunking. 

 

4.1.1 Tokenization and Part-of-Speech Tagging               

Tokenization means breaking a string of characters into a sequence of words, delimiters, 

and whitespace characters (spaces, tabs, and line breaks). Words and delimiters are called 

tokens, and whitespace characters are treated as boundaries. A word can consist of a 

series of letters, digits, or special characters (e.g. -, _). Part-of-speech (POS) tagging 

attempts to assign a syntactical category such as noun, adjective, or verb, to each token. 
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We use Medpost [SmRW04], a POS tagger based on a hidden Markov model (HMM), to 

perform tokenization and POS tagging. Medpost first maps each sentence to a sequence 

of tokens based on a set of Perl regular expressions, then passes the tokens into the HMM 

model which outputs the most likely tag sequence. Table 4.1.1 is the output of the 

tokenization and POS tagging for the sentence “ICG-001 selectively blocked the beta-

catenin-CBP interaction without interfering with the beta-catenin-p300 interaction”.  

 

Table 4.1.1. An example of tokenization and part-of-speech (POS) tagging by Medpost. 
The syntactical categories of the POS tags can be found in Table 4.2.1. 

 
ICG-001  NN 
selectively  RR 
blocked  VVD 
the   DD 
beta-catenin-CBP NN 
interaction  NN 
without  II 
interfering  VVG 
with   II 
the   DD 
beta-catenin-p300 NN 
interaction  NN 

.   . 
 
The MedPost tag set consists of 60 POS tags listed in Table 4.2.1. We choose Medpost as 

the tokenizer since it is especially designed for biomedical literature. Medpost was trained 

on a corpus of 5,700 manually tagged sentences from Medline, and achieves over 97% 

accuracy [SmRW04].  

 

4.1.2 n-gram Generation 

An n-gram is defined as a sequence of n consecutive words in a sentence fragment. n-

grams aim to capture the characteristic co-occurrences of words. The most 

 45



  

straightforward way to generate word sequences of length up to n (including single words, 

bigrams, … , (n-1)-grams, and n-grams) is described as follows. The tokens of a fragment 

are sequentially read and pushed into a queue. When stop words, delimiters, or fragment 

boundaries are encountered, word sequences of size 1 to n are generated from the front of 

the queue; then the front is popped, word sequences of size 1 to n-1 are generated; and the 

process repeats until the queue is empty. After all the word sequences are generated, 

based on the training corpus, their frequencies are calculated and only those occurring 

more than a minimum number of times are retained. We refer to this process as the basic 

approach.  

However, the arbitrary combination of words in the above approach leads to a 

tremendous number of terms. To avoid the dramatic growth of the term space, several 

algorithms have been introduced. Some interleave n-gram generation with the removal of 

terms occurring less than a minimum number of times [MlGr98, Furn98]; others integrate 

n-gram construction with term selection using term space reduction functions [BeAl04]. 

The underlying idea of these optimization algorithms is to form n-grams from the (n-1)-

grams that have already been selected as candidate terms according to certain predefined 

criteria. We implement both the basic algorithm, which generates all n-grams first then 

removes less frequent ones, and the method that discards rare (n-1)-grams first and 

generates n-grams based on the reduced set of  (n-1)-grams [MlGr98].  

To capture a longer word sequence, stop words in the word sequence can be 

ignored. For instance, the fragment, “the response to stress will be measured through 

behavioral observation”, can be represented as a 5-gram, “response stress measured 

behavioral observation”, when stop words are ignored. Otherwise, if we break the word 
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sequence at every stop word, the longest sequence is the bigram “behavioral observation”. 

In our work, we investigate the classification performance based on both representations.  

Furthermore, stemming and alphabetical ordering can be performed when 

extracting n-grams to filter out morphological, syntactical and semantic differences 

between linguistic expressions [CaMS01]. For example, the phrases “information 

retrieval”, “retrieve information”, and “the retrieval of information” are represented as 

the same bigram “information retrieve” after stemming and alphabetical ordering are 

performed. In our present work, we do not consider the influence of stemming and 

alphabetical ordering in n-gram generation, but leave it for future study.   

Previous research has shown that the inclusion of bigrams tends to significantly 

improve performance. While the inclusion of longer n-grams, between 3 and 5, may still 

benefit performance to some extent, the results on using them are inconclusive [Furn98, 

MlGr98].  Moreover, the inclusion of additional and longer n-grams introduces additional 

complexity and redundancy. As a compromise, we use n-grams of length up to 3, and 

leave the investigation of longer n-grams to a future study.   

 

4.1.3 Text Chunking 

Chunking means breaking a sentence into a sequence of syntactically connected words, 

such as noun phrases and verb phrases. We use YamCha [KuMa00], a Support Vector 

Machine classifier, to perform chunk labeling, since it is the (freely available) system that 

performed the best in the Computational Natural Language Learning (CoNLL-2000) 

shared task, Chunking and BaseNP chunking task (F-measure 94% on a test corpus of 

47,377 tokens). YamCha sequentially reads a set of tokens with POS tags, and makes the 
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classification decision for each token. The feature set consists of the token itself, its POS 

tag, and its surrounding context which can be customized by the user.  

Table 4.1.2 shows an example of text chunking by Yamcha. The chunk tag of the 

target token is determined by the token itself, the two preceding and two following tokens 

and their POS tags, as well as the dynamically predicted chunk tags for the two preceding 

tokens by the Support Vector Machine classifier. 

 

 Table 4.1.2. An example of text chunking by YamCha. 

ICG-001  NN1 B-NP2

selectively  RB B-ADVP 
 
blocked  VBD B-VP 
the   DT B-NP 
beta-catenin-CBP NN I-NP 
interaction  NN I-NP 
without  IN B-PP 
 
interfering  VBG B-VP 
with   IN B-PP 
the   DT B-NP 
beta-catenin-p300 NN I-NP 
interaction  NN I-NP 
.   . O 

 
 
4.1.4 Term Definition along Each Dimension 

With the above preprocessing steps, we can generate a set of terms consisting of single 

words, statistical phrases, or syntactical phrases from raw text. Since we try to classify a 

fragment along five dimensions with different characteristics, the formation of terms 

should vary with the dimension such that each dimension has its own term set consisting 

                                                 
1 Yamcha uses the Penn Treebank [MaSM94] POS tag set. 
2 B-CHUNK stands for the first word of the chunk, I-CHUNK stands for every other word inside the chunk, 
and O chunk is used for tokens which are not part of any chunk. 
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of the most distinguishing terms. We next analyze in detail the choice of terms along each 

dimension. 

 

Focus  

From the analysis of the manually annotated data, we found that we can typically 

determine the Focus of a sentence based on the presence of certain words or phrases 

without analyzing its syntactical structure.  As examples3, we consider the following 

sentences, 

 

We determined TP53 gene mutation in two cases and the genome-wide 

allelotype, AXIN1, and CTNNB1/beta-catenin gene mutation in one case. 

**1SP3E3 

 

The structural features of substrate recognition by calpains are not yet 

fully understood. **1GN3E0 

 

DNA sequence was collected and analyzed on an ABI Prism 377 

automated DNA sequencer. **1MP3E3 

 

In the first sentence, the statistical phrase “We determined” implies that a certain finding 

by the authors follows. Other biomedical words or phrases such as “TP53”, “gene 

mutation”, “genome-wide allelotype”, “AXIN1”, and “CTNNB1/beta-catenin” further 

verify that the topic of the sentence is a specific biological finding or experimental result. 

In the second sentence, the phrase “are not yet fully understood” describes the current 

status of a certain phenomenon, which makes the sentence a generic statement. In the 

                                                 
3 All the annotated examples in this Thesis are cited from the Annotation Guidelines [ShWR06]. 
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third sentence, the phrase “was collected and analyzed” introduces a certain methodology 

adopted by the authors. The above examples show that the Focus of a fragment is mainly 

determined by the presence or absence of words or phrases. Hence, we define the terms 

for the Focus dimension as single words and statistical phrases.  

 

Polarity 

To determine whether an assertion is stated positively or negatively, a shallow analysis of 

the sentence structure is helpful.  As examples, consider the following sentences: 

 

Epidemiological data do not support the link between MMR vaccination 

and the development of autism [13]. **1SN3E2 

 

Aberrant overproduction of soluble Wnt antagonists by MM cells in the BM 

microenvironment may therefore impair not only bone formation but also 

normal processes of hematopoiesis. **1SP1E0- 

 

Although they both contain the word “not”, the verb phrase “do not” in the first sentence 

indicates that the sentence is stated negatively. In contrast, the adverb phrase “not only” in 

the second sentence merely specifies the range of the object, and the statement is 

expressed in the affirmative despite the presence of the word “not”.  

We perform shallow syntactical analysis, including POS tagging and text 

chunking, on the sentences, and use single words and syntactical phrases as terms for the 

Polarity dimension. 
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Certainty 

After analyzing the manual annotations, we found that the Certainty level of a fragment 

can often be decided by the simple statistics of words, such as the presence or absence of 

certain words or phrases. For instance, cue words such as indicate, suggest, demonstrate, 

determine, may, perhaps, and cue phrases such as very likely, it is unknown if, or it is unclear 

whether can help decide the Certainty of an assertion. Therefore, we define the terms for 

the Certainty dimension as single words and statistical phrases. We use the following two 

examples to illustrate the importance of incorporating statistical phrases in the term set: 

 

Doctors look for variations that consistently appear in the DNA of family 

members with the disorder. **1MP3E0 

 

Thus, it does not appear that our findings concerning circadian rhythms 

were the result of the children being lower functioning as reported in 

previous investigations (Jensen et al., 1985). **1SN1E23 

 

The single word “appear” in the first example does not carry much information about the 

certainty level of the sentence; while the phrase “it does not appear that” in the second 

example indicates that the certainty level of the sentence is Low certainty. Hence, if the 

data representation only consists of single words, such distinctive information related to 

the classification will be lost when phrases are not retained. 
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Evidence 

Similar to the Focus and Certainty dimensions, we have found from the training data that 

the presence of certain words or statistical phrases can typically suggest the Evidence 

level of a fragment. As an example, consider the fragment, 

 

In Cblm, Purkinje cells stained as early as 2 wk; **1SP3E3 

 

The past tense word “stained” indicates an experimental result, thereby the Evidence level 

of the fragment is E3, i.e. Explicit evidence. The contribution of statistical phrases to the 

decision on the Evidence level can be illustrated through the following two examples: 

 

Because a canonical Wingless-type (Wnt) signaling pathway has recently 

been shown to play an important role in osteoblast differentiation, 

**1SP3E1 

 

We show that a simple one-step procedure using CD3-magnetic beads to 

render the malignant T cells apoptotic and  the separation column matrix 

to simultaneously activate monocytes results in overnight production of 

apoptotic cell-loaded DC.  **1MSP3E3+ 

 

In the first example, the phrase “has recently been shown” suggests that the study was 

previously performed by others, and the evidence exists but is not explicitly specified 

here. Hence, the Evidence level is E1, formally, Claim of evidence without verification.  

In the second example, the phrase “We show that” states that the evidence has been 

explicitly provided somewhere within the paper, and accordingly, the Evidence level is 
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E3, that is, Explicit evidence. These two examples illustrate that the distinguishing 

information carried by statistical phrases cannot be substituted by single words or 

syntactical phrases. Therefore, we define the terms for the Evidence dimension as single 

words and statistical phrases. 

 

Trend 

The Trend dimension is defined to describe the positive or negative direction of certain 

phenomenon from the semantic perspective. Consider the following sentence as an 

example, 

 

In fact, as demonstrated using several SOD assays including pulse 

radiolysis, 2-ME does not inhibit SOD **1SN3E3- 

but rather interferes with the SOD assay originally used. **2SP3E3- 

 

Because the semantic meaning of the words “inhibit” and “interferes” are negative, the 

Trend of both fragments is Decrease, although from the structural perspective, the first 

fragment is stated affirmatively and the second one is stated negatively. 

In this case, we use single words as well as syntactical phrases to form the terms, 

as we believe that the shallow syntactical analysis of a fragment can help to better decode 

its semantic meaning.  

After transforming the raw text into a set of terms, we next need to reduce the 

high dimensionality of the term space by removing unnecessary or noisy terms. As 

previously mentioned in Section 2.2.1, in text categorization, since the number of training 

examples is typically small compared to the large number of terms, it is important to 
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reduce the size of the term set to avoid overfitting and achieve a good classification 

performance.   

 

4.2 Term Space Reduction 

 In Section 2.2.1 we have briefly introduced several approaches for dimension reduction, 

such as stemming, stop word removal, term selection based on term space reduction (TSR) 

functions, and term extraction based on term clustering or other techniques (e.g. Principal 

Component Analysis or Latent Semantic Indexing). In addition to these methods, terms 

can be selected according to their syntactical roles in our classification tasks. We next 

discuss in detail the methods we adopt for term space reduction. 

 

4.2.1 Stemming 

As discussed in Section 2.2.1, stemming means removing common morphological 

suffixes from words. We employ the Porter Stemmer [Port80] to perform stemming. The 

algorithm consists of several steps, and at each step the suffix of a word is stripped 

according to a set of fixed rules, for instance, replacing the suffix “tional” with “tion”, 

and the suffix “tion” with “t”. Complex suffixes are removed step by step. For example, 

“congratulations” is stripped to “congratulation”, then to “congratulate”, then to 

“congratul”.  We apply stemming for the Polarity and Trend dimensions, since the suffix-

removal does not change the Polarity or the Trend of a word. We do not consider 

stemming for the other three dimensions, since it may degrade the classification 

performance. For example, when the authors try to introduce their methods and 
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experimental results, they typically use the past tense. Therefore, such morphological 

forms can be important in determining the Focus or the Evidence level of a fragment. 

 

4.2.2 Stop Word Removal 

Stop words typically refer to frequent but uninformative words, such as articles, pronouns, 

and prepositions. Considering the nature of our multi-dimensional classification task, we 

define a different set of stop words for each dimension (Refer to Appendix E for the 

details). For instance, pronouns such as we or their are defined as stop words for the 

Trend dimension, but not for the Evidence dimension. This is because in the context of 

Evidence, they are important in distinguishing whether the work is done by the authors 

themselves or by others.  

 

4.2.3 Removal of Terms by Part-of-Speech Tags 

From the annotated examples we learned that the syntactical category of a word might 

decide its relative importance for the classification along different dimensions. For 

example, nouns, pronouns, and prepositions do not convey much information regarding 

the Polarity of a fragment. Prepositions and nouns are less important for the 

determination of the Certainty level than verbs, adjectives and adverbs. Pronouns and 

prepositions typically convey little information about the Trend of a fragment. Therefore, 

terms can be selected based on the part-of-speech (POS) tags associated with them. Table 

4.2.1 defines the criteria of term selection based on POS tags for each classification 

dimension, where 1 indicates the inclusion of terms associated with the POS tag, and 0 
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indicates the exclusion of terms associated with the POS tag. We present here only the 

preliminary criteria, which need to be further revised based on future experiments. 

 
Table 4.2.1. Term selection based on part-of-speech (POS) tags. F denotes Focus, P 
denotes Polarity, C denotes Certainty, E denotes Evidence, and T denotes Trend. Words 
in parentheses are examples from the corresponding syntactical categories. Words in 
italics indicate that the corresponding syntactical categories are specifically defined for 
the words. 
 

POS F P C E T Syntactical Category POS F P C E T Syntactical Category 
CC 1 1 0 1 1 coordinating conjunction(but) VBN 1 1 1 1 1 participle been 
CS 0 0 0 1 0 subordinating conjunction VBZ 1 1 1 1 1 3rd person singular is 

CSN 0 0 0 0 0 comparative conjunction (than) VDB 1 1 1 1 1 base do 
CST 0 0 1 1 0 complementizer (that) VDD 1 1 1 1 1 past did 
DB 1 1 1 1 1 predeterminer (such) VDG 1 1 1 1 1 participle doing 
DD 0 0 0 0 0 determiner (the) VDI 1 1 1 1 1 infinite do 
EX 1 0 1 1 0 existential there VDN 1 1 1 1 1 participle done 
GE 0 0 0 1 0 genitive marker ’s VDZ 1 1 1 1 1 3rd person singular does 
II 1 1 0 1 1 preposition VHB 1 1 1 1 1 base have 
JJ 1 1 1 1 1 adjective VHD 1 1 1 1 1 past had 

JJR 1 1 1 1 1 comparative adjective VHG 1 1 1 1 1 participle having 
JJT 0 0 1 1 0 superlative adjective VHI 1 1 1 1 1 infinitive have 
MC 1 1 1 1 1 number or numeric VHN 1 1 1 1 1 participle had 
NN 1 0 0 1 0 noun VHZ 1 1 1 1 1 3rd person singular has 

NNP 1 0 0 1 0 proper noun VVB 1 1 1 1 1 base form lexical verb 
NNS 1 0 0 1 0 plural noun VVD 1 1 1 1 1 past tense lexical verb 
PN 1 0 1 1 0 pronoun (we) VVG 1 1 1 1 1 present participle 

PND 0 0 1 1 0 determiner as pronoun (this) VVI 1 1 1 1 1 infinitive lexical verb 
PNG 0 0 1 1 0 genitive pronoun (our) VVN 1 1 1 1 1 past participle 
PNR 0 0 0 0 0 relative pronoun (which) VVZ 1 1 1 1 1 3rd person singular 
RR 1 1 1 1 1 adverb VVNJ 1 1 1 1 1 prenominal past participle 

RRR 1 1 1 1 1 comparative adverb VVGJ 1 1 1 1 1 prenominal present participle 
RRT 0 0 1 1 0 superlative adverb VVGN 1 1 1 1 1 nominal gerund 
SYM 1 0 0 0 0 symbol ( 0 0 0 0 0 left parenthesis 
TO 0 0 0 0 0 infinitive marker to ) 0 0 0 0 0 right parenthesis 
VM 1 1 1 1 1 modal (can) , 0 0 0 0 0 comma 
VBB 1 1 1 1 1 base be, am, are . 0 0 0 0 0 end-of-sentence period 
VBD 1 1 1 1 1 past was, were : 0 0 0 0 0 dashes, colons 
VBG 1 1 1 1 1 participle being “ 0 0 0 0 0 left quote 
VBI 1 1 1 1 1 infinitive be “ 0 0 0 0 0 right quote 

 
 
 
4.2.4 Removal of Terms by Phrase Type 

Similar to the term selection based on POS tags, syntactical phrases can be further 

selected according to their syntactical role. As we discussed in Section 4.2.1, the term sets 
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for the Polarity and Trend dimensions consist of single words and syntactical phrases. We 

define the criteria for selecting syntactical phrases in Table 4.2.2, where 1 indicates the 

inclusion of the phrase type, and 0 indicates its exclusion. We present here only the 

preliminary criteria, which may be further revised based on future experiments. 

 
Table 4.2.2. Term selection based on syntactical phrase type. Words in parentheses are 
examples from the corresponding syntactical categories. 

 
Type Polarity Trend Syntactical Category 
ADJP 1 1 Adjective Phrase 
ADVP 1 1 Adverb Phrase 
CONJP 1 1 Conjunction Phrase (as well as) 
INTJ 0 0 Interjection (wow) 
LST 0 0 List marker (1. 2. 3.) 
NP 0 1 Noun Phrase 
PP 0 0 Prepositional Phrase 

PRT 0 1 Particle (look up, slow down) 
SBAR 0 0 Relative clauses and Subordinate clauses (who, what) 

VP 1 1 Verb Phrase 
 

4.2.5 Removal of Nouns Specific to the Biomedical Domain 

We learned from the annotated examples that biomedical concepts or terms, such as gene 

or protein names, do not convey much information about the Evidence of a fragment. 

Therefore, nouns specific to the biomedical domain should be removed from the final 

term set for the Evidence dimension. We do not consider here the Certainty and Polarity 

dimensions, since nouns in general are removed from the final term sets for these two 

dimensions as we discussed above. We can identify gene or protein names using existing 

tools, for example, a gene and protein name tagger developed by Tanabe and Wilbur 

[TaWi02]. Currently, the removal of nouns specific to the biomedical domain is not 

implemented in this work, and we will leave it for future studies. 
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4.2.6 Advanced Term Selection and Term Extraction Methods 

To obtain the set of most distinguishing terms that yield the best classification 

performance, we can further examine several term selection functions surveyed in Section 

2.2.1, such as chi-square, information gain, and Z score. These functions measure how 

predictive a term is for certain categories. We can select terms based on their scores 

measured by these functions, and investigate the classification performance when various 

numbers of terms are selected. However, there are two major drawbacks for dimension 

reduction by term selection functions.  First, the selected term set may contain 

redundancy. Since highly correlated terms tend to score similarly, it is possible that 

correlated terms are chosen together as the most distinguishing terms. Second, the 

contributions of a large number of terms scoring relatively low are completely ignored. 

As discussed by Sebastiani [Seba99], it is quite possible that the combination of the terms, 

each with a small amount of critical information, can produce a high-order distinguishing 

feature. To address these issues, we further examine the classification performance with 

term extraction methods, namely, Principal Component Analysis (PCA) or Latent 

Semantic Indexing (LSI). 

We summarize the preprocessing steps for the classification along the five 

dimensions in Figures 4.2.1 and 4.2.2. 
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n-gram generation 

Tokenization and POS tagging Tokenization and POS tagging 

Stemming 

Stop word removal Chunking 

Stop word removal Term selection based on POS tags 

Removal of terms occurring less than 
a minimum number of times  

Removal of nouns specific to the 
biomedical domain  (only for the 
Evidence dimension) 

Term selection based on POS tags 

Term space reduction by advanced 
term selection or term extraction 
methods 

Term space reduction by advanced 
term selection or term extraction 
methods 

Term selection based on phrase types 

Figure 4.2.1. Text preprocessing for the 
Focus, Certainty, and Evidence 
dimensions. 

Figure 4.2.2. Text preprocessing for the 
Polarity and Trend dimensions. 
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Following the above text preprocessing procedures, each fragment is represented 

as a fixed-length vector of terms. For the Focus, Certainty, and Evidence dimensions, 

terms are defined as single words and statistical phrases. For the Polarity and Trend 

dimensions, terms are defined as single words and syntactical phrases. As to the choice of 

term weighting scheme, we start from the simplest approach, binary weighting, with 1 

representing the presence of a term, and 0 representing its absence. In future work, we 

will examine other weighting schemes, such as the widely-used IDFTF · weighting 

scheme, and the RFTF × 4scheme proposed by Lan et al. [LTLS05], to further improve 

the discriminating power of individual terms. 

 

 

 

 

 

                                                 
4 

i

i

n
n

RF
+

=
1

log , where  is the number of fragments that contain the term , and in it in  is the number 

of fragments that do not contain the term . it
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Chapter 5 

Classification Methodology 

In this chapter, we first analyze the novelty and challenge in the multi-dimensional 

fragment classification. After briefly discussing the choice of classification algorithms for 

each dimension, we introduce our Maximum Entropy model that is designed to address 

the special issues of our classification task. We start from the theory of Maximum 

Entropy, then provide a thorough discussion of the model developed here. 

 

5.1 Challenges in Fragment Classification 

The novelty of our classification scheme lies in the fact that it tries to describe the same 

object from several different perspectives. More specifically, it tries to classify the same 

fragment along five dimensions, in contrast to existing methods that typically classify the 

data along one dimension. The fragment classification has several distinctive 

characteristics, most notably along the Focus and Evidence dimensions: 

First, both Focus and Evidence are multi-label classifications. The Focus of a 

fragment can be one of the categories: Scientific, Generic, Methodology, or their 

combination. Consider the following sentence as an example: 

 

Future structural and functional studies will be necessary to understand 

precisely how She2p binds ASH1 mRNA and how interactions with She3p 

influence the formation of a functional localization complex. **1SGP0E0 
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The sentence poses scientific questions: “how She2p binds ASH1 mRNA” and “how 

interactions with She3p influence the formation of a functional localization complex”. 

Moreover, it talks about the general trend of knowledge, “Future structural and 

functional studies will be necessary”. Therefore, the Focus of the sentence is SG, that is, 

both Scientific and Generic. 

Similarly, the classification along the Evidence dimension is also multi-labeled, 

for example, the fragment: 

 

…the overexpression of phospho-H2Av did not induce G2/M arrest or 

affect DSB-dependent G2/M arrest (fig. S10) (14,21), **1SN3E23+  

 

contains a reference to an experimental figure “fig. S10” within the paper and citations of 

other papers “(14,21)”. In such a case, the evidence level of the fragment is E23, that is, 

Explicit citation (denoted as E2) and Explicit evidence (denoted as E3). 

Second, the classification along the Focus dimension is context dependent. The 

topic of a fragment may be determined not only by the fragment itself, but also by the 

whole sentence. For example,  

 

The children with autism, **1SP3E0 

but not typical children,  **2SN3E0 

showed a more variable circadian rhythm as well as statistically significant 

elevations in cortisol following exposure to a novel, nonsocial stimulus. 

**3SP3E3+ 

 

The contents of the first two fragments alone concern general knowledge rather than 

detailed scientific findings. However, the third fragment turns the main topic of the whole 
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sentence into a specific scientific fact, i.e. the characteristics of children with autism 

compared to normal children. Considering the context of the whole sentence, the Focus of 

both of the first two fragments is S, that is, Scientific. 

Third, the classification along the Focus and Evidence dimensions may be 

correlated. For example, when a fragment discusses a certain methodology, it usually 

describes scientific experiments that have been done, and consequently the Evidence level 

is Explicit evidence. Consider the following sentence as an example: 

 

Mononuclear cells (MNC) were isolated by centrifugation over a 

ficollhypaque gradient followed by two washes in RPMI 1640 (Gibco, 

Gaithersburg, MD) containing 10% AB serum and 2mM EDTA.  

**1MP3E3 

 

It is hard to decide that the Evidence level of the sentence is Explicit evidence solely 

based on the presence or absence of the cue terms (e.g. Fig., Table, Citation, cue phrases 

such as we found that, our results show). However, it is easier to detect that the Focus of 

the sentence is an experimental method. Because different term sets are used for different 

dimensions, terms predictive for the Focus dimension such as “MNC”, “RPMI”, “was 

isolated”, are either considered less important or filtered out for the classification along 

the Evidence dimension (nouns specific to the biomedical domain are removed for the 

Evidence dimension as discussed in Section 4.2.5). In such a case, it is helpful if we take 

into account the connection between the Focus category Methodology and the Evidence 

category Explicit evidence when performing classification. Hence, to improve the 

performance, the classification should be done such that the decisions along these two 

dimensions can mutually influence each other. 
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To address special aspects of our classification challenge, a new classification 

model based on Maximum Entropy is designed especially for the fragment classification 

along the Focus and Evidence dimensions. We discuss the design of the model in detail in 

Section 5.3. 

The classification along the other three dimensions, Polarity, Trend, and Certainty, 

can be treated as individual text classification tasks and can be performed separately. 

Since the basic classification unit is a sentence fragment with a few words, the data 

representation is relatively sparse. We choose Support Vector Machines (SVMs) for the 

classification along the Polarity and Trend dimensions because, as discussed in Section 

2.2.2, SVMs work well on sparse data and they usually outperform other algorithms in 

text classification tasks. As for the classification along the Certainty dimension, we 

examine ranking classifiers such as SVM and Naïve Bayes, so that we can better learn the 

uncertainty of the classification decisions over the categories. 

We have briefly introduced the underlying theory of Naïve Bayes and SVM in 

Section 2.2.2. In this chapter, we focus on the Maximum Entropy model specifically 

designed to address the three problems of the fragment classification along the Focus and 

Evidence dimensions. 

 

5.2 Theory of Maximum Entropy 

As previously stated in Section 2.2.2, the underlying principle of Maximum Entropy is to 

model everything that is known, and assume nothing that is unknown, i.e. choose a 

probability distribution that will satisfy any known constraints, while otherwise being as 

uninformative as possible. For instance, in a text classification problem, we typically 
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want to classify documents into two categories, relevant or irrelevant with respect to a 

given topic. Suppose we learned from the training data that 70% of the documents that 

contain the word mice are relevant documents. Then we can build a classification model 

based on the following rule: if a document contains the word mice, the probability that it 

belongs to the relevant category is 70%, while the probability that it belongs to the 

irrelevant category is 30%; otherwise, the probability distribution for the two categories 

is uniform, 50% each. This model is a simple Maximum Entropy model. It is consistent 

with the known constraints, and makes no assumptions about what is unknown. 

In general, Maximum Entropy can be used to estimate any probability distribution. 

Since we are only interested in text classification, we limit our discussion to conditional 

probability distributions. Specifically, we estimate the conditional probability , 

where d is a data example, and  is the possible category label. 

)|( dcp

c

In this section, we briefly introduce the theory of Maximum Entropy. Detailed 

information can be found in Appendix A, as well as in several papers [BeDD96, Berg97, 

NiLM99, Berg00, Taka04]. Here we interpret the probability  on an event space 

of documents, that is, d represents a document. 

)|( dcp

 

5.2.1 Features and Constraints 

In text classification, suppose we denote a set of training documents D associated with 

labels C as . With Maximum Entropy, our goal is to construct a 

classification model, specifically, a conditional probability distribution, , which 

could have generated the given set of training data, . In other words, this 

model distribution, , will reflect a set of statistical facts derived from the training 

),( CDObserved

)|( dcp

),( CDObserved

)|( dcp
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data. To do this, we first describe any useful statistic as a real-valued function, , which 

is called a feature function or feature. We then constrain the expected value of  

calculated from the model distribution, , to be the same as that derived from the 

training data, . We can use any real-valued function of a document-label 

pair  as a feature. The feature functions typically express some useful 

statistics of documents and categories, for instance, a co-occurrence relation between 

terms (words or phrases) and categories. We give here an example of the definition of a 

feature function.  

f

f

)|( dcp

),( CDObserved

),(),( CDcd ∈

Suppose there are a total of m categories, we can use an m-dimensional vector, 

, to denote any possible label that can be assigned to a document, defined as: ),...,( 1 mccc ≡

⎩
⎨
⎧

=
.0

;1
otherwise

icategorytoassignedisdocumenttheif
ci  

As surveyed in Section 2.2.1, each document can be represented as a set of terms. 

Suppose that the term space consists of k terms, we use a k-dimensional vector to 

represent a document, , defined as: ),...,( 1
d
k

d ttd ≡

⎩
⎨
⎧

=
.0

;1
otherwise

ddocumentinpresentisjtermif
t d

j  

To capture the co-occurrence between terms and categories for a given document-label 

pair , we define a matrix  as the product of the category vector ),( cd ),( cdF ),...,( 1 ′mcc  

(the transpose vector of c) and the term vector : ),...,( 1
d
k

d tt

),...,(),...,(),( 11
d
k

d
m ttccdccdF ′=′= . 
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),( cdF  is an  matrix. The rows correspond to categories, and the columns 

correspond to terms. The Boolean element  represents whether category  and 

term 

km×

),( cdFij i

j  co-occur. From the definition of the matrix , we know that  is 1 

when both  and  are 1, formally: 

),( cdF ),( cdFij

ic d
jt

⎩
⎨
⎧

=
.0

;1
),(

otherwise
icategorytoassignedisddocumentandddocumentinpresentisjtermif

cdFij

 
 
We refer to the matrix  as a feature function matrix or feature matrix, where each 

element  corresponds to a feature function between a document-label pair . 

We can also transform the matrix  into a vector, denoted as : 

),( cdF

),( cdFij ),( cd

),( cdF ),( cdf

)),(),...,,(),...,,(),...,,(),,(),...,,((),( 1221111 cdFcdFcdFcdFcdFcdFcdf mkmkk= .  

Let , each element of the vector  is denoted as a feature , where 

. Thus, for a given document-label pair , we have defined a total of 

 features. 

kmn ×= ),( cdf ),( cdfi

],...,2,1[ ni∈ ),( cd

km×

If we denote the observed probability (empirical probability) that a document-

label pair (d, c) occurs in the training examples as , the expected value of the 

feature  for the training examples can be calculated by: 

),(~ cdp

),( cdfi

∑
∈

=
),(,

~ ),(),(~)(
CDObservedcd

iip cdfcdpfE .    (5.1) 

The expected value of  with respect to a given distribution  can be 

calculated by: 

),( cdfi )|( dcp

),()|()()( cdfdcpdpfE i
CcDd

ip ∑∑
∈∈

= ,    (5.2) 
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where  is the probability of a document d to occur in the corpus. In practice, the 

probability is unknown and we have no interest in modeling it. Therefore, we use the 

occurrence frequency of a document in the training corpus, , as an approximation: 

)(dp

)(~ dp

),()|()(~),()|()()( cdfdcpdpcdfdcpdpfE i
CcDd

i
CcDd

ip ∑∑∑∑
∈∈∈∈

≈= .  (5.3) 

Each document is considered to occur only once1 in the training corpus, therefore, 

D
dp 1)(~ = , where D  is the total number of training documents. We then restrict the 

model distribution  to have the expected value for each feature  as 

derived from the training data: 

)|( dcp ),( cdfi

)()(~ ipip fEfE =  ,     (5.4) 

i.e. ),()|()(~),(),(~
),(),(

cdfdcpdpcdfcdp i
CcDd

i
CDObervedcd

∑∑∑
∈∈∈

= .  (5.5) 

In summary, there are two main steps in defining a Maximum Entropy model for 

text classification: first, define a set of features; second, calculate the expected value of 

each feature from the training data, and impose this as a constraint on the model. 

 

5.2.2 Maximum Entropy Principle 

The principle of Maximum Entropy is to find the least informative (the most uncertain) 

model that also satisfies any given constraints. A mathematical measure of the uncertainty 

of a conditional probability distribution  is provided by the conditional entropy 

[CoTh91]: 

)|( dcp

                                                 
1 If the same document representation occurs multiple times in the training set, each time it is considered to 
represent a different document. 
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∑∑
∈ ∈

−≡
Dd Cc

dcpdcpdppH )|(log)|()()(    (5.6) 

∑∑
∈ ∈

−≈
Dd Cc

dcpdcpdp )|(log)|()(~ .    (5.7) 

The problem of Maximum Entropy is to find a distribution that has the maximum 

entropy value  among all the conditional probability distributions  

satisfying the given constraints: 

)|(* dcp

)( *pH )|( dcp

),()|()(~),(),(~
),(),(

cdfdcpdpcdfcdp i
CcDd

i
CDObervedcd

∑∑∑
∈∈∈

= . 

When the constraints are defined in this fashion, it is guaranteed that a unique 

distribution  exists, which has the maximum entropy among all the distributions 

 satisfying the constraints (See Appendix A for details).  Moreover, the 

distribution  is of a parametric exponential form: 

)|(* dcp

)|( dcp

)|(* dcp

)(

}),(exp{
)|(*

dZ

cdf
dcp i

ii∑
=

λ
,    (5.8) 

where iλ  is a parameter to be estimated, and  Z(d) is the normalizing factor that ensures 

the sum of the probability  with respect to each )|(* dcp Cc∈  equals to one, defined as:  

∑ ∑
∈

=
Cc i

ii cdfdZ }),(exp{)( λ .    (5.9) 

 

5.2.3 Maximum Entropy and Maximum Likelihood 

Given a set of training examples, it was proven that the solution to the Maximum Entropy 

problem is also the solution to the Maximum Likelihood problem for the probability 

distribution with the same exponential form [BeDD96] (See Appendix A for details). 
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That is, the constrained maximization of entropy is equivalent to the unconstrained 

maximization of the likelihood of a set of exponential distributions. The model 

distribution with the maximum entropy is also the one, among all the models of the same 

parametric form, that fits the training examples best.  

The problem of Maximum Entropy is thus converted into the problem of 

maximizing the likelihood of a set of exponential models with respect to the training data.  

Given the training dataset, , the log likelihood of the model distribution 

is defined as follows [BeDD96]: 

),( CDObserved

)|( dcp

 ( ) ∏
∈

≡
),(),(

),(~
)|(log

CDObservedcd

cdpdcppL .   (5.10) 

The joint probability, , measures the frequency that a particular document-label 

pair  occurs in the training set. As previously stated, we consider a non-redundant 

dataset in which each document only occurs once. Therefore, the joint probability, , 

is estimated by: 

),(~ cdp

),( cd

),(~ cdp

⎪⎩

⎪
⎨
⎧ ∈

=
,0

);,(),(1
),(~

otherwise

CDObservedcdif
Dcdp   (5.11) 

where D  is the total number of training examples. In practice, instead of using the 

empirical probability , we can use the number of times that a particular pair  

occurs in the training set, (i.e. 0 or 1), to calculate the log likelihood of the model 

distribution : 

),(~ cdp ),( cd

)|( dcp

  ∏
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=
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)|(log)(
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dcppL .    (5.12) 
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Substituting 
)(

}),(exp{
)|(

dZ

cdf
dcp i

ii∑
=

λ
 into the above equation, we can get the log 

likelihood of the model parameters ),...,( 21 nλλλ≡Λ : 

)(ΛL  = ∑ ∑ ∑ ∑
∈ ∈

−
),(),(

))(( )},(exp{log,
CDObservedcd i Cc i

iiii cdfcdf λλ . (5.13) 

To find the parameters  that maximize the log likelihood *Λ ( )ΛL , we need to resort to 

numerical methods. One method specifically designed for the Maximum Entropy problem 

is the Improved Iterative Scaling (IIS) algorithm [Berg97]. We give a brief introduction 

of IIS in the following section. 

 

5.2.4 Parameter Estimation -- Improved Iterative Scaling (IIS) 

Since the log likelihood function, )(ΛL , is concave2 with respect to each parameter iλ , it 

is guaranteed to have a single global maximum. Starting from an initial set of parameters 

, IIS will find an incrementally more likely set of parameters at each 

iteration until the log likelihood, 

),...,( 00
2

0
1

0
nλλλ≡Λ

)(ΛL , converges to the global maximum. This can be 

done by ensuring the new model has a higher likelihood at each step, that is, 

0)()( >Λ−+Λ LL δ ,     (5.14)  

where ),...,,( 21 nδδδδ ≡ , and iδ  is the change in the parameter iλ  at each step. Formally, 

 where t is the iteration number. Substituting equation (5.13) into inequality 

(5.14), we get: 

,1−−= t
i

t
ii λλδ

                                                 
2 A function is concave on an interval  [a,b] if for any two points  and  in  [a,b] and any )(xf 1x 2x ∂  

where  , 10 <∂< )()1()())1(( 2121 xfxfxxf ∂−+∂≥∂−+∂ . 
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)()( Λ−+Λ LL δ = 0
)},(exp{

)},()(exp{
log),( )(
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cdf
cdf
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 (5.15) 

Using the inequality ∂−≥∂− 1log  and Jensen’s inequality3, we can find a lower bound 

for inequality (5.15) (Refer to Appendix B for the derivation details): 

,
)},(exp{

),(
),(

)|(1),()()(

)|(

)(
),(),( 444444444444444 3444444444444444 21

λδ

δδδ

A
CDObservedcd i

i
Cc i

i
ii cdf

cdf
cdf

dcpcdfLL ∑ ∑ ∑ ∑
∈

Σ

∈
Σ

−+≥Λ−+Λ

           (5.16) 

where   ∑≡Σ

i
i cdfcdf ),(),( .

We denote the right hand side of inequality (5.16) as )|( λδA . Since )|( λδA  is a 

lower bound on the change in the log likelihood, )()( Λ−+Λ LL δ , we can guarantee an 

increase in the likelihood if )|( λδA  is positive. To maximize the difference in the log 

likelihood, i.e., to best improve the model, we first solve for the maximum of )|( λδA  

with respect to ),...,,( 21 nδδδδ ≡ .  By restricting this maximum to be positive, we can 

find a change iδ  in each iλ  that will improve the model likelihood. The maximum of 

)|( λδA  can be obtained by differentiating )|( λδA with respect to each iδ  and setting 

the derivatives to zero: 

0)},(exp{),()|(),()|( )(
),(),(

=−=
∂

∂ ∑ ∑
∈ ∈

Σ

CDObservedcd Cc
iii

i

cdfcdfdcpcdfA δ
δ
λδ .   (5.17)  

 We can use a root finding procedure (e.g. Newton’s method) to solve equation 

(5.17) and obtain the optimal set of changes ),...,( 21 nδδδδ ≡  at each iteration. The 

                                                 
3 If f is a convex function and x is a random variable then . ))(())(( xEfxfE ≥
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process repeats until the likelihood converges to the global maximum. Table 5.2.1 

summarizes the IIS algorithm. 

 

Table 5.2.1. An outline of the IIS algorithm for parameter estimation. 
IIS algorithm 

(1) Start with an arbitrary value for each parameter iλ  
(2) Repeat until convergence: 

Set 
i

A
δ∂
∂ =0 and solve for iδ  

         Set iii δλλ +=   
 
 

To illustrate the principle of Maximum Entropy, we give an example of model 

construction in Appendix B. We refer readers to Appendix B for further information 

about how a Maximum Entropy classifier works in the area of text categorization. 

 
 
5.3 Maximum Entropy Model for Multi-dimensional Fragment 

Classification 

As discussed in Section 5.1, there are three distinctive characteristics for the fragment 

classification along the Focus and Evidence dimensions: multi-label classification, 

correlation between the two dimensions, and context dependent classification along the 

Focus dimension. In this section, we introduce, in detail, the Maximum Entropy model 

developed to address these issues. Specifically, the Maximum Entropy model is designed 

to classify fragments along the Focus and Evidence dimensions simultaneously, as well as 

to address the issues of multi-label and context dependent classification. We first 

introduce the categories and data representations, then focus on the feature definitions and 

the constraints that are imposed over the model.  
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fragments within it, we expect a more accurate prediction of the Focus of a sentence 

compared to that of a fragment. In the case when the Focus of a fragment is ambiguous 

for the classifier, we believe that a clear prediction for the Focus of the whole sentence, 

and the dependence of the Focus of a fragment on this context can help the classifier to 

make the right decision. As an example, consider the following sentence we have 

discussed in Section 5.1, 

 

The children with autism, **1SP3E0 

but not typical children,  **2SN3E0 

showed a more variable circadian rhythm as well as statistically significant 

elevations in cortisol following exposure to a novel, nonsocial stimulus. 

**3SP3E3+ 

 

It is hard to predict the Focus of the first two fragments solely based on the few terms 

present in those fragments, while it is relatively easy to predict that the Focus of the 

whole sentence is Scientific. If the classification model can derive strong correlation 

between Scientific Fragment Focus and Scientific Sentence Focus from the training data, 

once we determine that the Focus of the sentence is Scientific, the final Focus 

classification of the first two fragments will tend to be biased towards Scientific.  

Therefore, to improve the prediction accuracy for the Focus of a fragment, we 

introduce the third category space Sentence Focus. Sentence Focus concerns the Focus of 

a sentence, consisting of three categories: Scientific, Generic, and Methodology. We use a 

three-dimensional Boolean vector, ),,( 321 NNNN cccc ≡ , to represent the Sentence Focus 

label, defined as: 

⎩
⎨
⎧

=
.0

;1
otherwise

sentencethewithinicategorytobelongsFocuswhosefragmentoneleaseatisthereif
cNi
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Similar to the Fragment Focus label, there are seven possible values for the Sentence 

Focus label. We further discuss how to incorporate the correlation between Fragment 

Focus and Sentence Focus within the classification model in Section 5.3.3. 

So far, we have defined three category spaces for the fragment classification along 

the Focus and Evidence dimensions: Fragment Focus, Fragment Evidence, and Sentence 

Focus. We illustrate the construction of the three category spaces by the following 

example, 

 

Although neuropathologic studies of autism are limited, **1GP3E1- 

reports of Purkinje and granule cell loss in Cblm (16) also suggest overlap 

with this neonatal infection paradigm. **2SP2E2 

 

The value of Fragment Focus is [010] for the first fragment, and [100] for the second 

fragment; the value of Fragment Evidence  is [0100] for the first fragment, and [0010] 

for the second fragment; the context of both fragments, i.e. the value of Sentence Focus 

, is [110]. 

Fc

Ec

Nc

 

5.3.2 Data Representation 

As mentioned in Section 4.1, each fragment is represented as a vector of terms to be used 

as an input to classification algorithms. For each classification dimension, a different set 

of terms can be selected using term selection functions such as chi-square or information 

gain as discussed in Section 4.2. We use an n-dimensional Boolean vector, 

, to represent a fragment for the Focus dimension, where n is the total 

number of terms selected for the Focus dimension. Each element  is defined by: 

),...,( 1
d
Fn

d
F

d
F ttt ≡

d
Fit
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⎩
⎨
⎧

=
.0

;1
otherwise

dfragmentinpresentisitermif
t d

Fi  

Similarly, suppose a total of m terms are selected for the Evidence dimension, we 

can use an m-dimensional Boolean vector to represent a fragment for the 

Evidence dimension. Each element  is defined by: 

),...,( 1
d
Em

d
E

d
E ttt ≡

d
Eit

⎩
⎨
⎧

=
.0

;1
otherwise

dfragmentinpresentisitermif
t d

Ei  

To consider the surrounding context for the Focus of a fragment, i.e. the Focus of 

the sentence from which the fragment comes, we need a set of terms pertaining to the 

Focus of a sentence. Suppose that a total of k terms are selected to determine the Focus of 

a sentence. The context of a fragment can be represented by a k-dimensional Boolean 

vector, , defined by: ),...,( 1
d
Nk

d
N

d
N ttt ≡

⎩
⎨
⎧

=
.0

;1
otherwise

fromcomesdfragmentwheresentencetheinpresentisitermif
t d

Ni  

In summary, in the fragment classification along the Focus and Evidence 

dimensions, each fragment is associated with three types of labels: Fragment Focus, 

Fragment Evidence, and Sentence Focus. Accordingly, it is associated with three types of 

text representations: a vector of terms pertaining to the Focus of a fragment, a vector of 

terms pertaining to the Evidence of a fragment, and a vector of terms pertaining to the 

Focus of a sentence.  

We use the concatenated Boolean vector, , to denote a fragment, 

and the concatenated Boolean vector, 

),,( d
N

d
E

d
F tttd ≡

),,( NEF cccc ≡ , to denote any possible label that 

can be assigned to a fragment.  Since there are seven possible values for the Fragment 
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Focus label and the Sentence Focus label respectively, and five possible values for the 

Fragment Evidence label, there are a total of 245 (7*7*5) possible labels for each 

fragment. Our goal is to estimate the model distribution  given a set of training 

fragments D associated with labels C.  To construct a Maximum Entropy classification 

model, we first need to define a set of features and constraints.  

)|( dcp

 

5.3.3 Features and Constraints 

In the area of text categorization, a traditional Maximum-Entropy-based model typically 

imposes constraints over the following two statistical properties: the prior probability of 

each category, and the correlation between terms and categories. Accordingly, we 

introduce two types of feature function matrices: one captures the occurrence of 

categories within each category space, denoted as , ,  respectively; the other 

captures the co-occurrence between terms and categories within each category space, 

denoted as , ,  respectively. Suppose that c

P
Ff P

Ef P
Nf

T
Ff T

Ef T
Nf ′  denotes the transpose vector of c, 

for each fragment-label pair , the function matrices are defined as: ),( cd

F
P

F ccdf ′=),( ,    (5.18) 

E
P

E ccdf ′=),( ,     (5.19) 

N
P

N ccdf ′=),( ,    (5.20) 

d
FF

T
F tccdf ′=),( ,    (5.21) 

d
EE

T
E tccdf ′=),( ,    (5.22) 

d
NN

T
N tccdf ′=),( .    (5.23) 
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Given a category space, e.g. the Fragment Focus category space, we define the 

expected number of occurrences of category  observed from the training data as: i

∑∑
∈∈

==
),(,),(,

~ ),(~),(),(~)(
CDObservedcd

Fi
CDObservedcd

P
Fi

P
Fip ccdpcdfcdpfE , 

and the expected number of occurrences of category  predicted by the model as: i

Fi
CcDd

P
Fi

CcDd

P
Fip cdcpdpcdfdcpdpfE ∑∑∑∑

∈∈∈∈

== )|()(~),()|()(~)( . 

To restrict the category distribution predicted by the model to be the same as the 

empirical category distribution, we define the following constraints: 

)()(~
P

Fip
P

Fip fEfE = , 31 ≤≤ i .   (5.24) 

The same types of constraints can be introduced for the Fragment Evidence and Sentence 

Focus category spaces: 

)()(~
P

Eip
P

Eip fEfE = , 41 ≤≤ i ,   (5.25) 

)()(~
P

Nip
P

Nip fEfE = , 31 ≤≤ i .   (5.26) 

Similarly, we can impose constraints over the correlation between terms and 

categories. Consider the Fragment Focus category space as an example. We define the 

expected number of co-occurrences between category i  and term j  derived from the 

training data as: 

∑∑
∈∈

==
),(,),(,

~ ),(~),(),(~)(
CDObservedcd

d
FjFi

CDObservedcd

T
Fij

T
Fijp tccdpcdfcdpfE , 

and the expected number of co-occurrences between category  and term i j  predicted by 

the model as: 

d
FjFi

CcDd

T
Fij

CcDd

T
Fijp tcdcpdpcdfdcpdpfE ∑∑∑∑

∈∈∈∈

== )|()(~),()|()(~)( . 
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To make the model consistent with the correlation between terms and categories as 

observed from the training data, we define the following constraints: 

)()(~
T

Fijp
T

Fijp fEfE = , 31 ≤≤ i , Ftj ≤≤1 ,    (5.27) 

where Ft  is the total number of terms related to the Focus of a fragment. 

Similar constraints can be introduced for the Fragment Evidence and Sentence Focus 

category spaces: 

)()(~
T

Eijp
T

Eijp fEfE = , 41 ≤≤ i , Etj ≤≤1 ,   (5.28) 

)()(~
T

Nijp
T

Nijp fEfE = , 31 ≤≤ i , Ntj ≤≤1 ,   (5.29) 

where Et  is the total number of terms related to the Evidence of a fragment; Nt  is the 

total number of terms related to the Focus of a sentence. 

Considering the three distinctive characteristics of the classification, we need to 

impose some additional constraints on the model. 

 

Constraints regarding the Multi-label Classification 

To solve the multi-label classification problem, we use the approach introduced by Zhu et 

al. [ZJXG05]: given a category vector, ),...,( 1 nccc ≡ , the Maximum Entropy model is 

restricted to comply with the second-order statistical property  of the training 

examples. More specifically, if the co-occurrence frequency of category i  and 

jicc

j  is high, 

i.e. the product of the ith and jth elements of the category vector c is 1 for most of the 

examples, the expected value of over the training data should be relatively high. jicc
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Consequently, the expected value of  predicted by the model should be high. The 

constraints can be expressed as the following equation: 

jicc

)()(~ jipjip ccEccE = . 

In our model, consider the Fragment Focus category space as an example. We can 

introduce a feature function matrix  to represent the co-occurrence among categories 

within the category space. For each fragment-label pair , the feature function matrix 

 is defined as the product of the category vector  and its transpose : 

M
Ff

),( cd

M
Ff Fc Fc′

FF
M

F cccdf ′=),( .     (5.30) 

M
Ff  is a  symmetric matrix, where the Boolean element  indicates whether 

categories i and j co-occur.  

33× M
Fijf

Based on the feature function matrix , the correlation among categories 

derived from training examples can be measured by a 

M
Ff

33×  symmetric matrix, as 

illustrated in Figure 5.3.1. The element located in the ith row and the jth column measures 

the expected number of co-occurrences of categories i and  j, defined by: 

∑∑
∈∈

==
),(,),(,

~ ),(~),(),(~)(
CDObservedcd

FjFi
CDObservedcd

M
Fij

M
Fijp cccdpcdfcdpfE . 

Suppose that a considerable number of fragments belong to both of the categories 

Scientific and Methodology, then the value of the element located in the 1st row and the 

3rd column (or the 3rd row and the 1st column) in the correlation matrix should be 

relatively high. 

 
 
 
 
 

 81



  

 
  S G M 
 S x1 x4 x6 
G x4 x2 x5 
M x6 x5 x3 

High value indicates high 
correlation between the categories 
Scientific and Methodology 

 
Figure 5.3.1. The correlation matrix for categories within the Fragment Focus category 
space. 
 
 
We restrict each element value in the correlation matrix predicted by the model, 

FjFi
CcDd

M
Fij

CcDd

M
Fijp ccdcpdpcdfdcpdpfE ∑∑∑∑

∈∈∈∈

== )|()(~),()|()(~)( , to be consistent with 

that derived from the training examples by adding the constraint4: 

)()(~
M

Fijp
M

Fijp fEfE = , 31 ≤<≤ ji .   (5.31) 

Similarly, for a given fragment-label pair , two other feature function 

matrices can be introduced to capture the correlation among categories within the 

Fragment Evidence and Sentence Focus category spaces respectively: 

),( cd

EE
M

E cccdf ′=),( ,    (5.32) 

NN
M

N cccdf ′=),( .    (5.33) 

 Accordingly, two other constraints are imposed on the model: 

)()(~
M

Eijp
M

Eijp fEfE = , 41 ≤<≤ ji ,   (5.34) 

)()(~
M

Nijp
M

Nijp fEfE = , 31 ≤<≤ ji .   (5.35) 

 

Constraints regarding the Correlation between Focus and Evidence    

To capture the co-occurrence between categories from the Fragment Focus and Fragment 

Evidence category spaces, we can introduce a feature function matrix, . For each Rf
                                                 
4 Since the matrix is symmetric, we only need to impose constraints on the elements above the diagonal. 
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fragment-label pair , the feature function matrix  is defined as the product of the 

category vectors  and : 

),( cd Rf

Fc′ Ec

EF
R cccdf ′=),( .    (5.36) 

Rf  is a  matrix, where the Boolean element  indicates whether category i from 

the Focus dimension and category j from the Evidence dimension co-occur.  

43× R
ijf

With the feature function matrix , for a given set of training examples, the 

correlation between the Focus and Evidence dimensions can be viewed as a  matrix 

as shown in Figure 5.3.2. Each row represents a category from the Focus dimension. Each 

column represents a category from the Evidence dimension. The element located in the i

Rf

43×

th 

row and the jth column measures the expected number of co-occurrences of category i 

from the Focus dimension and category j from the evidence dimension, defined by: 

∑∑
∈∈

==
),(,),(,

~ ),(~),(),(~)(
CDObservedcd

EjFi
CDObservedcd

R
ij

R
ijp cccdpcdfcdpfE . 

For example, if there exists high correlation between the categories Methodology and 

Explicit evidence, namely, the Evidence level is Explicit evidence (E3) for most of the 

fragments whose Focus is Methodology, then the value of the element located in the 3rd 

row and the 4th column of the correlation matrix should be relatively high. 

 
 
 

  E0 E1 E2 E3 
 S x x x x 
G x x x x 
M x x x x 

High value indicates strong 
correlation between the categories 
Methodology and Explicit evidence 

 
 
Figure 5.3.2. The correlation matrix for the Fragment Focus and Fragment Evidence 
category spaces. 
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To restrict the model to produce the same value for each element in the correlation matrix 

as derived from the training examples, a constraint is added over the two category spaces: 

)()(~
R

ijp
R

ijp fEfE = , 31 ≤≤ i , 41 ≤≤ j ,   (5.37) 

where   EjFi
CcDd

R
ij

CcDd

R
ijp ccdcpdpcdfdcpdpfE ∑∑∑∑

∈∈∈∈

== )|()(~),()|()(~)( . 

 

Constraints regarding the Context Dependent Classification 

To capture the co-occurrence between categories from the Fragment Focus and Sentence 

Focus category spaces, we can introduce a feature function matrix . For each 

fragment-label pair , the feature function matrix  is defined as the product of the 

category vectors  and : 

Nf

),( cd Nf

Fc′ Nc

NF
N cccdf ′=),( .    (5.38) 

Nf  is a  matrix, where the Boolean element  indicates whether there exists co-

occurrence between Fragment Focus category i and Sentence Focus category j.  

33× N
ijf

With the feature function matrix , for a given set of training examples, the 

correlation between the two category spaces, Fragment Focus and Sentence Focus, can be 

measured by a  matrix as shown in Figure 5.3.3. The rows correspond to the 

Fragment Focus category space. The columns correspond to the Sentence Focus category 

space. The element located in the i

Nf

33×

th row and the jth column measures the expected 

number of co-occurrences of Fragment Focus category i and Sentence Focus category j, 

defined by: 
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∑∑
∈∈

==
),(,),(,

~ ),(~),(),(~)(
CDObservedcd

NjFi
CDObservedcd

N
ij

N
ijp cccdpcdfcdpfE . 

The element value gives a quantitative measurement of how high the correlation is 

between the categories. By the definition of the Sentence Focus at the beginning of 

Section 5.3.1, the diagonal element value in the correlation matrix should be relatively 

high. That is, the Focus of a fragment tends to be consistent with the Focus of the 

sentence where it comes from. If in the training dataset many fragments with different 

Focus, say Scientific or Methodology, co-occur in the same sentences, in the correlation 

matrix, the element located in the 1st row and the 3rd column, and the element located in 

the 3rd row and the 1st column, can also have high values. 

 

 S G M 
S x x x 
G x x x 
M x x x 

High value indicates the 
consistency between Fragment 
Focus and Sentence Focus. 

 
Figure 5.3.3. The correlation matrix for the Fragment Focus and Sentence Focus 
category spaces. 
 
 
To make use of the dependence of Fragment Focus on Sentence Focus, we need to 

restrict the model to produce the same value for each element in the correlation matrix as 

derived from the training examples. We therefore add a constraint over the category 

spaces Fragment Focus and Sentence Focus:        

)()(~
N

ijp
N

ijp fEfE = , 31 ≤≤ i , 31 ≤≤ j ,   (5.39) 

where   NjFi
CcDd

N
ij

CcDd

N
ijp ccdcpdpcdfdcpdpfE ∑∑∑∑

∈∈∈∈

== )|()(~),()|()(~)( . 
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5.3.4 The Parametric Form of the Model 

In the previous section, we have defined five types of feature matrices: the occurrence of 

categories within each category space, ; the correlation between terms and 

categories within each category space, ; the correlation between categories 

within each category space, ; the correlation between the Fragment Focus 

and Fragment Evidence category spaces, ; and the correlation between the Fragment 

Focus and Sentence Focus category spaces . 

P
N

P
E

P
F fff ,,

T
N

T
E

T
F fff ,,

M
N

M
E

M
F fff ,,

Rf

Nf

Based on the above features, we need to introduce five types of model parameters 

that reflect the contributions of the features toward the final classification decision: 

parameters represent the weights of the feature matrices  

respectively; parameters  represent the weights of the feature matrices 

 respectively; parameters  represent the weights of the feature 

matrices  respectively; parameter  represents the weight of the feature 

matrix ; parameter  represents the weight of the feature matrix . Thus, the 

optimal conditional probability  has the following parametric form (Refer to 

Appendix D for the detailed derivations): 

P
N

P
E

P
F λλλ ,, P

N
P

E
P

F fff ,,

T
N

T
E

T
F λλλ ,,

T
N

T
E

T
F fff ,, M

N
M
E

M
F λλλ ,,

M
N

M
E

M
F fff ,, Rλ

Rf Nλ Nf
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P
F ffffff
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dcp ······ λλλλλλ +++++= exp(
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        ,  (5.40) )T
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T
F

NNRR fffff ····· λλλλλ +++++

where f·λ denotes the sum of the pairwise products of the elements in the two matrices, 

λ  and , formally: f f·λ = , and Z(d) is the normalization factor, defined as : ∑
ji

ijij f
,
λ
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We use the IIS algorithm to find the optimal parameter sets. We start from an 

arbitrary initial parameter set , and at each 

step, find an improvement, , 

such that the new model 

),,,,,,,,,,( T
N

T
E

T
F

NRM
N

M
E

M
F

P
N

P
E

P
F λλλλλλλλλλλ≡Λ

),,,,,,,,,,( T
N

T
E

T
F

NRM
N

M
E

M
F

P
N

P
E

P
F δλδλδλδλδλδλδλδλδλδλδλδ ≡

δ+Λ  yields a higher log likelihood with respect to the training 

data (Refer to Appendix D for the detailed formulations).  

To classify a data instance, we enumerate all the possible combinations of the 

three category vectors , and calculate their conditional probabilities. The data 

instance would be assigned to the class label that yields the highest probability. 

NEF ccc ,,

So far, we have designed a model based on Maximum Entropy to address the 

special needs of the classification along the Focus and Evidence dimensions. The 

classification performance of this model along the two dimensions, as well as the 

experiments with Naïve Bayes and SVM classifiers along other dimensions, are presented 

in the next chapter. 
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Chapter 6 

Classification Performance: Evaluation and Analysis 

In this chapter, we investigate the feasibility of using machine learning methods to 

automatically perform the fragment annotation task. We examine three classification 

algorithms: Naïve Bayes, Support Vector Machines (SVMs), and Maximum Entropy1. 

The classification performance is evaluated separately for each of the five dimensions: 

Focus, Evidence, Certainty, Polarity and Trend. We present the experimental results, and 

discuss issues and solutions. 

 

6.1 Dataset 

Our dataset consists of sentences sampled from different sections of full-text journal 

articles and from Medline abstracts. The dataset has three parts, and each part was 

annotated by a different group of three annotators. Part 1 contains 200 sentences 

annotated by the three authors of the Annotation Guidelines  [ShWR06]. Parts 2 and 3 

contain 625 sentences each, annotated by annotators (advanced graduate students in 

Biology) who were trained using the guidelines. We experiment with two approaches to 

decide on the fragmentation and annotation of a sentence. 

To ensure the quality of the training data, for each dimension, we first use 

sentences whose annotated labels along that dimension are agreed upon by at least two 

annotators for part 1, and sentences whose annotated labels are agreed upon by all of the 

                                                 
1 In early stages of this work, we also conducted experiments using other classification methods, such as 
Decision Trees and Neural Networks, which produced relatively inferior results. 
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three annotators for parts 2 and 3. Since we have designed a Maximum Entropy model to 

classify data along the Focus and Evidence dimensions simultaneously, for these two 

dimensions, we generate a set of sentences with the annotated labels agreeing on both of 

the two dimensions. As a result, four datasets were generated for the five dimensions. 

Table 6.1.1 shows the number of sentences and the number of fragments of each dataset. 

However, as can be seen from Table 6.1.1, the training data for each dimension is 

still limited. As further investigation, we generate more training data by selecting 

sentences based on the majority agreement for all of the manually annotated examples. 

That is, for each dimension, we use sentences whose annotated labels along that 

dimension are agreed upon by at least two annotators. In addition to the three parts of the 

dataset mentioned above, we add a new dataset2 which contains 625 sentences. As a 

result, we generate four larger datasets whose properties are shown in Table 6.1.2.  

 

Table 6.1.1. The dataset generated for each classification dimension. 

 Focus and 
Evidence 

Certainty Polarity Trend 

Number of 
Sentences 

296 796 916 822 

Number of 
Fragments 

354 876 1031 919 

Dataset Name Frag_FE Frag_C Frag_P Frag_T 
 

Table 6.1.2. The datasets generated based on the majority annotation agreement. 

 Focus and 
Evidence 

Certainty Polarity Trend 

Number of 
Sentences 

1051 1671 1819 1739 

Number of 
Fragments 

1168 1902 2100 2003 

Dataset Name Frag_M_FE Frag_M_C Frag_M_P Frag_M_T 

                                                 
2 This dataset is annotated by only two annotators, thereby it cannot be used when we select sentences 
whose labels are agreed upon by three annotators. 
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The main classification experiments in this thesis are performed on the dataset 

shown in Table 6.1.1. Experimental results and analysis are provided in Section 6.3. The 

classification performance on the larger datasets together with basic analysis are reported 

in Section 6.4. Before examining the experimental results, we first discuss the measures 

that are used to evaluate the classification performance. 

 

6.2 Performance Measures for the Fragment Classification 

To evaluate the classification performance, we use the standard measures in text 

categorization tasks, Precision and Recall, as discussed in Section 2.2.3. Specifically, for 

a given category i, Precision and Recall are defined as: 

ii

i
i FPTP

TP
Precision

+
=    , 

ii

i
i FNTP

TP
Recall

+
= . 

The confusion matrix of a classifier provides a more straightforward way to 

understand the definitions of True Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN) with respect to a category. For example, suppose we have three 

categories, denoted as A, B, C respectively. Table 6.2.1 shows the entries in the confusion 

matrix that contribute to , ,  and  respectively. Each row represents a 

true category, and each column represents a predicted category. 

ATP AFP ATN AFN
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Table 6.2.1. The entries that contribute to , ,  and  in the confusion 
matrix for a three-category case. 

ATP AFP ATN AFN

 
 A B C 

A TPA FNA FNA
B FPA TNA TNA
C FPA TNA TNA

 

The standard Precision and Recall are initially defined for single-label 

classification tasks. The True Positive, False Positive, True Negative, and False Negative 

examine whether a data example is correctly classified into – or rejected from – a 

category, without considering the issue of partially correct category assignment when a 

data example is associated with multiple categories. In the case when the classification is 

multi-labeled, all the combined multiple categories are treated as independent new 

categories, namely, the multi-label classification is converted into a single-label one.  

In our fragment annotation task, the classification along the Focus and Evidence 

dimensions is multi-labeled. Consider the Focus dimension as an example. There are 

three basic categories: Scientific, denoted as S; Generic, denoted as G; and Methodology, 

denoted as M. These lead to seven possible combinations: S, G, M, MS, MG, SG, and 

MSG. The standard Precision and Recall can be obtained by treating all of the seven 

combinations as independent categories (Table 6.2.2). As can be seen from the confusion 

matrix shown in Table 6.2.2, both Precision and Recall for the category MS are zero. 

Although the examples under this category are either classified as M or S, they are treated 

as completely misclassified examples. Because the standard Precision and Recall do not 

take into account the partial success in category assignment, they cannot accurately 

evaluate the performance of our classification task. 
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Table 6.2.2. An example confusion matrix that ignores the partially correct category 
assignment. 
 

 S G M MS MG SG MSG Precision Recall 
S 267 4 1 0 0 0 0 0.86 0.98 
G 26 9 1 0 0 0 0 0.69 0.25 
M 13 0 24 0 0 0 0 0.80 0.65 

MS 3 0 4 0 0 0 0 0.00 0.00 
MG 0 0 0 0 0 0 0 NA NA 
SG 2 0 0 0 0 0 0 0.00 0.00 

MSG 0 0 0 0 0 0 0 NA NA 
Average        0.47 0.38 

 

Based on the nature of our categories, we propose an alternative performance 

measure, modifying the standard Precision and Recall, such that partial success in a 

multiple category assignment can be rewarded. We next go over this measure in detail. 

Since Precision and Recall are only concerned with True Positive, False Positive, and 

False Negative with respect to a category, we only consider , , and  with 

respect to category i in the following discussion. Our performance measure for the multi-

labeled classification follows the standard definitions of Precision and Recall, but uses 

different ways to calculate True Positive, False Positive, and False Negative with respect 

to a category. 

iTP iFP iFN

As previously discussed in Section 5.3.2, we can use a Boolean vector 

 to represent the label of a fragment, where  is the total number of 

categories. Each element  indicates the membership of the fragment in category i, 

defined as: 

),...,( 1 mccc ≡ m

ic

⎩
⎨
⎧

=
.0

;1
otherwise

icategorytoassignedisfragmenttheif
ci  
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We use  to denote the true label of a fragment d, and 

 to denote its predicted label.  Suppose we view the total value of the 

classification of a fragment as 1. If a fragment is assigned into k categories, each category 

thus gets 

),...,(
1

dTdTdT
m

ccc ≡

),...,(
1

dPdPdP
m

ccc ≡

k
1  of this total value. For the classification of each fragment, we refer to the 

value that category i should get as the True Contribution of the fragment to category i, 

and the value that is assigned to category i by a classifier as the Predicted Contribution of 

the fragment to category i. We can calculate the True Contribution of a fragment to each 

category by normalizing the category vector : dTc

)...,,()...,,(

11

1
1

∑∑
==

=≡ m

i

dT
i

dT

m

i

dT
i

dT
d
m

dd

c

c

c

c
TCTCTC m . 

Similarly, the Predicted Contribution of a fragment to each category can be calculated by 

normalizing : dPc

)...,,()...,,(

11

1
1

∑∑
==

=≡ m

i

dP
i

dP

m

i

dP
i

dP
d
m

dd

c

c

c

c
PCPCPC m . 

We use , , and  to represent the changes in True Positive, False 

Positive, and False Negative with respect to category i when introducing fragment d into 

the dataset. 

dTP
iδ

dFP
iδ

dFN
iδ

dTP
iδ  is calculated based on the agreement between the True Contribution and the 

Predicted Contribution of a fragment to category i, namely, the value that is correctly 

assigned to category i, defined as: 

),min( d
i

d
i

dTP
i PCTC=δ . 

 93



  

dFP
iδ  and  are calculated based on the difference between the True Contribution and 

the Predicted Contribution of a fragment to category i. If the Predicted Contribution of a 

fragment to category i is larger than its True Contribution, namely, the value that is 

assigned to category i is incorrectly higher, the difference between the Predicted 

Contribution and the True Contribution is considered as False Positive, defined as: 

dFN
iδ

⎩
⎨
⎧ >−

=
.0

;,
otherwise

TCPCifTCPC d
i

d
i

d
i

d
idFP

iδ  

If the True Contribution of a fragment to category i is larger than its Predicted 

Contribution, namely, the value that is assigned to category i is incorrectly lower, the 

difference between the True Contribution and the Predicted Contribution is considered as 

False Negative, defined as: 

⎩
⎨
⎧ >−

=
.0

;,
otherwise

PCTCifPCTC d
i

d
i

d
i

d
idFN

iδ  

Thus, the True Positive, False Positive, and False Negative with respect to category i, i.e., 

, , and , can be calculated by summing over the changes , , and 

 brought by each fragment in the training set. 

iTP iFP iFN dTP
iδ

dFP
iδ

dFN
iδ

To illustrate how our performance measure is defined, we consider the Focus 

dimension as an example. As previously mentioned, there are three basic categories: 

Scientific, denoted as S; Generic, denoted as G; and Methodology, denoted as M. We use 

 to denote the Focus label of a fragment. Specifically, if the true category 

of a fragment d is S, and the predicted category is MS, the True Contribution of the 

fragment to the three categories can be represented as a vector, , and the 

Predicted Contribution can be represented as a vector, . Accordingly, 

),,( MGS cccc ≡

)0,0,1(=dTC

)5.0,0,5.0(=dPC
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the changes in , , and  with respect to category S by introducing the 

fragment into the dataset are:  

STP SFP SFN

5.0)5.0,1min( ==dTP
Sδ , 

0=dFP
Sδ , 

5.05.01 =−=dFN
Sδ . 

The changes in , , and  with respect to category M are:  MTP MFP MFN

0)5.0,0min( ==dTP
Mδ ,  

5.005.0 =−=dFP
Mδ ,  

0=dFN
Mδ .  

That is, the True Positive and False Negative with respect to category S, namely,  and 

 are increased by 0.5 respectively; and the False Positive with respect to category M 

is increased by 0.5. Thus, the partially correct assignment of fragment d under category S 

is rewarded (  is increased by 0.5). We illustrate the detailed calculation of TP , 

STP

SFN

STP FP , 

and  with respect to each category in Table 6.2.3. Each row represents the true 

categories of an example, each column represents the predicted categories, and each 

element represents a possible way to classify an example. 

FN
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Table 6.2.3. The calculation of TP , , and  with respect to each category for any 
possible classification of an example. S denotes Scientific, G denotes Generic, M denotes 
Methodology, MS, MG, SG, and MSG denote the combinations of them. 

FP FN

 

 S G M MS MG SG MSG 

S TPS + 1 FNS + 1 
FPG + 1 

FNS + 1 
FPM + 1 

TPS + 0.5 
FNS + 0.5 
FPM + 0.5 

FNS + 1 
FPM + 0.5 
FPG + 0.5 

TPS + 0.5 
FNS + 0.5 
FPG + 0.5 

TPS + 0.33 
FNS + 0.67 
FPM + 0.33 
FPG + 0.33 

G FPS + 1 
FNG + 1 TPG+ 1 FPM + 1 

FNG + 1 

FPS + 0.5 
FPM + 0.5 
FNG + 1 

FPM + 0.5 
TPG + 0.5 
FNG + 0.5 

FPS + 0.5 
TPG + 0.5 
FNG + 0.5 

FPS  + 0.33 
FPM + 0.33 
TPG + 0.33 
FNG + 0.67 

M FPS + 1 
FNM + 1 

FNM + 1 
FPG + 1 TPM + 1 

FPS + 0.5 
TPM + 0.5 
FNM + 0.5 

TPM + 0.5 
FNM + 0.5 
FPG + 0.5 

FPS + 0.5 
FNM + 1 
FPG + 0.5 

FPS  + 0.33 
TPM + 0.33 
FNM + 0.67 
FPG + 0.33 

MS 
TPS + 0.5 
FPS + 0.5 
FNM + 0.5 

FNS + 0.5 
FNM + 0.5 

FPG + 1 

FNS + 0.5 
TPM + 0.5 
FPM + 0.5 

TPS + 0.5 
TPM + 0.5 

FNS + 0.5 
TPM + 0.5 
FPG + 0.5 

TPS + 0.5 
FNM + 0.5 
FPG + 0.5 

TPS + 0.33 
FNS + 0.17 
TPM + 0.33 
FNM + 0.17 
FPG + 0.33 

MG 
FPS + 1 

FNM + 0.5 
FNG + 0.5 

FNM + 0.5 
TPG + 0.5 
FPG + 0.5 

TPM + 0.5 
FPM + 0.5 
FNG + 0.5 

FPS + 0.5 
TPM + 0.5 
FNG + 0.5 

TPM + 0.5 
TPG + 0.5 

FPS + 0.5 
FNM + 0.5 
TPG + 0.5 

FPS + 0.33 
TPM + 0.33 
FNM + 0.17 
TPG + 0.33 
FNG + 0.17 

SG 
TPS + 0.5 
FPS + 0.5 
FNG + 0.5 

FNS + 0.5 
TPG + 0.5 
FPG + 0.5 

FNS + 0.5 
FPM + 1 

FNG + 0.5 

TPS + 0.5 
FPM + 0.5 
FNG + 0.5 

FNS + 0.5 
FPM + 0.5 
TPG + 0.5 

TPS + 0.5 
TPG + 0.5 

TPS + 0.33 
FNS + 0.17 
FPM + 0.33 
TPG + 0.33 
FNG + 0.17 

MSG 

TPS + 0.33 
FPS + 0.67 
FNM + 0.33 
FNG + 0.33 

FNS + 0.33 
FNM + 0.33 
TPG + 0.33 
FPG + 0.67 

FNS + 0.33 
TPM + 0.33 
FPM + 0.67 
FNG + 0.33 

TPS + 0.33 
FPS + 0.17 
TPM + 0.33 
FPM + 0.17 
FNG + 0.33 

FNS + 0.33 
TPM + 0.33 
FPM + 0.17 
TPG + 0.33 
FPG + 0.17 

TPS + 0.33 
FPS + 0.17 
FNM + 0.33 
TPG + 0.33 
FPG + 0.17 

TPS + 0.33 
TPM + 0.33 
TPG + 0.33 

 

 

Based on the new definitions of True Positive, False Positive, and False Negative, 

the recalculated confusion matrix, as well as Precision and Recall that take into account 

the partial success in category assignment for multi-label classification, are shown in 

Table 6.2.4. Compared to the original confusion matrix that treats all the combined 

multiple categories as independent new categories (Table 6.2.2), the average Precision 

and Recall increase from 0.47 and 0.38, to 0.81 and 0.62, respectively. Based on this new 
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measure, the performance of our multi-label classification task can be more accurately 

evaluated. 

 
Table 6.2.4. The recalculated confusion matrix where the partial successful category 
assignment for multi-label classification is rewarded.  
 

 S G M Precision Recall 
S 269.5 4.0 3.0 0. 87 0.98 
G 27.0 9.0 1.0 0. 69 0.24 
M 14.5 0.0 26.0 0. 87 0.64 

Average    0. 81 0.62 
 
 
6.3 Experimental Results and Analysis 

We evaluate the classification performance along each dimension separately. Since most 

of the work in this thesis is concerned with the design of a classification model for the 

Focus and Evidence dimensions, which involves several distinctive characteristics 

compared to general text classification tasks, we mainly focus on the experimental results 

and analysis on these two dimensions. We then report the classification performance on 

the other three dimensions and present preliminary analysis. 

 

6.3.1 Focus and Evidence 

Since our Maximum Entropy model classifies data along the Focus and Evidence 

dimensions simultaneously, we examine the classification performance on the dataset 

Frag_FE, which consists of fragments whose annotated labels agree on both of these 

dimensions. 
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The Distribution of Fragments among Categories 

Before examining the classification performance, we first look at the distribution of 

fragments in the categories, which is shown in Figures 6.3.1 and 6.3.2. We can see that 

the distribution along the Focus dimension is skewed. Most of the fragments belong to 

the Scientific category, while only a few belong to multiple categories, i.e., Methodology 

and Scientific, or Scientific and Generic. In contrast, the distribution of fragments among 

categories along the Evidence dimension is more uniform. However, no examples with 

multiple Evidence levels are included. Since the annotation for the examples consists of 

the majority or the unanimous annotation agreement, such agreement is less likely to 

occur on multiply annotated categories than on a single category assignment. Therefore, 

only a few examples with multiple category assignment exist in our dataset.  

A similar problem exists in the sentence fragmentation.  As can be seen from 

Table 6.1.1, the total number of sentences and the total number of fragments are very 

close to each other within each dataset, which means that the fraction of sentences with 

multiple fragments is small. The reason is that most of the long sentences with several 

fragments, heterogeneous in content, are filtered out due to the disagreement between 

annotators. Further revision of the manual annotation is required to improve the quality of 

the dataset such that it can more accurately reflect the real characteristics of scientific 

literature. 
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Figure 6.3.1. The distribution of fragments in the categories along the Focus dimension 
over the dataset Frag_FE. S denotes Scientific, G denotes Generic, M denotes 
Methodology, MS, MG, SG, and MSG denote their combinations. 
 

 

Figure 6.3.2. The distribution of fragments in the categories along the Evidence 
dimension over the dataset Frag_FE. E0 denotes No evidence, E1 denotes Claim of 
evidence without verifying information, E2 denotes Explicit citation, E3 denotes 
Explicit evidence, and E23 denotes both Explicit citation and Explicit evidence. 
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Experimental Results 

Before applying the classification algorithms, we need to preprocess the data. We follow 

the preprocessing procedures as discussed in Section 4.1.  

First, each sentence fragment is converted into a vector of term weights, where 

terms are formed by individual words and n-grams. As discussed in Section 4.1, there are 

two ways to generate n-grams: treating stop words as n-gram boundaries, which produces 

shorter word sequences; and ignoring stop words in n-gram generation, which produces 

longer word sequences. In our experiments, the two approaches yield similar 

classification performance. Here we only report the experimental results based on the 

latter, i.e., ignoring stop words in n-gram generation. 

Next, the dimension reduction procedures introduced in Section 4.2 are applied. 

After removing stop words, filtering out terms occurring less than two times, and 

selecting words based on their POS tags, about 800 terms are retained in the dataset 

Frag_FE (354 fragments). To further investigate the effect of the number of terms on the 

classification performance, we experiment with the term selection functions surveyed in 

Section 2.2.1. In our experiment, the terms for the Focus dimension are first ranked 

according to their scores based on the term selection function chi-square. Then the 

performance of a Naïve Baiyes classifier is investigated on thirteen types of fragment 

representation where the number of terms varies from 20 to 810. The result is shown in 

Figure 6.3.3. We can see that the highest prediction accuracy is obtained when the 

number of terms is between 20 and 50. Although there are variations in performance with 

the addition of terms (e.g., slightly improved accuracy is observed when the number of 
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terms increases from 500 to 700), in general, the inclusion of more terms degrades the 

performance. 

 

Figure 6.3.3. The performance of a Naïve Bayes classifier as a function of the number of 

terms used. 

A similar experiment is performed on the Evidence dimension, and the best 

performance is obtained when the number of terms is between 100 and 200. Therefore, 

the top 30 terms are selected to generate the fragment representation for the Focus 

dimension, and the top 200 terms are used for the Evidence dimension. 

Three classifiers, Naïve Bayes [WiFr05], Support Vector Machine (SVM) 

[ChLi01], and Maximum Entropy are investigated. Classification performance is 

measured in terms of Precision, Recall and F-measure (partially correct category 

assignment is rewarded). We also provide the classification accuracy3 as a reference. 

                                                 
3 The accuracy takes into account the partial successful category assignment for multi-label classification. It 

can be calculated as follows: Accuracy = 
D

TP
m

i
i∑

, where m is the total number of categories, and D  is the 

total number of examples. The calculation of  with respect to category i is introduced in Section 6.2. iTP
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Tables 6.3.1 and 6.3.2 show the performance of each classifier in the 5-fold cross 

validation (CV) test mode4. To ensure that the classification performance under the 5-fold 

CV mode is relatively stable, we test five different random splits. Based on each split, we 

measure the performance of the Maximum Entropy model under the 5-fold CV test mode. 

The standard deviation for the F-measures from the five different splits is 0.01 along the 

Focus dimension, and 0.007 along the Evidence dimension. These results indicate that the 

classification performance does not vary much with different splits. We report the 

preliminary results based on our small dataset as a reference to investigate the feasibility 

of automatic fragment annotation, rather than to provide performance comparison 

between different classification models. A much larger dataset is required to conduct 

reliable performance comparisons in the future. 

 

Table 6.3.1. The performance of the Focus classification on the dataset Frag_FE. The 
dataset contains 296 sentences (354 fragments). S denotes Scientific, G denotes Generic, 
and M denotes Methodology. 
 

Precision Recall F-measure Accuracy 

Category 
Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

S 0.86 0.84 0.87 0.99 0.99 0.98 0.92 0.91 0.92 

G 0.73 0.80 0.69 0.22 0.11 0.24 0.33 0.19 0.36 

M 0.88 0.86 0.87 0.52 0.52 0.64 0.65 0.65 0.74 

Average 0.82 0.83 0.81 0.58 0.54 0.62 0.68 0.65 0.70 0.86 0.84 0.86 

 

 

 

 

                                                 
4 All the experiments in this chapter are conducted in a 5-fold cross validation (CV) test mode.  
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Table 6.3.2. The performance of the Evidence classification on the dataset Frag_FE. The 
dataset contains 296 sentences (354 fragments). E0 denotes No evidence, E1 denotes 
Claim of evidence without verifying information, E2 denotes Explicit citation, and E3 
denotes Explicit evidence. 
 

Precision Recall F-measure Accuracy 

Category 
Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

Naïve 
Bayes SVM 

Maximum 
Entropy 

E0 0.79 0.75 0.76 0.98 0.92 0.96 0.87 0.82 0.85 

E1 0.93 0.90 0.85 0.52 0.63 0.41 0.67 0.74 0.55 

E2 0.92 0.94 0.94 0.91 0.88 0.88 0.92 0.91 0.91 

E3 0.89 0.81 0.89 0.77 0.71 0.80 0.83 0.76 0.84 

Average 0.88 0.85 0.86 0.80 0.78 0.76 0.84 0.82 0.81 0.86 0.83 0.85 

 

We also investigated other term space reduction functions such as Information 

gain and Odds ratio [YaPe97, Seba99], as well as the term exaction (term synthesis) 

method Principal Component Analysis [LiJa88], to select a different number of features. 

However, no improvement in the classification performance is observed. We will further 

investigate these approaches in future studies. 

 

Results Analysis 

From Table 6.3.1, we can see that the classification along the Focus dimension by the 

Maximum Entropy classifier yields an average F-measure of 0.70, which suggests that 

machine learning methods can perform the Focus classification with good accuracy. 

The investigation into the misclassification does not suggest a clearly effective 

way to further improve the Focus classification on the current dataset. A few 

misclassifications are caused by the removal of discriminating terms in the preprocessing 

step since they only occur once. For example, cue phrases such as “not fully understand”, 

“studies are limited” for the Generic category, and “We developed” for the Methodology 

category are all filtered out. However, most of the misclassifications are caused by the 
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fact that the available terms in the fragment representation cannot support a clear category 

assignment, especially for the Methodology and Generic categories.  

Since we divide the Focus of a sentence into three categories: Scientific, 

Methodology, and Generic, the coarse granularity of the category definition allows a wide 

range of subjects for each category. In contrast to the classification along the other four 

dimensions, there is no fixed set of rules (e.g. explicit citations for Evidence) or cue terms 

(e.g. speculative words for Certainty) available to clearly define the category boundaries 

along the Focus dimension. To derive the general characteristics of each category (e.g., 

the frequently occurring words or phrases), a large amount of training data is necessary. 

In our dataset, only about 30 fragments are available for each of the Methodology and 

Generic categories. Such a limited number of examples cannot provide enough 

information to characterize each category. Since the category distribution is skewed, the 

classification decisions are then biased toward the major category, Scientific, as can be 

seen from the confusion matrix in Table 6.3.3. We expect that a larger amount of data 

with a relatively uniform category distribution can help to improve the classification 

performance along this dimension in the future. 

 

Table 6.3.3. The confusion matrix of the Focus classification by the Maximum Entropy 
classifier. 
 

 S G M 
S 269.5 4.0 3.0 
G 27.0 9.0 1.0 
M 14.5 0.0 26.0

 

Compared to the classification on the Focus of a fragment, the classification on its 

Evidence level yields a better performance as shown in Table 6.3.2. The F-measure above 
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0.8 obtained by each classifier indicates that the categories can be recognized with high 

accuracy. To analyze the classification results, we start from the confusion matrix shown 

in Table 6.3.4. From the confusion matrix, we learn that there are mainly two kinds of 

misclassifications: the misclassification of category E3 as E0, and the confusion between 

E1 and other categories. We next examine them more closely. 

 

Table 6.3.4. The confusion matrix of the Evidence classification by the Maximum Entropy 

classifier. 

 
 E0 E1 E2 E3

E0 116 1 2 2 
E1 10 11 1 5 
E2 7 0 81 4 
E3 20 1 2 91 

 

There are two major causes for the misclassification of fragments under category 

E3 into category E0.  

First, many distinguishing terms for Explicit evidence (E3) such as “our results 

reveal”, “we report”, “we provide evidence” only occur once in the training set, and they 

are thereby filtered out automatically.  Currently, we do not have an effective solution to 

this problem, since the occurrence of such terms must be significant in the training set to 

be recognized as cue terms for the category (E3). We expect that a relatively consistent 

set of phrases that are commonly used to express Explicit evidence in scientific literature, 

such as “our data show”, “our results indicates”, “we found …”, “we see …”, etc, can be 

derived on a sizable training corpus. This assumption is yet to be investigated in future 

studies. 
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Second, the Evidence level of some fragments is mainly decided by the semantic 

meaning of the whole statement, instead of a fixed set of words or phrases. For example, 

when a certain methodology of a scientific experiment is discussed, the Evidence level is 

typically E3; when the general state of knowledge is introduced, the Evidence level is 

usually E0.  In such a case, it is hard to distinguish between E0 and E3 since no fixed 

terms are available to characterize each category.  However, as we have discussed in 

Section 5.3.3, there may exist strong correlation between categories from the Focus and 

Evidence dimensions, such as M and E3, i.e. Methodology and Explicit evidence. If we 

can improve the prediction accuracy for the Focus classification when more examples are 

available, and make use of such correlation, the misclassification between E0 and E3 may 

be reduced.  

To verify that correlation exists between the Focus and Evidence dimensions, we 

first revisit the feature definition in Section 5.3.3. For each fragment, we introduce a 43×  

feature matrix (equation 5.36) to represent the co-occurrence between categories from 

the Fragment Focus and Fragment Evidence category spaces. Accordingly, we introduce 

a  parameter matrix  to represent the weight of the feature matrix  in the 

conditional probability distribution  (equation 5.40). Table 6.3.5 shows the value 

of  estimated over the training set, where the rows correspond to the Focus categories, 

and the columns correspond to the Evidence categories.  

Rf

43× Rλ Rf

)|( dcp

Rλ

We can see that the parameter value reflects the likelihood of each possible 

combination between the categories along the two dimensions. We do not compare the 

absolute element values in Table 6.3.5. Since there are many more examples from the 

Scientific category than those from the Methodology or Generic category, the likelihood 
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of each Evidence level to be combined with a Scientific Focus is high, compared to its 

combination with the other two categories. The comparison between the element values 

within the same row reveals some useful statistics. If the Focus of an example is Scientific, 

the possibility that it belongs to every Evidence category is similar, except for E0 that is 

relatively higher. However, if an example is from the Generic category, it is highly likely 

that its Evidence level is E0; if an example is under the Methodology category, it is very 

probable that it has the highest Evidence level, i.e., E3. Therefore, if we can in the future 

improve the prediction accuracy for the Generic and Methodology categories, the 

misclassification between E0 and E3 may be reduced. 

 

Table 6.3.5. The parameter value of . Rλ
 

 E0 E1 E2 E3 
S 1.839 0.898 0.981 1.047
G 1.110 0.064 0.306 0.202
M 0.008 0.058 0.023 0.813

 

The confusion between E1 and the other categories accounts for another source of 

misclassification. Unlike E2 and E3, there are no predefined rules (e.g., reference to 

citations or figures) that can explicitly characterize the category E0. The classification is 

typically decided by the presence of certain terms, such as “as previously discussed”, or 

“studies are limited”. This accordingly requires a large number of training examples such 

that a set of commonly used cue terms may be derived. In our dataset, the examples under 

E1 are much fewer than those under the other three categories (Figure 6.3.2), thereby, 

there is less information regarding this category. By inspecting the misclassified examples, 

we have learned that the removal of low-frequency cue words or phrases results in most 
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of the misclassifications for the category E1. This kind of misclassification is hard to 

avoid, since the expressions for the indirect implication of evidence are very diverse. 

Typically with the inclusion of more examples, new, less-frequent cue terms are 

introduced.  

Another issue that has caused the misclassification between E1 and other 

categories is that the presence of certain predictive terms can support several levels of 

evidence.  For example, the presence of the word “indicate” or “suggest” alone may 

imply the Evidence level of E1. However, when it co-occurs with external citations, the 

Evidence level may be E2. While when it is used together with a figure or a table, or as a 

part of a phrase like “these findings indicate that”, the Evidence level becomes E3. This 

kind of ambiguity can easily lead to misclassification on our limited training dataset, 

where the co-occurrence of different cue terms does not produce statistically significant 

patterns to distinguish different categories. This issue may be improved on a larger 

dataset and remains to be studied. 

Overall, the preliminary results indicate that accurate Evidence classification can 

be obtained using machine learning algorithms. From the above analysis, we believe that 

certain issues regarding the misclassification may be improved when more data examples 

are available. The classification performance on a larger dataset remains to be 

investigated in the future. 
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Further Discussion 

In our current dataset, there are several problems that may restrict the performance of the 

Maximum Entropy classifier. 

First, the number of training examples is limited and the data representation is 

sparse. As previously mentioned, the highest prediction accuracy is obtained when 30 

terms are included in the fragment representation for the Focus dimension. As a result, 

the data representation is very sparse and most entries in the fragment representation 

vector get a value of 0. Such a small and sparse dataset typically leads to poor 

classification  performance.  

Second, one advantage of our model is its ability to capture the correlation 

between categories in multi-label classification. However, the fraction of examples with 

multiple categories is very small in our dataset (Figure 6.3.1). As a consequence, useful 

statistics regarding the category correlation cannot be derived from the training data to 

help make classification decisions.  

Last, an important feature of our model is that it takes into account the 

surrounding context when determining the Focus of a fragment. However, as previously 

mentioned, most sentences are not fragmented in our dataset. For an unfragmented 

sentence, the information from the sentence representation is the same as that from the 

fragment representation. Moreover, as previously mentioned, the optimal performance is 

obtained when only 30 terms are selected for the Focus classification. In such a case, both 

the fragment and sentence representations are sparse. As a result, a sentence usually 

contains no more information than the individual fragments within it. Considering the 

above factors, the merit brought by considering the context from the whole sentence is 
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minor. Instead, the performance may degrade due to the addition of new features related 

to the surrounding context, since a model with a large number of parameters is more 

prone to overfitting on limited training examples. To address this issue, we modified the 

Maximum Entropy model to remove the constraints regarding context information. The 

experiment shows that the modified model yields a better classification performance than 

the original one (Table 6.3.6), specifically, the F-measure along the Focus dimension 

increases from 0.70 to 0.74. 

 

Table 6.3.6. The classification performance along the Focus and Evidence dimension 
without considering context information in the Maximum Entropy model. 

 

Category Precision Recall F-measure Accuracy 

S 0.86 0.99 0.92 

G 1.00 0.22 0.36 
M 0.91 0.63 0.75 

Average 0.92 0.61 0.74 0.87 

Average  
(Model with Context) 0.68 0.65 0.70 0.86 

 

Category Precision Recall F-measure Accuracy 

E0 0.77 0.96 0.85 
E1 0.85 0.41 0.55 
E2 0.94 0.87 0.90 
E3 0.89 0.82 0.85 

Average 0.86 0.76 0.81 0.85 

Average  
(Model with Context) 0.86 0.76 0.81 0.85 

 

In future studies, we will further examine the performance of our model on a 

sizable dataset which contains more sentences with multiple fragments and more 

fragments with multiple categories. 
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6.3.2 Certainty 

The classification performance along the Certainty dimension is evaluated on the dataset 

Frag_C, which contains 879 sentence fragments. Before presenting the performance 

result, we first examine the distribution of fragments in the categories. Figure 6.3.4 

demonstrates a very skewed distribution: among the 879 fragments, only about 60 are 

from the categories Complete uncertainty, Low certainty, or High likelihood. 

As discussed in Section 4.1, each sentence fragment is mapped to a vector of 

words and n-grams in the preprocessing step. Two classifiers, Naïve Bayes and SVM, are 

applied to the dataset. The best performance is obtained when the top 100 terms returned 

by the chi-square term selection function are used to train the classifiers. Table 6.3.7 

shows the performance measured in terms of Precision, Recall and F-measure. 

 

Figure 6.3.4. The distribution of fragments in the categories along the Certainty 
dimension over the dataset Frag_C. 0 denotes Complete uncertainty, 1 denotes Low 
certainty, 2 denotes High likelihood, and 3 denotes Complete certainty. 
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Table 6.3.7. The performance of the Certainty classification on the dataset Frag_C. The 
dataset contains 796 sentences (876 fragments). 0 denotes Complete uncertainty, 1 
denotes Low certainty, 2 denotes High likelihood, and 3 denotes Complete certainty. 

 

Precision Recall F-measure Accuracy 

Category 
Naïve 
Bayes SVM 

Naïve 
Bayes SVM 

Naïve 
Bayes SVM 

Naïve 
Bayes SVM 

0 0.00 0.00 0.00 0.00 0.00 0.00 

1 0.86 0.90 0.58 0.55 0.69 0.68 

2 0.96 0.67 0.13 0.09 0.23 0.15 

3 0.86 0.95 1.00 1.00 0.92 0.98 

Average 0.67 0.63 0.43 0.41 0.52 0.50 0.95 0.95 

 

The major issue regarding the classification along the Certainty dimension is that 

the distribution of fragments in the categories is strongly biased. According to the 

Annotation Guidelines [ShWR06], the rule for assigning Complete certainty is that no 

explicit indication of any degree of uncertainty is present in the fragment. Since we have 

only about 60 fragments belonging to the three categories of uncertainty, the examples 

that can be used to characterize the categories are about 60 despite almost 900 fragments 

available in the dataset. Furthermore, there exists some inconsistency in the annotated 

examples. For example, fragments containing the words “indicating”, “suggesting”, and 

“possible” are assigned to different degrees of Certainty by different groups of annotators. 

Consequently, the discriminating power of such words degrades and the misclassification 

caused by the annotation conflicts cannot be avoided. The lack of examples and the 

annotation conflicts result in a relatively low performance along this dimension as shown 

in Table 6.3.7. However, we note that this performance (an average F-measure of 0.50 or 

0.52 in the above table) is much better than that obtained by a simple baseline classifier, 

which would, on such a highly skewed dataset, assign all the examples to the majority 

category and would yield an average F-measure of 0.24. 
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By inspecting the top ranking terms, we found that a set of cue terms such as 

“may”, “might”, “can”, “likely”, “presumably”, “poorly”, “ could be argued”, etc., are 

successfully detected. Since expressions of uncertainty are relatively consistent among 

scientific articles, one possible approach to improve the prediction accuracy is to 

manually include the most frequently used cue terms in a thesaurus. The thesaurus can be 

used as an artificial data source to pre-train the classifier, or post-process the classified 

examples. Thus, even if a predefined cue word rarely occurs in the training set, it can still 

be recognized as conveying a certain level of uncertainty. With the predefined thesaurus 

as an additional source of information, the classification performance may be further 

improved. 

 

6.3.3 Polarity 

The classification along the Polarity dimension is relatively easy compared to other 

dimensions, since the set of words that are typically used to express negation in scientific 

articles is small. The dataset we used for the Polarity classification, Frag_P, contains 

1031 sentence fragments. All the fragments are mapped to vectors of words and 

syntactical phrases, which are classified by an SVM classifier. Figure 6.3.5 and Table 

6.3.8 show the distribution of fragments in the categories and the classification result.  

 113



  

 

Figure 6.3.5. The distribution of fragments in the categories along the Polarity dimension 
over the dataset Frag_P. P denotes Positive, and N denotes Negative. 
 

 
Table 6.3.8. The performance of the Polarity classification on the dataset Frag_P. The 
dataset contains 916 sentences (1031 fragments). P denotes Positive, and N denotes 
Negative. 

 

Category Precision Recall F-measure Accuracy 

P 0.99 0.99 0.99 

N 0.86 0.89 0.87 

Average 0.93 0.94 0.93 0.99 

 

We can see that the prediction accuracy is high for the Polarity classification. 

Only a few examples are misclassified. Since some negative expressions such as 

“neither”, “nor”, “none” occur only once in the training set, the associated fragments are 

misclassified as Positive examples. Several misclassifications are caused by the failure to 

recognize the word “not” as a part of phrases such as “whether or not”, “(data not 

shown)”, because they are not considered as syntactical phrases.  To address this issue, 

we investigate the representation consisting of words and statistical phrases, and the 
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performance is slightly improved. Statistical phrases can capture more co-occurrence 

patterns of words which cannot be recognized by syntactical phrases. However, along 

with the introduction of more phrases, more redundant and noisy features may be 

included.  

 

6.3.4 Trend 

The classification performance along the Trend dimension is evaluated on the dataset 

Frag_T, where 822 sentences are broken into 919 fragments. Each fragment is 

represented as a vector of words and syntactical phrases. We first examine the distribution 

of fragments among categories (Figure 6.3.6). As can be seen from Figure 6.3.6, the 

distribution of fragments among categories is strongly biased along the Trend dimension.  

Although we have 919 fragments in the training dataset, fewer than 60 belong to the 

categories Increase or Decrease. As a result, the classification performance is not as good 

as along some of the other dimensions, as shown in Table 6.3.9. Again, we note that the 

result achieved here (an average F-measure of 0.72) is still much better than that obtained 

by simply classifying all the examples into the majority category (which would yield an 

average F-measure of 0.32). 
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Figure 6.3.6. The distribution of fragments in the categories along the Trend dimension 
over the dataset Frag_T. NA denotes No trend, + denotes Increase, and –  denotes 
Decrease. 
 
 
Table 6.3.9. The performance of the Trend classification on the dataset Frag_T. The 
dataset contains 822 sentences (919 fragments). NA denotes No trend, + denotes 
Increase, and  – denotes Decrease. 

 
Category Precision Recall F-measure Accuracy 

None 0.96 0.99 0.97 

+ 0.75 0.64 0.69 

- 0.72 0.33 0.46 

Average 0.81 0.65 0.72 0.95 

 

The major part of the misclassification for the categories Increase and Decrease 

(around 70 percent) is due to the inconsistency in annotation among different groups. For 

example, the word “activation” is typically considered to indicate an Increase direction 

by the first group of annotators (the guideline author



  

most of the examples labeled with an Increase or a Decrease Trend were annotated by the 

authors of the guideline. Further revision is necessary on the annotation along the Trend 

dimension. About 15 percent of the misclassification is caused by the filtering out of less-

frequent cue terms.  

Based on the observation of the classification result, we found that terms such as 

“increase”, ”decrease”, ”inhibit”, ”diminish”, etc., can be recognized as distinguishing 

terms. More importantly, we have found that such cue terms occur with high frequency in 

the small training set, which means that the set of words commonly used to express an 

Increase or a Decrease trend in biomedical literature is relatively fixed. We expect that 

performance can be further improved when we solve the annotation inconsistency 

problem and add in more data. Furthermore, the approach of building a thesaurus to 

include the most frequently used cue terms can also be considered. 

 

6.4 Further Investigation on Larger Datasets 

As previously mentioned, a major issue at the current stage is the lack of training 

examples. At the beginning of this chapter, we introduced four larger datasets generated 

based on the majority annotation agreement (Table 6.1.2). As further investigation, we 

experiment with the Maximum Entropy model along the Focus and Evidence dimensions, 

and SVM classifiers along other dimensions over these datasets. The distribution of 

fragments among categories along each dimension are shown in Figures 6.4.1 – 6.4.5. 

The classification performance, as well as the comparison with previous results over the 

datasets based on unanimous annotation agreement, are presented in Tables 6.4.1 – 6.4.5. 
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The experimental results show that the performance along the Focus and 

Certainty dimensions improves on the larger datasets. The addition of more examples 

leads to a less biased distribution of fragments among categories along the Focus 

dimension (Figure 6.4.1 vs. Figure 6.3.1). As a result, the Focus classification is further 

improved as we expected. The F-measure along the Certainty dimension remains low. 

The number of fragments belonging to categories of uncertainty is still small (around 

200), and the cue phrases are very diverse. To learn a set of commonly used cue terms 

that can characterize each uncertainty category, we still need more examples.  

The performance along the Polarity dimension remains similar, which implies the 

prediction accuracy along this dimension is relatively stable. The performance along the 

Evidence and Trend dimensions degrades. As previously mentioned in Section 6.3.4, the 

inconsistent annotation along the Trend dimension may account for part of the 

misclassifications with the addition of new data. Before solving this issue, it is hard to 

obtain high accuracy for the Trend classification. The variation in the performance along 

the Evidence dimension is not surprising. With the addition of new data, many less-

frequent cue terms are introduced (especially for the category E1 which is not 

characterized by a limited set of cue terms), and the removal of such terms inevitably 

leads to misclassification.  

Most important, the annotations are not agreed upon by all three annotators, which 

may have introduced more inconsistencies into the datasets. The inferior data quality may 

result in less accurate classification. Further investigation and possible solutions to 

improve the classification performance are left for a future study. 
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Overall, the classification performance along the Focus, Evidence and Polarity 

dimensions remains good on the datasets generated by the majority annotation agreement, 

yielding an F-measure of 0.75, 0.74, and 0.93 respectively. 

 

Figure 6.4.1. The distribution of fragments in the categories along the Focus dimension 
over the dataset Frag_M_FE. S denotes Scientific, G denotes Generic, M denotes 
Methodology, MS, MG, SG, and MSG denote their combinations. 
 

 

Figure 6.4.2. The distribution of fragments in the categories along the Evidence 
dimension over the dataset Frag_M_FE. E0 denotes No evidence, E1 denotes Claim of 
evidence without verifying information, E2 denotes Explicit citation, E3 denotes 
Explicit evidence, and E23 denotes both Explicit citation and Explicit evidence. 
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Figure 6.4.3. The distribution of fragments in the categories along the Certainty 
dimension over the dataset Frag_M_C. 0 denotes Complete uncertainty, 1 denotes Low 
certainty, 2 denotes High likelihood, and 3 denotes Complete certainty. 
 

 

Figure 6.4.4. The distribution of fragments in the categories along the Polarity dimension 
over the dataset Frag_M_P. P denotes Positive, and N denotes Negative. 
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Figure 6.4.5. The distribution of fragments in the categories along the Trend dimension 
over the dataset Frag_M_T. NA denotes No trend, + denotes Increase, and – denotes 
Decrease. 
 

Table 6.4.1. The performance of the Focus classification on the dataset Frag_M_FE. The 
dataset contains 1051 sentences (1168 fragments). S denotes Scientific, G denotes 
Generic, and M denotes Methodology. 
 

Category Precision Recall F-measure Accuracy 

S 0.88 0.94 0.91 
G 0.73 0.34 0.47 
M 0.81 0.81 0.81 

Average 0.81 0.70 0.75 0.86 

Average  
(unanimous agreement) 0.81 0.62 0.70 0.86 

 
 
Table 6.4.2. The performance of the Evidence classification on the dataset Frag_M_FE. 
The dataset contains 1051 sentences (1168 fragments). E0 denotes No evidence, E1 
denotes Claim of evidence without verifying information, E2 denotes Explicit citation, 
and E3 denotes Explicit evidence. 

 
Category Precision Recall F-measure Accuracy 

E0 0.70 0.83 0.76 
E1 0.71 0.43 0.54 
E2 0.81 0.73 0.77 
E3 0.86 0.82 0.84 

Average 0.77 0.70 0.74 0.79 

Average  
(unanimous agreement) 0.86 0.76 0.81 0.85 
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Table 6.4.3. The performance of the Certainty classification on the dataset Frag_M_C. 
The dataset contains 1671 sentences (1902 fragments). 0 denotes Complete uncertainty, 
1 denotes Low certainty, 2 denotes High likelihood, and 3 denotes Complete certainty. 

 
Category Precision Recall F-measure Accuracy 

0 0.75 0.20 0.32 

1 0.71 0.52 0.60 
2 0.33 0.18 0.23 
3 0.95 0.99 0.97 

Average 0.69 0.47 0.56 0.92 
Average  

(unanimous agreement) 0.63 0.41 0.50 0.95 

 
 
 
 

Table 6.4.4. The performance of the Polarity classification on the dataset Frag_M_P. The 
dataset contains 1819 sentences (2100 fragments). P denotes Positive, and N denotes 
Negative. 
 

Category Precision Recall F-measure Accuracy 

P 0.99 0.99 0.99 

N 0.88 0.86 0.87 

Average 0.93 0.92 0.93 0.98 
Average  

(unanimous agreement) 0.93 0.94 0.93 0.99 

 
 
 
 

Table 6.4.5. The performance of the Trend classification on the dataset Frag_M_T. The 
dataset contains 1739 sentences (2003 fragments). NA denotes No trend, + denotes 
Increase, and – denotes Decrease. 

 
Category Precision Recall F-measure Accuracy 

None 0.95 0.98 0.97 

+ 0.55 0.38 0.45 
- 0.74 0.35 0.48 

Average 0.75 0.57 0.65 0.94 
Average  

(unanimous agreement) 0.81 0.65 0.72 0.95 
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6.5 Conclusion 

We have conducted fragment classification experiments along the five dimensions: Focus, 

Evidence, Certainty, Polarity, and Trend. Our results suggest that machine learning 

algorithms can perform the annotation task along certain dimensions with good accuracy. 

The major issue at the current stage is the lack of training examples, which leads to the 

loss of many cue terms that are critical in deciding category boundaries. Moreover, the 

annotation inconsistency along certain dimensions accounts for another source of 

misclassification. From the analysis of the experimental results, we believe that some 

problems regarding the misclassifications may be solved with the addition of more data. 

The classification performance on larger datasets remains to be studied in the future. 
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Chapter 7 

Extensions and Future Directions 

 In our future work, we plan to investigate several extensions to the Maximum Entropy 

model, as well as other possible approaches that may improve the performance of the 

fragment annotation task. 

 

7.1 Further Extension to the Maximum Entropy Model 

We have designed a new, preliminary model which aims to address three distinct 

characteristics in the fragment classification along the Focus and Evidence dimensions. 

The classification performance of this model shows that fragments can be classified with 

high accuracy. However, there are two main drawbacks in the proposed model. First, as 

mentioned in Section 5.3, finding the best change in each parameter at each training 

iteration requires the enumeration of 245 possible class labels for a fragment. The explicit 

identification of the Sentence Focus, which is not our primary concern, dramatically 

increases the computational complexity1 of the model. Second, the relative positions 

among fragments are ignored when a three-dimensional vector is used to represent the 

Sentence Focus. In practice, among all the fragments in a sentence, those closer to the 

target fragment should have greater influence on its topic. To address the above problems, 

we propose three alternative models. 

                                                 
1 The number of possible class labels increases from 35 (7*5) to 245 (7*5*7). The model takes about two 
minutes to converge over a set of 354 fragments. If we remove constraints about the Sentence Focus, that is, 
examining 35 possible labels rather than 245, the model takes only a few seconds to converge. The PC 
configuration is as follows: AMD Athlon 2.21 GHz, 2GB RAM. 
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7.1.1 Alternative Models 

We first remove the constraints pertaining to the Sentence Focus, namely, the constraints 

over the category distribution within the Sentence Focus category space: 

)()(~
P

Nip
P

Nip fEfE = , 31 ≤≤ i ; 

the constraints over the correlation between terms and categories within the Sentence 

Focus category space: 

)()(~
T

Nijp
T

Nijp fEfE = , 31 ≤≤ i , Ntj ≤≤1 ; 

the constraints over the correlation among categories within the Sentence Focus category 

space: 

)()(~
M

Nijp
M

Nijp fEfE = , 31 ≤<≤ ji ; 

and the constraints over the correlation between Fragment Focus and Sentence Focus: 

)()(~
N

ijp
N

ijp fEfE = , 31 ≤≤ i , 31 ≤≤ j . 

Next, we introduce several new constraints to the alternative models. We discuss each 

model in detail in the following sections. 

 

The First Alternative Model 

In the first variation on the model, we introduce a fixed context window, which includes, 

for each target fragment, the set of terms pertaining to the Focus of its two preceding and 

two succeeding fragments in the same sentence. Accordingly, we add four new feature 

function matrices for each fragment-label pair , capturing the correlation between 

the Focus label of the target fragment and the terms pertaining to the Focus of the 

surrounding fragments, defined as: 

),( cd
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where  are the term vectors pertaining to the Focus of the two fragments before 

the target fragment;  are the term vectors pertaining to the Focus of the two 

fragments after the target fragment. If any of the surrounding fragments does not exist in 

the target sentence, each element value in the corresponding term vector is set equal to 0. 
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To make the model produce the same expected values for the above features as 

derived from the training data, we add four new types of constraints: 
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where Ft  is the total number of terms related to the Focus of a fragment. Thus, the 

optimal probability distribution  has the following parametric form: )|(* dcp
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In the other two alternative models, instead of using a fixed context window, we 

use a dynamic one. The context window covers two types of features, static and dynamic. 

Static features refer to the terms related to the Focus of the surrounding fragments; 

dynamic features refer to their Focus labels predicted by the classification model during 

the parsing process. We consider two parsing directions, forward and backward.  

 

The Second Alternative Model 

For the forward parsing, we use the terms pertaining to the Focus of the two preceding 

fragments, as well as their Focus labels, as context information of the target fragment. We 

define four new feature function matrices for each fragment-label pair . Two of 

them capture the correlation between the Focus label of the target fragment and the terms 

pertaining to the Focus of the two preceding fragments, defined as: 

),( cd

22 ),( −− = d
FF

T
F tccdf , 

11 ),( −− = d
FF

T
F tccdf , 

where  are the term vectors pertaining to the Focus of the two fragments before 

the target fragment. The other two capture the correlation between the Focus labels of the 

target and each of the preceding fragments, defined as: 
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where  are the Focus labels of the two fragments before the target fragment. For 

the training data,  are the annotated class labels; for unknown test data, they are 

the labels dynamically predicted by the classification model. If any of the surrounding 
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fragments does not exist in the target sentence, each element value in the corresponding 

term vector and label vector is set equal to 0. 

To make the model produce the same expected values for the above features as 

derived from the training data, we add four new types of constraints: 

)()( 22~ −− = T
Fp

T
Fp fEfE ,  31 ≤≤ i , Ftj ≤≤1 , 

)()( 11~ −− = T
Fp

T
Fp fEfE , 31 ≤≤ i , Ftj ≤≤1 , 

)()( 22~ −− = M
Fp

M
Fp fEfE  ,  31 ≤≤ i , 31 ≤≤ j , 

)()( 11~ −− = M
Fp

M
Fp fEfE  ,  31 ≤≤ i , 31 ≤≤ j , 

where Ft  is the total number of terms related to the Focus of a fragment. The probability 

distribution  is defined as: )|(* dcp
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where  are the term vectors pertaining to the Focus of the two fragments after the 

target fragment. The other two capture the correlation between the Focus labels of the 

target and each of the two fragments following it, defined as: 

12 , ++ d
F

d
F tt

22 ),( ++ = d
FF

M
F cccdf , 

11 ),( ++ = d
FF

M
F cccdf , 

where  are the Focus labels of the two fragments after the target fragment. For 

the training data,  are the annotated class labels; for unknown test data, they are 

the labels dynamically predicted by the classification model. If any of the surrounding 

fragments does not exist in the target sentence, each element value in the corresponding 

term vector and label vector is set equal to 0. 

12 , ++ d
F

d
F cc

12 , ++ d
F

d
F cc

To make the model produce the same expected values for the above features as 

derived from the training data, we add four new types of constraints: 

)()( 22~ ++ = T
Fp

T
Fp fEfE ,  31 ≤≤ i , Ftj ≤≤1 , 

)()( 11~ ++ = T
Fp

T
Fp fEfE , 31 ≤≤ i , Ftj ≤≤1 , 

)()( 22~ ++ = M
Fp

M
Fp fEfE  ,  31 ≤≤ i , 31 ≤≤ j , 

)()( 11~ ++ = M
Fp

M
Fp fEfE  ,  31 ≤≤ i , 31 ≤≤ j , 

where Ft  is the total number of terms related to the Focus of a fragment. The probability 

distribution  is defined as: )|(* dcp
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where  are matrices, representing the weights of the feature matrices 

and ;  are 

)2+M
F , 2111122

21 , ++ M
F

M
F λλ 33× 1+M

Ff  

2+M
Ff 12 , ++ T

F
T
F λλ Ft×3  matrices, representing the weights of the feature matrices 

f  and 

With the three new models, for each fragment, we only need to examine 35 

possible labels ( ) instead of 245 (

2+T
F

1+T
Ff . 

),( EF ccc ≡ ),,( NEF cccc ≡ ). In addition, we take into 

account the distance between fragments when defining context. We need further 

empirical studies to examine whether the new model can yield higher prediction accuracy 

7.1.2 Other Suggested Improvements 

Aside from the introduction of new constraints, other approaches can also be considered 

to further improve the classification model from different aspects: 

 

Gaussian Smoothing 

As can be seen from previous sections, the Maximum Entropy model is prone to 

ount of free parameters. To address this problem, a 

with lower computational complexity. 

 

overfitting due to the large am

Gaussian prior for smoothing Maximum Entropy models was proposed by Chen and 

Rosenfeld [ChRo99]. Further work may be done to incorporate a Gaussian prior into the 

current Maximum Entropy model to avoid overfitting. 
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Parameter Estimation Algorithm 

Currently we use the standard IIS algorithm for parameter estimation. Due to the large 

number of free parameters, and the large number of label combinations to be examined, 

the training process is relatively slow2. Previous studies show that the conjugate gradient 

approach and variable metric methods are much more efficient than the iterative scaling 

method in natural language processing (NLP) classification tasks [Malo02]. In our future 

work, we will try the limited memory variable metric algorithm [Malo02] to improve the 

convergence rate. 

 

Negative Correlation 

At present, the correlation between features and categories, and the correlation among 

categories, are captured by the product of the vector elements, such as, , and . 

This method only takes into account the positive-correlation, i.e. the case when the values 

of both elements are 1, while neglects the negative-correlation, i.e. the case when the 

values of both elements are 0. More sophisticated computation methods, such as XNOR, 

will be investigated in future studies to better capture the positive-, as well as negative- 

correlations between objects. 

FjFitc EjFicc

 

Feature-Specific Weighting 

In our current classification model, different types of features, such as the terms 

pertaining to the Fragment Focus and the terms pertaining to the Sentence Focus, are 

treated equally. In future studies, we will seek to attribute a different weight to different 

                                                 
2 The model takes about two minutes to converge over a set of 354 fragments.  The PC configuration is as 
follows: AMD Athlon 2.21 GHz, 2GB RAM. 
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types of features. For example, terms pertaining to the Focus of the target fragment may 

outweigh those pertaining to the Focus of the surrounding context, that is, the Sentence 

Focus. 

 

7.2 Future Directions in Automatic Fragment Annotation 

In Section 7.1, we have discussed several possible extensions to the Maximum Entropy 

model for the Focus and Evidence dimensions. Other improvements to the general 

fragment annotation task can also be investigated in future studies. One possible approach 

is to make use of related work on the rhetorical analysis of text. In Section 2.3, we have 

surveyed the existing work on the rhetorical relations between clauses and sentences, 

such as evidence, contrast, concession, and explanation, as well as work on rhetorical 

roles such as Background, Related Work, Solution and Method, or Result. To annotate 

sentences in scientific articles, we first need to break sentences into fragments and then 

classify the fragments. Rhetorical relations between text units may be employed to 

automatically perform sentence fragmentation, and rhetorical roles can be used to 

improve the fragment classification. For example, if the rhetorical role of a fragment is 

Background, it is very likely that the Focus of the fragment is Generic. If the rhetorical 

role is Solution and Method, it is more likely that the Focus of the fragment is 

Methodology. Moreover, the Evidence level of fragments that discuss Solution and 

Method or Result tend to be Explicit evidence. However, the complexity of rhetorical 

analysis increases with the expansion of the categories, and the feasibility of automating it 

decreases. This direction remains yet to be explored. 
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Chapter 8 

Conclusion 

With the increasing availability of biomedical publications, it becomes ever more 

challenging to locate valuable and reliable information within the large amount of text. To 

identify and characterize text that satisfies certain types of information needs, Wilbur et al. 

[WiRS06, ShWR06] have proposed an annotation scheme to manually categorize a 

sentence fragment along five dimensions: Focus, Polarity, Certainty, Evidence, and 

Trend. Focus distinguishes whether the text describes scientific facts, experimental 

methodology, or general state of knowledge. Polarity checks whether an assertion is 

stated positively or negatively. Certainty measures the degree of confidence regarding the 

validity of an assertion. Evidence specifies the strength of evidence with respect to a 

statement. Trend indicates whether an increase or a decrease in a specific phenomenon is 

reported. 

Following the annotation scheme, the work presented here examined the 

feasibility and reliability of the automatic categorization of biomedical text along the five 

dimensions using machine learning techniques. We conducted experiments using a set of 

manually annotated sentences that were sampled from different sections of biomedical 

journal articles. A classification model based on Maximum Entropy, designed specifically 

for this purpose, as well as two other popular algorithms in the area of text categorization, 

Naïve Bayes and Support Vector Machine (SVM), were trained and evaluated on the 

manually annotated dataset. The results show that the performance along the Focus, 

Polarity, and Evidence dimensions seems promising, yielding an F-measure of 0.70, 0.81, 
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and 0.93 respectively. The performance along the Certainty and Trend dimensions is 

relatively low, partly due to the lack of training data and the inconsistent annotation. 

Compared to other biomedical text categorization tasks, which typically yielded an 

average F-measure between 0.4 to 0.7 [KDDC02, TRGN05], our classification task is 

well-defined and the results achieved are promising. We thereby conclude that machine 

learning methods can classify biomedical text fragments along multiple dimensions with 

good accuracy. 

As future extensions, we suggested several approaches to further improve the 

classification model, as well as the performance of the general fragment annotation task. 

In our future work, we will examine the fragment classification on larger datasets. 

Moreover, we will extend the work to automatically process raw documents, that is, 

automatically breaking sentences into fragments, and using our classifier to annotate each 

fragment according to the predefined criteria.  

As surveyed in Section 3.3, there are several applications for this work. These 

include: automated abstract generation (automatic text summarization), web page ranking, 

document categorization, named entity and relation extraction, and others. We believe 

that the annotation of text along multiple dimensions, which are defined to characterize 

several types of information needs, can lead to more accurate extraction and retrieval of 

information from a large volume of publications. We expect the automated annotation of 

text with reliable accuracy in the future can serve a variety of applications in the research 

community. 
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Appendix A 

Maximum Entropy and Maximum Likelihood 

In this section, we provide the detailed derivations regarding the theory of Maximum 

Entropy. 

 

A.1 Maximum Entropy Principle 

The principle of Maximum Entropy is to find the least informative (the most uncertain) 

model that also satisfies any given constraints. A mathematical measure of the uncertainty 

of a conditional probability distribution  is provided by the conditional entropy 

[CoTh91]: 

)|( dcp
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where D denotes the document space, and C denotes the label space. 

The problem of Maximum Entropy is to find a distribution which has the 

maximum entropy value  among all the distributions  satisfying the given 

constraints: 
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More formally, let P represent the space of all conditional probability distributions 

, and  represent a subset of P defined by: )|( dcp ConsP
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The task is to find the distribution such that *p

.)(maxarg* pHp
ConsPp∈

=      (A.3) 

 

A.2 Exponential Form 

We call the problem of finding the distribution  the primal problem. 

It is actually a constrained optimization problem, maximizing the entropy 
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 for i∈[1,2….n] . 

That is, we restrict the model distribution to have the expected value for each feature 

 as derived from the training data. Since  is a conditional probability 

distribution, it must satisfy two additional constraints: 

),( cdfi )|( dcp

(2)  for any document d ; 1)|( =∑
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(3)  for any document d and category c ; 0)|( ≥dcp

The solution to this optimization problem can be found using the method of 

Lagrange multipliers. We introduce Lagrange multipliers, nλλλ ...,,, 21 , for the constraint, 
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 for i ∈ [1, 2, … , n], denoted as 

),...,( 21 nλλλ≡Λ ; and a set of dγ  for the constraint, 1)|( =∑
∈Cc

dcp  for any document d, 

denoted as ),( Ddd ∈≡ γγ . We need not introduce an additional multiplier for the third 

constraint, , since the logarithm function in the original problem, 0)|( ≥dcp
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define the constrained optimization problem using the Lagrangian: 
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To solve the primal problem, we need to find the unique saddle point of ),,( Λγξ p , 

which is a maximum with respect to p , and a minimum with respect to ),( Λγ . We will 

not provide a detailed explanation for why the saddle point is the solution to the initial 

problem ))|(log)|()(~(maxarg ∑∑
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−
Dd CcPp

dcpdcpdp
Cons

. Further information is available in 

books discussing this subject [CoWe03, Apos69]. 

We first hold γ  and Λ fixed, and maximize ),,( Λγξ p with respect to . 

This is done by setting the partial derivative with respect to  to zero: 

)|( dcp

)|( dcp

0),()(~)|(log(1)(~
)|(

)( =+++−=
∂

∂ ∑ di
i

i cdfdpdcpdp
dcp

γλξ .  (A.5) 

At this optimum, we find that  has the parametric form: )|( dcp
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We rewrite equation (A.6) as 

)(

}),(exp{
)|(*

dZ

cdf
dcp i

ii∑
=

λ
,   (A.8) 

where Z(d) is the normalizing factor, defined as ∑ ∑
∈

=
Cc i

ii cdfdZ }),(exp{)( λ . 

 

A.3 Primal Problem to Dual Problem 

We have found the optimal parametric form of , which maximizes )|(* dcp ),,( Λγξ p  

for a fixed ),( Λγ . Next we need to keep  fixed, and minimize  with 

respect to 
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Because  is the empirical distribution observed from the training data, we have p~
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The parameter γ  does not appear in equation (A.11), thereby we just need to minimize  

 as a function of the set of parameters),,( * Λγξ p ),...,( 21 nλλλ≡Λ . We define the 

function )(Λψ  as: 

),,()( * Λ≡Λ γξψ p ,    (A.12) 

which is called the dual function. So far, the primal problem of finding the distribution 

 is transformed to the dual problem of finding the parameter set )(maxarg* pHp
ConsPp∈

=

)(minarg* Λ=Λ
Λ

ψ .  In other words, the primal problem of finding the distribution, that 

maximizes  is equivalent to finding the parameter set 

*p

)( pH ),...,( 21 nλλλ≡Λ that 

minimizes )(Λψ . A thorough discussion of the duality theorem is beyond the scope of this 

thesis. We refer readers to a book on the subject [Bert99] for further information about 

the primal and dual problems, and their close relationship under certain assumptions. 
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A.4 Maximum Likelihood 

The dual function )(Λψ  is actually the negative log likelihood of the model distribution, 
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ii∑
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λ
, given the training dataset, . That is, the 

likelihood of the model to generate the set of observed  pairs. Given a dataset 

, the log likelihood of the distribution  is defined by: 
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In the case when the distribution  is of the exponential parametric form, )|( dcp
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 Hence, the optimal  that minimizes the dual function*Λ )(Λψ  will also maximize the log 

likelihood  for the models of the same exponential form, namely, ( )ΛL

)(minarg* Λ=Λ
Λ

ψ  

( )Λ=
Λ
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So far, we have shown that the constrained maximization of entropy is equivalent 

to the unconstrained maximization of the likelihood of a set of exponential distributions. 

The model with the maximum entropy is also the one, among all the models of the same 
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parametric form, that fits the training examples best. The problem of Maximum Entropy 

turns out to be the problem of maximizing the likelihood of a set of exponential models 

with respect to the training data. 
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Appendix B 

Derivations about the IIS algorithm in Section 5.2   

Here we show how inequality (5.16) in Section 5.2 is derived. We have the difference in 

the log likelihood between the new model δ+Λ  and the old model  defined by 

inequality (5.15): 
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where iδ  is the change in iλ  at each step. 

We make use of the inequality ∂−≥∂− 1log  (a convex1 function always lies 

above its tangent), to establish a lower bound on the difference in the log likelihood 

specified in equation (5.15): 
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 If we define , we can rewrite inequality (B.1) as: ∑≡Σ
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1 A function is convex if  is concave, i.e. on an interval  [a,b] if for any two points  and 

 in  [a,b] and any ∂  where 
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Since exp is convex, according to Jensen’s inequality – namely, for a probability 

distribution function p(x) (p(x) , and 0≥ 1)( =∑
x

xp ), we have  
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x x

xqxpxqxp . 

As a consequence, inequality (B.2) can be rewritten as 
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Appendix C 

An Example of the Maximum Entropy Model 

In this section, we use a simple example to illustrate how a Maximum Entropy classifier 

works in the area of text categorization. As previously mentioned in Section 5.1, we can 

use a Boolean vector, , to represent the possible label of a document, where 

 is the total number of categories; and use a Boolean vector, , to 

represent a document, where k  is the total number of terms. Our goal is to estimate the 

model distribution  given a set of training data D associated with labels C. 
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)|( dcp

A traditional Maximum Entropy based model typically imposes constraints over 

the following two statistical properties: the prior probability of each category, and the 

correlation between terms and categories. Accordingly, we define two types of feature 

function matrix: one captures the occurrence of each category, denoted as ; the other 

captures the co-occurrence between terms and categories, denoted as . For each 

document-label pair , the feature function matrix  is defined as: 
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where m  is the number of categories. The feature function matrix  is defined as: Tf

d
ji

T
ij tccdf =),( , mi ≤≤1 , kj ≤≤1 ,    (C.2) 

where m  is the number of categories and k  is the number of terms. 
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We define the expected number of occurrences of category i  observed from the 

training data as: 
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and the expected number of occurrences of category  predicted by the model as: i
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To restrict the category distribution predicted by the model to be the same as the 

empirical category distribution, we define the following constraints: 
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where m  is the number of categories. 

Similarly, we define the expected number of co-occurrences between category i  

and term j  derived from the training corpus as: 
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and the expected number of co-occurrences between category  and term i j  predicted by 

the model as: 
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To make the model consistent with the correlation between terms and categories as 

observed from the training data, we define the following constraints: 

)()(~
T
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T

ijp fEfE = , mi ≤≤1 , kj ≤≤1 ,    (C.4) 

where m  is the number of categories and k  is the number of terms.  

As shown in equation (A.4) in Appendix A, with the constraints defined above, we 

can define the Lagrangian as: 

 158



  

)|(log)|()(~),,( dcpdcpdpp
Dd Cc
∑∑
∈ ∈

−≡Λγξ  

      ∑ ∑∑∑
= ∈∈ ∈

−+
m

i CDObservedcd

P
i

Dd Cc

P
i

P
i cdfdcpcdfdcpdp

1 ),(),(

)( ),(),(~),()|()(~λ

      ∑∑ ∑∑∑
= = ∈∈ ∈

−+
m

i

k

j CDObservedcd

T
ij

Dd Cc

T
ij

T
ij cdfdcpcdfdcpdp

1 1 ),(),(

)( ),(),(~),()|()(~λ

 + ,      (C.5) ∑ ∑
∈ ∈

−
Dd Cc

d dcp )( 1)|(γ

where , , andPλ Tλ γ  are Lagrange multipliers.   is an Pλ 1×m  matrix, where each 

element  represents the weight of the feature ;  is an P
iλ

P
if Tλ km×  matrix, where each 

element  represents the weight of the feature . From equation (A.8) in Appendix A, 
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where  Z(d) is the normalization factor, defined as :  
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From the definition of the features and , we can also rewrite the Lagrangian as: Pf Tf
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and rewrite the conditional probability  as: )|(* dcp
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where Z(d) is the normalization factor, defined as: 
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As introduced in Section 5.2, we can use IIS algorithm to find the optimal 

parameter sets. We start from an initial parameter set , and at each step, we find 

an improvement , such that the new model 
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Example C.1 

Suppose that 2/3 of the documents that contain the word mice are relevant documents. 

We can build a classification model based on the following rule:  

 

If a document contains the word mice, the probability that it belongs to the 

relevant category is 2/3, while the probability it belongs to the irrelevant 

category is 1/3. 

Otherwise, the probability distribution for the two categories is uniform, 1/2 

each.  

 

This model is a simple maximum entropy model. It is consistent with the known 

constraints, and makes no assumptions about what is unknown. 

 

We define the category space as consisting of two categories, relevant or 

irrelevant documents, and the term space consisting of k terms, , … ,  . To clearly 

illustrate the principle of Maximum Entropy, we consider the situation when only one 

term, say  (mice), is used to build the classification model. The training data set is 

shown in Table C.1. 

1t kt

1t

 

Table C.1. Training examples for a simple Maximum Entropy model. 
 

Example Label 1t (mice) 2t  … kt  

1 relevant 1 … … … 
2 relevant 1 … … … 
3 relevant 0 … … … 
4 irrelevant 1 … … … 
5 irrelevant 0 … … … 
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We use the Boolean vector ),( irrelevantrelevant ccc ≡  to denote the class label of an example. 

For each example, we take into account two feature matrices: and . The feature 

values can be calculated according to equation (C.1) and (C.2). For instance, the feature 

values for example 1 are: 

Pf Tf

)0,1(),( ′=′= irrelevantrelevant
P ccf ; 

)0,1(),( 11 ′=′= tctcf irrelevantrelevant
T . 

We then use the examples to train the model. The parameters learned by the IIS algorithm, 

the statistical properties predicted by the model, and the statistical properties derived from 

the training examples are shown in Tables C.2 and C.3. Table C.4 shows the class labels 

predicted by the model. We can see that the model captures the statistical properties of the 

training data, and it complies with the principle of Maximum Entropy as discussed earlier. 

 

Table C.2. The model parameter , the expected value for predicted by the model, 

and the expected value for derived from training data. 

Pλ Pf
Pf

 
Pλ  )( P

p fE )(~
P

p fE

0.105 0.629 0.6 
-0.028 0.371 0.4 

 
 

Table C.3. The model parameter , the expected value for  predicted by the model, 

and the expected value for  derived from training data. 

Tλ Tf
Tf

 
Tλ  )( T

p fE )(~
T

p fE

0.330 0.416 0.4 
-0.351 0.184 0.2 
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Table C.4. The predicted class labels. 

 
Examples Label Probability p(c|d) 

1 relevant 0.693 
2 relevant 0.693 
3 relevant 0.533 
4 relevant 0.693 
5 relevant 0.533 

 
 

To make the conditional probability distribution  exactly match the rule we 

defined in Example C.1, we do not consider the features pertaining to the prior probability 

of each category, that is, , and build the classification model solely based on the terms 

in a document. Consequently, the parametric form of  becomes: 
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The parameters learned by the IIS algorithm, the statistical properties predicted by 

the model, and the statistical properties discovered from the training examples are shown 

in Table C.5. The class labels predicted by the model are shown in Table C.6. We can see 

that the model exactly agrees with the rule we expected: if a document contains the word 

mice, the probability that it belongs to the relevant category is 2/3, while the probability it 

belongs to the irrelevant category is 1/3; otherwise, the probability distribution for the two 



  

Table C.5. The model parameter , the expected value for  predicted by the modified 

model, and the expected value for  derived from training data. 

Tλ Tf
Tf

 
Tλ  )( T

p fE )(~
T

p fE

0.287 0.4 0.4 
-0.405 0.2 0.2 

 
 
 

Table C.6. The predicted class labels by the modified model. 
   

Examples Label Probability p(c|d)
1 relevant 0.667 
2 relevant 0.667 
3 relevant 0.500 
4 relevant 0.667 
5 relevant 0.500 
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Appendix D 

The Parametric Form of the Maximum Entropy 

Model for the Fragment Classification  

We show here how to derive the parametric form of the model for the fragment 

classification. In Section 5.3.3, we have defined five types of feature matrices: the 

occurrence of categories within each category space, ; the correlation between 

terms and categories within each category space, ; the correlation between 

categories within each category space, ; the correlation between the 

Fragment Focus and Fragment Evidence category spaces, ; and the correlation 

between the Fragment Focus and Sentence Focus category spaces . 
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Equation (A.4) in Appendix A shows that the constrained optimization problem 

can be solved by introducing Lagrange multipliers. Based on the above features, we need 

to introduce five types of model parameters that reflect the contributions of the features 

towards the final classification decision: parameters represent the weights of 

the feature matrices  respectively; parameters  represent the 

weights of the feature matrices  respectively; parameters  

represent the weights of the feature matrices  respectively; parameter  

represents the weight of the feature matrix ; parameter  represents the weight of the 
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feature matrix . Similar to equation (A.4) in Appendix A, with the constraints defined 

in Section 5.3.3, the Lagrangian can be defined as: 

Nf
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where d indicates a fragment; ),,( NEF cccc ≡  indicates the category label of a fragment 

over the three category spaces: the Focus of a fragment, the Evidence of a fragment, and 

the context of a fragment, i.e. the Focus of the sentence. 

According to equation (A.8) in Appendix A, the optimal conditional probability 

 has the following parametric form: )|(* dcp
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According to the definition of the features in Section 5.3.3, we can rewrite the conditional 

probability  as: )|(* dcp
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We can use the IIS algorithm to find the optimal parameter sets. We start from an 

initial parameter set , and at each step, 

we find an improvement , 

such that the new model 
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according to equation (5.17) in Section 5.2, the best δ  at each step should satisfy: 
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We can use root finding procedures to solve the above equations. The process repeats 

until the log likelihood of the model converges. 

 

 

 

 169



  

Appendix E 

Stop Word List 

Table E.1. Stop Word List. F denotes Focus, P denotes Polarity, C denotes Certainty, E 
denotes Evidence, and T denotes Trend. 1 indicates a word is defined as a stop word, and 
0 indicates otherwise. 
 
Word F P C E T Word F P C E T Word F P C E T Word F P C E T

a 1 1 1 1 1 enough 1 1 0 0 1 mostly 1 0 0 0 1 their 1 1 1 0 1

about 1 1 0 1 1 et 0 1 0 0 1 mr 1 1 1 1 1 them 1 1 1 0 1

above 1 1 1 1 1 etc 1 1 1 1 1 much 1 0 0 0 1 themselves 1 1 0 1 1

across 1 1 1 1 1 ever 1 0 0 1 1 must 1 0 0 0 1 then 1 1 1 1 1

after 1 1 1 1 1 every 1 0 0 1 1 my 1 1 1 1 1 thence 1 1 1 1 1

afterwards 1 1 1 0 1 everyone 1 1 0 1 1 myself 1 1 1 1 1 there 0 1 1 1 1

again 1 1 0 0 1 everything 1 1 0 1 1 namely 1 1 1 1 1 thereafter 1 1 1 1 1

against 1 0 1 1 0 everywhere 1 1 0 1 1 neither 1 0 0 0 1 thereby 1 1 0 1 1

al 0 1 0 0 1 except 1 0 0 1 1 never 1 0 0 0 1 therefore 1 1 0 0 1

all 1 1 1 1 1 find 1 1 0 0 1 nevertheless 0 1 1 1 1 therein 1 1 1 1 1

almost 1 1 0 0 1 for 1 1 1 1 1 next 1 1 1 1 1 thereupon 1 1 0 0 1

alone 1 0 1 1 1 found 1 1 0 0 1 no 1 0 0 0 1 these 1 1 1 1 1

along 1 1 1 1 1 from 1 1 1 1 1 nobody 1 0 0 0 1 they 1 1 1 0 1

already 1 1 0 0 1 further 1 1 1 1 1 noone 1 0 0 0 1 this 1 1 1 1 1

also 1 1 1 1 1 get 1 1 1 1 0 nor 1 0 0 0 1 thorough 1 1 0 0 1

although 1 1 0 0 1 give 1 1 1 1 0 not 1 0 0 0 1 those 1 1 1 1 1

always 1 0 0 0 1 go 1 1 1 1 0 nothing 1 0 0 0 1 though 1 1 1 1 1

am 1 1 1 1 1 gov 1 1 1 1 1 now 1 1 1 1 1 through 1 1 1 1 1

among 1 1 1 1 1 had 1 0 1 1 0 nowhere 1 0 1 1 1 throughout 1 1 1 1 1

amongst 1 1 1 1 1 has 1 0 1 1 0 of 1 1 1 1 1 thru 1 1 1 1 1

an 1 1 1 1 1 have 1 0 1 1 0 off 1 1 0 1 1 thus 1 1 0 0 1

analyze 1 1 1 1 1 he 1 1 1 1 1 often 1 1 1 1 1 to 1 1 1 1 1

and 1 1 1 1 1 hence 1 1 0 0 1 on 1 1 1 1 0 together 1 1 1 1 1

another 1 1 1 1 1 her 1 1 1 1 1 only 1 0 1 1 1 too 1 0 1 1 1

any 1 0 0 0 1 here 1 1 1 1 1 onto 1 1 1 1 1 toward 1 1 1 1 0

anyhow 1 1 1 1 1 hereafter 1 1 0 0 1 or 1 1 1 1 1 towards 1 1 1 1 0

anyone 1 0 0 0 1 hereby 1 1 0 0 1 other 1 1 1 1 1 try 1 1 1 1 1

anything 1 0 0 0 1 herein 1 1 0 0 1 others 1 1 1 1 1 type 1 1 1 1 1

anywhere 1 0 0 0 1 hereupon 1 1 0 0 1 otherwise 1 1 1 1 1 ug 1 1 1 1 1

applicable 1 0 1 1 0 hers 1 1 1 1 1 our 1 1 1 1 1 under 1 1 1 1 0

apply 1 1 1 1 1 herself 1 1 1 1 1 ours 1 1 1 1 1 unless 1 1 1 1 0

are 1 0 1 1 1 him 1 1 1 1 1 ourselves 1 1 1 1 1 until 1 1 1 1 0

around 1 1 0 0 1 himself 1 1 1 1 1 out 1 1 1 1 1 up 1 1 1 1 0

as 1 1 0 0 1 his 1 1 1 1 1 over 1 1 1 1 1 upon 1 1 1 1 0

assume 1 1 0 0 1 how 1 1 1 1 1 own 1 1 1 1 1 us 1 1 1 0 1

at 1 1 1 1 1 however 1 0 1 1 1 oz 1 1 1 1 1 used 0 1 1 0 1
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Word F P C E T Word F P C E T Word F P C E T Word F P C E T

be 1 0 0 0 0 hr 1 1 1 1 1 per 1 1 1 1 1 using 0 1 1 0 1

became 1 1 1 1 0 ie 1 1 1 1 1 perhaps 1 1 0 0 1 various 1 1 1 1 1

because 1 1 0 0   if 1 1 1 1 1 pm 1 1 1 1 1 very 1 1 0 0 1

become 1 1 1 1 0 ii 1 1 1 1 1 precede 1 1 1 1 1 via 1 1 1 1 1

becomes 1 1 1 1 0 iii 1 1 1 1 1 presently 1 1 1 1 1 was 1 0 1 1 1

becoming 1 1 1 1 0 in 1 1 1 1 1 previously 1 1 1 1 1 we 1 1 0 0 1

been 1 0 1 1 1 inc 1 1 1 1 1 pt 1 1 1 1 1 were 1 0 1 1 1

before 1 1 1 1 1 incl 1 1 1 1 1 rather 1 0 1 1 1 what 1 1 1 1 1

beforehand 1 1 1 1 1 indeed 1 1 0 1 1 regarding 1 1 1 1 1 whatever 1 0 0 0 1

being 1 0 1 1 0 into 1 1 1 1 1 relate 1 1 1 1 1 when 1 1 1 1 1

below 1 1 1 1 1 investigate 1 1 0 0 1 said 1 1 1 1 1 whence 1 1 1 1 1

beside 1 1 1 1 1 is 1 0 0 0 0 same 1 1 1 1 1 whenever 1 1 1 1 1

besides 1 1 1 1 1 it 1 1 1 1 1 seem 1 1 0 0 1 where 1 1 1 1 1

between 1 1 1 1 1 its 1 1 1 1 1 seemed 1 1 0 0 1 whereafter 1 1 1 1 1

beyond 1 0 1 1 1 itself 1 1 1 1 1 seeming 1 1 0 0 1 whereas 1 1 1 1 1

both 1 1 1 1 1 j 1 1 1 1 1 seems 1 1 0 0 1 whereby 1 1 1 1 1

but 1 1 1 1 1 jour 1 1 1 1 1 seriously 1 1 1 1 1 wherein 1 1 1 1 1

by 1 1 1 1 1 journal 1 1 1 1 1 several 1 1 1 1 1 whereupon 1 1 0 0 1

came 1 1 1 1 1 just 1 0 0 1 1 she 1 1 1 1 1 wherever 1 1 1 1 1

cannot 1 0 0 0 0 kg 1 1 1 1 1 should 1 1 1 1 1 whether 1 1 1 1 1

cc 1 1 1 1 1 last 1 1 1 1 1 show 0 0 0 0 0 which 1 1 1 1 1

cm 1 1 1 1 1 latter 1 1 1 1 1 showed 0 0 0 0 0 while 1 1 1 1 1

come 1 1 1 1 1 latterly 1 1 1 1 1 shown 0 0 0 0 0 whither 1 1 1 1 1

compare 1 1 1 1 1 lb 1 1 1 1 1 since 1 1 1 1 1 who 1 1 0 0 1

could 1 0 0 0 0 ld 1 1 1 1 1 so 1 1 0 0 1 whoever 1 1 0 1 1

de 1 1 1 1 1 letter 1 1 1 1 1 some 1 1 1 1 1 whom 1 1 0 1 1

dealing 1 1 1 1 1 like 1 1 0 0 1 somehow 1 1 0 0 1 whose 1 1 1 1 1

department 1 1 1 1 1 ltd 1 1 1 1 0 someone 1 1 1 1 1 why 1 1 1 1 1

depend 1 1 1 1 0 made 1 1 1 1 0 something 1 1 1 1 1 will 1 1 1 1 1

did 1 0 1 1 0 make 1 1 1 1 0 sometime 1 1 0 0 1 with 1 1 1 1 1

discover 0 1 0 0 1 many 1 1 1 1 1 sometimes 1 1 0 0 1 within 1 1 1 1 1

dl 1 1 1 1 1 may 1 0 0 0 1 somewhere 1 1 0 0 1 without 1 0 1 1 1

do 1 0 1 1 1 me 1 1 1 1 1 still 1 1 1 1 1 wk 1 1 1 1 1

does 1 0 1 1 1 meanwhile 1 1 1 1 1 studied 0 1 1 0 1 would 1 0 1 1 1

during 1 1 1 1 1 mg 1 1 1 1 1 sub 1 1 1 1 1 wt 1 1 1 1 1

each 1 0 0 1 1 might 1 0 0 0 1 such 1 1 1 1 1 yet 1 1 1 1 1

ec 1 1 1 1 1 ml 1 1 1 1 1 take 1 1 1 1 1 you 1 1 1 1 1

ed 1 1 1 1 1 mm 1 1 1 1 1 tell 1 1 1 1 1 your 1 1 1 1 1

effected 1 1 1 1 0 mo 1 1 1 1 1 th 1 1 1 1 1 yours 1 1 1 1 1

eg 1 1 1 1 1 more 1 1 1 1 1 than 1 1 1 1 1 yourself 1 1 1 1 1

either 1 0 1 1 1 moreover 1 1 0 0 1 that 1 1 1 1 1 yourselves 1 1 1 1 1

else 1 1 1 1 1 most 1 0 0 0 1 the 1 1 1 1 1 yr 1 1 1 1 1

elsewhere 1 1 1 1 1                                     
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