Cisco Cooperative Project

LAA with Multi-carrier LBT: Option 2

Student: Li Li
Advisors: Len Cimini, Chien-Chung Shen

July 29, 2016
Outline

- Multi-carrier LBT
 - Option 1 & Option 2
 - Results

- Simulation Results

- Discussion & Future Work
Multi-carrier LBT

Option 1 (Wi-Fi like) [1]-[3]

LAA eNB performs LBT on only one unlicensed carrier (LBT carrier, “primary” channel)

- LBT carrier determination: 1) pre-selection; 2) dynamic selection: the one finished LBT procedure first
- Carrier aggregation: 1) Wi-Fi channel bonding rule; 2) LTE carrier aggregation rule

Multicarrier LBT

Option 2

LAA eNB performs LBT Cat 4 on more than one unlicensed carriers

- Two variations[1]:
 1. LBT scheme exit the self-defer stage if the number of the available channels is equal or larger than the pre-set threshold (early determination);
 2. LBT scheme do the final one-shot check at the end of the self-defer stage

[1] Braodcom, “R1-157009: Further Discussion on LAA DL Multi-channel LBT,” Nov. 16, 2015
Multicarrier LBT

Results\cite{1}-\cite{2}

- Class A (Option 1): dynamic selection, CA
- Class B (Option 2): self-defer period: 15 CCA slots
- 4 carriers
- LAA ED: -72 dBm

An LAA network using multi-channel transmissions can coexist well with Wi-Fi networks
Class A is a bit better than Class B (Option 1 with dynamic selection is similar to Option 2)
Different companies with different simulation settings may have different conclusions

\cite{1} Ericsson, “R1-154624: Discussion on Wi-Fi and DL-only LAA Coexistence for Multi-Channel Transmission,” Aug. 24, 2015
\cite{2} Ericsson, “R1-157258: On Channel Access Solutions for LAA Multi-Carrier Transmission,” Nov. 16, 2015
Simulation Results

Simulation Setting

- 4 APs + 4 eNBs: each AP/eNB has five users, and each UE uniformly and randomly distributed around its associated transmitter
- 8 carriers in total (U-NII 1 and U-NII 3)
- FTP file size: 0.5 Mbytes, Poisson process: lambda = 25
- Transmit power: 200 mW (23 dBm) for all transmitters
- Multi-carrier LBT: Option 2.2 (no early determination): one carrier reaches to the defer period, and other carriers are chosen by channel index if idle
- LAA can aggregate at most 4 carriers
Simulation Results

- LAA-ED: -65 dBm, Wi-Fi’s primary channel: 1,5,1,5

- With a larger self-deferral waiting time, the probability that multiple carriers complete the LBT procedure is greatly enhanced: LAA improves, WiFi degrades

- However, if the waiting time is too long, the system’s performance will decrease
Simulation Results

- **LAA-ED: -70/-75 dBm**

- Decreasing LAA-ED is beneficial to WiFi; the overall performance also decreases.
- Choosing a defer between 10 and 20 slots may be a good choice in this case. (In Ericsson’s simulations, it is 15; in Broadcom’s simulations, it is 10)
Simulation Results

- Option 1 (LBT carrier is pre-selected)

 ✓ PC: 1, 4, 5, 8, 1, 4, 5, 8

 ![Simulation Diagram]

<table>
<thead>
<tr>
<th></th>
<th>WiFi #1</th>
<th>WiFi #3</th>
<th>WiFi #5</th>
<th>WiFi #7</th>
<th>Op. A</th>
<th>LAA #2</th>
<th>LAA #4</th>
<th>LAA #6</th>
<th>LAA #8</th>
<th>Op. B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-70</td>
<td>104.60</td>
<td>110.25</td>
<td>84.33</td>
<td>113.13</td>
<td>412.32</td>
<td>200.94</td>
<td>160.71</td>
<td>180.87</td>
<td>224.30</td>
<td>766.83</td>
<td>1179.15</td>
</tr>
<tr>
<td>-75</td>
<td>103.44</td>
<td>101.97</td>
<td>99.31</td>
<td>111.31</td>
<td>416.04</td>
<td>187.36</td>
<td>157.52</td>
<td>154.24</td>
<td>219.56</td>
<td>718.69</td>
<td>1134.73</td>
</tr>
<tr>
<td>-80</td>
<td>115.73</td>
<td>146.27</td>
<td>108.67</td>
<td>115.27</td>
<td>485.94</td>
<td>142.82</td>
<td>108.84</td>
<td>146.98</td>
<td>150.43</td>
<td>549.07</td>
<td>1035.01</td>
</tr>
</tbody>
</table>

- The overall performance is better than that of pure WiFi networks (947.01): 1) higher physical rate for LAA; 2) CCA-CS is the only sensing threshold in pure WiFi networks

- Adapting LAA-ED can help to achieve fairness
Simulation Results

❖ Option 2 (Self-deferral: 15 CCA slots)

✓ PC: 1, ?, 5, ?, 1, ?, 5, ?

<table>
<thead>
<tr>
<th></th>
<th>WiFi #1</th>
<th>WiFi #3</th>
<th>WiFi #5</th>
<th>WiFi #7</th>
<th>Op. A</th>
<th>LAA #2</th>
<th>LAA #4</th>
<th>LAA #6</th>
<th>LAA #8</th>
<th>Op. B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-65</td>
<td>111.94</td>
<td>145.19</td>
<td>64.24</td>
<td>174.89</td>
<td>496.25</td>
<td>204.91</td>
<td>183.21</td>
<td>181.28</td>
<td>242.72</td>
<td>812.12</td>
<td>1308.38</td>
</tr>
<tr>
<td>-70</td>
<td>145.98</td>
<td>160.70</td>
<td>89.69</td>
<td>191.10</td>
<td>587.46</td>
<td>151.34</td>
<td>151.63</td>
<td>115.19</td>
<td>213.26</td>
<td>631.43</td>
<td>1218.89</td>
</tr>
<tr>
<td>-75</td>
<td>135.06</td>
<td>134.61</td>
<td>161.64</td>
<td>188.35</td>
<td>619.66</td>
<td>151.43</td>
<td>106.91</td>
<td>71.40</td>
<td>202.17</td>
<td>531.90</td>
<td>1151.56</td>
</tr>
</tbody>
</table>

• In this case, the performance of Option 2 is better than that of Option 1. However, if dynamic selection for LBT carrier is chosen for Option 1, its performance can be improved (Option 1 may even outperform Option 2).

• Generally, Option 1 and Option 2 have similar performance, and they can coexist well with Wi-Fi networks by choosing suitable LAA-ED.
Discussion & Future Work

✓ Improve simulations
 ▪ There should be a limitation on the total transmit power
 ▪ Wi-Fi can have 160 MHz or 80+80 MHz, LAA can aggregate 5 carriers
 ▪ Simulate LAA with channel bonding to see the performance difference

✓ Adapting the LAA-ED to improve the system performance and fairness?

✓ How to choose the “other” carriers in Option 1 and 2.