

Cisco Cooperative Project

Coexistence of WiFi and LAA

Students: Li Li Advisors: Len Cimini, Chien-Chung Shen

Dec. 17, 2015

Outline

Problem review

Delay performance: case II

Performance with a single user

Performance with multiple users

Next steps

Problem Review

Simulation setting

✓ 2 WiFi APs (green) and 2 LAA eNBs (yellow) are equally spaced [1]

✓ Transmit power: 18 dBm, with path loss

```
✓ Load rate of 0.8
```

- ✓ WiFi: CCACS = -82 dBm, CCAED = -62 dBm;
- ✓ LAA: CCAED = -65/-70/-75 dBm

✓
$$q_WiFi = [15,63], q_LAA = [15,63]$$

Problem Review: Different Location for Users

- ✓ Original delay definition: For a particular packet, delay = [time of successful transmission time of arrival], i.e., the time when the packet is popping out of the buffer the time when the packet is pushing into the buffer. (Problem: For some pairs, due to the accumulation of packets in the buffer, the average delay can be very large.)
- ✓ Delay definition [1]: The delay for a successfully transmitted packet is defined as the time interval from the time the packet is at the head-of-line of the queue ready to be transmitted, until an acknowledgement for this packet is received. (Unless collision happens, it's more like a delay "over the air".)

^[1] P. Raptis, V. Vitsas, K. Paparrizos, P. Chatzimisios, A. C. Boucouvalas, P. Adamidis, "Packet Delay Modeling of IEEE 802.11 Wireless LANs".

Performance: Case II

Case II: only collisions to LAA, load rate of 0.8

✓ Percentage of time occupation

LAA threshold (dBm)	WiFi (#1)	WiFi (#3)	LAA (#2)	LAA (#4)
-65	0.4019	0.4022	0.4450	0.4420
-70	0.4474	0.3752	0.0639	0.4440
-75	0.4455	0.4500	0.0066	0.0078

✓ Number of collisions

LAA threshold (dBm)	WiFi (#1)	WiFi (#3)	LAA (#2)	LAA (#4)
-65	1052	567	1101	608
-70	1316	1161	4428	451
-75	1294	1259	3359	3445

✓ Number of transmissions

LAA threshold (dBm)	WiFi (#1)	WiFi (#3)	LAA (#2)	LAA (#4)
-65	10465	10475	11588	11511
-70	11651	9770	1664	11502
-75	11602	11719	172	203

Case II: only collisions to LAA, load rate of 0.8

 \checkmark Average delay with original definition (in seconds)

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65 dB	6.5686	7.6698	0.0073	0.0073
-70 dB	0.0472	11.6686	64.4340	0.0072
-75 dB	0.0829	0.0801	76.9641	79.1500

 \checkmark Average delay with new definition (in seconds)

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	0.0075	0.0076	0.0062	0.0062
-70	0.0073	0.0078	0.0840	0.0060
-75	0.0071	0.0072	0.8223	0.7769

Delay for each successful transmission (Original definition)

✓ LAA threshold: -65 dBm

✓ LAA threshold: -65 dBm (from low to high)

Delay for each successful transmission ("New" definition)

✓ LAA threshold: -65 dBm

✓ LAA threshold: -65 dBm (from low to high)

Delay for each successful transmission ("New" definition)

✓ LAA threshold: -75 dBm

✓ LAA threshold: -75 dBm (from low to high)

Case II: only collisions to LAA, load rate of 0.5

 \checkmark Average delay with original definition (in seconds)

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65 dB	0.0048	0.0047	0.0017	0.0017
-70 dB	0.0095	0.0063	28.6761	0.0018
-75 dB	0.0051	0.0049	52.3055	51.6315

 \checkmark Average delay with new definition (in seconds)

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65 dB	0.0038	0.0038	0.0037	0.0036
-70 dB	0.0043	0.0040	0.0156	0.0037
-75 dB	0.0039	0.0039	0.0325	0.0327

Discussion

- ✓ Delay in the original definition keeps increasing, maybe it is not so suitable for the case of high load rate .
- ✓ The "new" definition of delay looks not so strange. Together with the number of successful transmissions (throughput), it may be a better definition.

Simulation setting

- ✓ Each AP/eNB has only one user.
- ✓ Each user locates in a circle with a uniform distribution: the center is its associated AP/eNB, and the maximum radius is 15 meters.
- ✓ 802.11ac/LTE SNR requirement (theoretical)

Mapping	Code Rate	Bandwidth	AC Min SNR(dB)	LTE Min SNR(dB)
64QAM	3/4	20 MHz	20	17.5

✓ Noise floor in 5G band: -90 dBm

[1] https://en.wikipedia.org/wiki/IEEE_802.11ac

[2] http://www.revolutionwifi.net/revolutionwifi/2014/09/wi-fi-snr-to-mcs-data-rate-mapping.html

Performance with a single user (cont'd)

Load rate of 0.8 (200 trials, each trial last 150 s)

\checkmark Percentage of time occupation: mean

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	0.3264	0.2000	0.2859	0.3644
-70	0.2795	0.2752	0.2740	0.3366
-75	0.3523	0.2687	0.2247	0.2961

✓ Percentage of time occupation: 10/50/90 %

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	0/0.4411/0.4471	0/0.0460/0.4463	0/ 0.442 3/0.4471	0/0.4431/0.4488
-70	0/0.3885/0.4458	0.0297/0.2397/0.4449	0/ 0.3805 /0.4468	0/0.4428/0.4466
-75	0.0731/0.4429/0.4472	0.0711/0.2388/0.4459	0/0.2900/0.4268	0/0.3532/0.4271

✓ Delay: 10/50/90 %

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	0.0060/ <mark>0.0066</mark> /NaN	0.0061/ <mark>0.1200</mark> /NaN	0.0058/0.0064/NaN	0.0058/ <mark>0.0062</mark> /NaN
-70	0.0060/0.0080/NaN	0.0060/0.0184/0.1790	0.0057 <mark>/0.0079</mark> /NaN	0.0058/ <mark>0.0062</mark> /NaN
-75	0.0058/0.0064/0.0733	0.0060/0.0175/0.0756	0.0057/ 0.0087 /NaN	0.0064/ 0.0081 /NaN

Average percentage of time occupation for each random dropping, -70 dB (in an increasing order, 200 trials)

Performance with a single user (cont'd)

Average delay for each random dropping, -70 dB (in an increasing order, 200 trials)

Discussion

- ✓ At most of time, LAA and WiFi can coexist with each other pretty well: high percentage of time occupation, low delay.
- ✓ In general, "mean" is a good choice to evaluate the percentage of time occupation (throughput). For delay, how to deal with the case of NaN.
- \checkmark The performance highly depends on the layout (location).

Simulation setting

✓ Each AP/eNB have five users (One example of the layout.)

✓ Each user has the same probability to access the channel, and they occupy the channel with the same amount of time.

Performance with multiple users (Cont'd)

Simulation setting

 ✓ 802.11ac/LTE theoretical throughput and minimum SNR requirement (20 MHz, normal CP) (AC: MCS 0~11, LTE: MCS 0~14)

Modulation type	Coding Rate	AC SNR	LTE SNR	AC throughput	LTE throughput
QPSK	1/2	5	2.0	14.4	16.8
QPSK	3/4	9	5.5	21.7	25.2
16-QAM	1/2	11	7.9	28.9	33.6
16-QAM	3/4	15	12.2	43.3	50.4
64-QAM	2/3	18	15.3	57.8	67.2
64-QAM	3/4	20	17.5	65	75.6

[1] https://en.wikipedia.org/wiki/IEEE_802.11ac

[2] C. Johnson, "Long Term Evolution IN BULLETS" (Chapter 17.1).

[3] http://www.revolutionwifi.net/revolutionwifi/2014/09/wi-fi-snr-to-mcs-data-rate-mapping.html

Different Location for Users (Cont'd)

- ✤ Load rate of 0.8
 - ✓ Average throughput, 802.11ac with MU-MIMO

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	26.88	13.23	22.55	31.96
-70	24.67	18.64	20.42	31.72
-75	28.65	20.31	16.21	24.05

✓ Average throughput, 802.11ac without MU-MIMO

LAA threshold (dBm)	WiFi #1	WiFi #3	LAA #2	LAA #4
-65	21.86	20.67	24.53	22.76
-70	23.65	19.87	22.30	23.13
-75	24.18	24.77	18.68	20.58

Discussion

- ✓ With MU-MIMO, the sum throughput is higher, since there is less overhead caused by CSMA/CA.
- ✓ With MU-MIMO, it's possible to support higher load rate (for example, each user with a load rate of 0.8). In this case, AC will have more advantages.
- ✓ To evaluate the performance of delay, we should assume each user has the same amount of data to be received. Different locations lead to different MCS.

- ✓ Continue to think about the simulation of LAA/WiFi with multiple users;
- \checkmark Try to get more theoretic analysis.

 \checkmark Study the case when there are multiple subchannels.