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Accelerating Data Deluge

e 1250 billion gigabytes

generated in 2010

— # digital bits > # stars
in the universe

- growing by a factor
of 10 every 5 years

e Total data generated
> total storage

Overload ]
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e Increases in generation rate >> increases in

transmission rate



Case in Point: DARPA ARGUS-IS

e 1.8 Gpixel image sensor

— video rate output: @ Functional
770 GbitS/S : a N Elements
- 7 | N
- data rate input: _ : -2 I ——
274 Mbits/s
Tl aey .- . Datalink
: i CDL
ol 199 274 Mbit/s
factor of 2800x of Tl / I \

way out of reach of
existing compression
technology

ARGUS-IS
Ground T
Processing Station

Ground

115 m Grolatl- Saniple Distance
- ., =

e Reconnaissance
without conscience
- too much data to transmit to a ground station
— too much data to make effective real-time decisions



Accelerating Data Deluge
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Today’ s Menu

What’ s wrong with today’ s sensor systems?

One way out:

Theory:

Practice:

why go to all the work to acquire massive

amounts of multimedia data
only to throw much/most of it away?

dimensionality reduction
(compressive sensing)

enables the design of radically
new sensors and systems

mathematics of sparsity

new nonlinear signal models
and recovery algorithms

compressive sensing in action
new cameras, imagers, ADCs, ...



Sense by Sampling

sample —




Sense by Sampling

XL — sample — too

much
data!




Sense then Compress

N> K

2L —1 sample " compress —

JPEG
JPEG2000

— decompress




Sparsity

]Yxels = R

p ’ | wavelet
coefficients
(blue = 0)

N r\ i > K < N

wide bla nd - N MWWE large

sigha g Gabor (TF)

samples coefficients




Concise Signal Structure

e Sparse signal: only K out of N
coordinates nonzero

— model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly with power-law

power-law
decay \

K

sorted index N



Concise Signal Structure

e Sparse signal: only K out of N
coordinates nonzero

— model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly with power-law

- model: £y ball: ||z|lp = > . |ziP <1, p<1

RN

power-law
decay \

K

sorted index N



What' s Wrong with this Picture?

e Why go to all the work to acquire
N samples only to discard all but
K pieces of data?

N> K

N K
sample "~ compress —

— decompress




What' s Wrong with this Picture?

'\ . linear processing nonlinear processing
linear signal model nonlinear signal model
(bandlimited subspace) (union of subspaces)

A

sample compress —

— decompress




Compressive Sensing

e Directly acquire “compressed” data
via dimensionality reduction

7

e Replace samples by more general “measurements

K~MKN

compressive sensing [

— recover




Sampling

e Signal x is K-sparse in basis/dictionary \If

- WLOG assume sparse in space domain VUV =]
e Sampling
Y =] =zx
n 1 N x 1
N x 1 o — u sparse
Mmea t H B i
surements H u 5|gna|
: K
! ! nonzero
N — entries




Compressive Sampling

e When data is sparse/compressible, can directly
acquire a condensed representation with
no/little information loss through
linear dimensionality reduction Yy — Dx

y P "
M X 1t i — -: ]\s[pjfsel
measurements q signal
MxN {1 Kk
K< M<N ; entries




How Can It Work?

Y P
e Projection @
not full rank... E — -
M < N

... and so
loses information in general

e Ex: Infinitely many & s map to the same Yy
(null space)

HEE EEEEECEESEEEERS




How Can It Work?

Y
e Projection @
not full rank...

M < N

K columns

... and so
loses information in general

e But we are only interested in sparse vectors

HEE EEEEECEESEEEERS




How Can It Work?

o Y d x
e Projection @ o
not full rank... — I
M < N L
... and so K columns

loses information in general

e But we are only interested in sparse vectors

e @ is effectively MxK



How Can It Work?

L Y
e Projection @

not full rank...

M < N

K columns

... and so
loses information in general

e But we are only interested in sparse vectors

e Design @ so that each of its MxK submatrices
are full rank (ideally close to orthobasis)
— Restricted Isometry Property (RIP)

HEE EEEEECEESEEEERS




RIP = Stable Embedding

e An information preserving projection {0 preserves
the geometry of the set of sparse signals

e RIP ensures that ||z1 — z2||2 = ||Px1 — DPx2]|2



How Can It Work?

Y
e Projection @
not full rank... —

M < N

K columns

... and so
loses information in general

e Design @ so that each of its MxK submatrices
are full rank (RIP)

e Unfortunately, a combinatorial,
NP-Hard design problem

HEE EEEEECEESEEEERS




e Draw @ at random
— iid Gaussian
— iid Bernoulli £1

K columns

e Then @ has the RIP with high probability

provided
M = O(K log(N/K)) < N



Randomized Sensing

e Measurements Y = random linear combinations
of the entries of

e No information loss for sparse vectors  whp

Y P x
M x 1 __ = : N x 1
measurements o ...ﬂ HIL- _ sparse
n ] m signal
MxN H Kk
H nonzero
u entries

M = O(K log(N/K))



CS Signal Recovery
Y

e Goal: Recover signal x
from measurements Yy —

i

e Problem: Random
projection ¢ not full rank
(ill-posed inverse problem)

e Solution: Exploit the sparse/compressible
geometry of acquired signal x

HEE EEEEE EENEEERY




CS Signal Recovery

Random projection @ Y X
not full rank N
— -
Recovery problem: -
given y = Px m
find =« -
K
Null space -
Search in null space
for the “best” T
according to some ;o . /
criterion ' y= b’}

(N-M)-dim hyperplane

— ex: least squares
at random angle




¢> Signal Recovery

e Recovery:
(ill-posed inverse problem)

e Optimization:
e Closed-form solution:

e Wrong answer!

given gy = Pz
find x (sparse)



¢> Signal Recovery

Recovery: given gy = Pz
(ill-posed inverse problem) find x (sparse)
Optimization: T = arg min ||z||»
y=>x
Closed-form solution: = (dTd) 1oty
Wrong answer! \ RN
- |
- xr
' X




¢o Signal Recovery

Recovery: given gy = Pz
(ill-posed inverse problem) find x (sparse)
Optimization: T = arg min ||z|o
y=>x
Correct! “find sparsest vector

in translated nullspace”

- -, ‘_ o

But NP-Complete alg



¢1 Signal Recovery

e Recovery: given gy = Pz
(ill-posed inverse problem) find x (sparse)
e Optimization: r = arg mln |21
y=& A N

e Convexify the £ optimization

Candes Romberg Tao



¢1 Signal Recovery

Recovery: given gy = Pz

(ill-posed inverse problem) find x (sparse)

Optimization: r = arg mln |21
y_

Convexify the £ optimization

Correct!

Polynomial time alg
(linear programming)




CS Hallmarks

Stable

— acquisition/recovery process is numerically stable

Asymmetrical (most processing at decoder)

— conventional: smart encoder, dumb decoder
- CS: dumb encoder, smart decoder

Democratic

— each measurement carries the same amount of information

— robust to measurement loss and quantization

— “digital fountain” property
Random measurements encrypted

Universal

— same random projections / hardware can be used for

any sparse signal class

(generic)



Universality

e Random measurements can be used for signals
sparse in any basis

r = WV

&
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Universality

e Random measurements can be used for signals
sparse in any basis

y = bz = dWa

P W

.

B WTTE <
]
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Universality

e Random measurements can be used for signals
sparse in any basis

Y oY o
| |
_ el B Nx1
— :l .l H sparse
t- N N ; coefficient
u vector
. K
u nonzero
[ | entries




Compressive Sensing
In Action

Cameras



“Single-Pixel” CS Camera

scene

single photon
detector

T image
AD y reconstruction
or
processing
o
random
pattern on —_r——
DMD array
w/ Kevin Kelly

(DLP

TEXAS INSTRUMENTS

S INVAEW




“Single-Pixel” CS Camera

single photon

detector ]
image

L PD reconstruction
or
processing
random
pattern on
DMD array

e Flip mirror array M times to acquire M measurements
e Sparsity-based (linear programming) recovery



First Image Acquisition

target 11000 measurements 1300 measurements
65536 pixels (16%) (2%)

RER




Utility?

Fairchild

100Mpixel

single photon CCD
/ detector




CS Low Light Imager

photomultiplier
tube

Photo-Multiplier Tube

true color low-light imaging

256 x 256 image with 10:1
compression

[Nature Photonics, April 2007]

low light image



CS Infrared Imager

IR photodiode

— raster scan IR

—r—

CS IR



hyperspectral data cube
450-850nm

N=1M space x wavelength voxels
M=200k random measurements



Compressive Sensing
In Action

Video Acquisition



From Image to Video Sensing

\('{ Tube

e Nontrivial extension of CS image acquisition
— immoral to treat time as 3rd spatial dimension

e Ephemeral temporal events
— should measure temporal events at their “information rate”
- fleeting events hard to predict and capture

e Computational complexity involved in recovering
billions of video voxels



Simple LDS Model

e Linear dynamical system
model

— image sequence lies along
a curve on a linear subspace

e Reasonable model for
certain physical phenomena
- flows, waves, ...

e |Leverage modern state space techniques to
estimate image sequence from compressive
measurements



Flame Video

(a) Ground truth

AA AN

z, M = 30, M = 170, Meas. rate = 5%, SNR = 13.73 dB.

Aﬂﬂﬁ A

(¢) fs = 512 Hz, M = 30, M = 70, Meas. rate = 2.44%, SNR = 13.73 dB.

AAAANDN A

b
ux

(b) fs

(d) fs = 1024 Hz, M = 30, M = 20, Meas. rate = 1.22%, SNR = 12.63 dB.



Traffic Video

ground truth

CS video recovery

measurement rate = 4%



Compressive Sensing
In Action

A/D Converters



Analog-to-Digital Conversion

e Nyquist rate limits reach of today’ s ADCs

e “Moore’s Law” for ADCs:

- technology Figure of Merit incorporating sampling rate
and dynamic range doubles every 6-8 years

e Analog-to-Information (A2I) converter

— wideband signals have
high Nyquist rate frequency hopper
but are often spectrogram
sparse/compressible

— develop new ADC
technologies to exploit

- new tradeoffs among
Nyquist rate, sampling rate,
dynamic range, ...

)

frequency

time



Streaming Measurements

e Streaming applications: cannot fit entire signal
into a processing buffer at one time

Yy = Dr streaming requires
special

Y
M E
— N
measurements —_—

-:I.

-~
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Streaming Measurements

e Streaming applications: cannot fit entire signal
into a processing buffer at one time

Yy = Dr streaming requires
special
X
measurements ;
O
RIP? &




Streaming Measurements

e Many applications: Signal sparse in frequency
(Fourier transform)

Yy = CDZB streaming requires
special

III.IIII.I.IIIQ




Random Demodulator

C
A c)xpl)

z(t) /t_ 1 —b><—> y[n]

M

p(t)| B

input signal x(t) input signal X(w)
Pseudorandom
Seed —>  Number \/\/\/\ A
Generator X k
pseudorandom pseudorandom sequence
sequence pC(t) spectrum PC(U))

’1
'\

MU B

modulated input and
modulated input integrator (low-pass filter)

\ I
lI il
I A [
{ 1 J \ |
AN A p AT A WA
! ¥ 1 ' \




Random
Demodulator

l

z(t)
Pe(t)
Pseudorandom
Seed — Numbe
Genera tor

I
=|

-
=,
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Random
Demodulator

z(t) X pe(t)

l

-
S,

z(t)
Pe(t)
Pseudorandom
Seed —> Number
Generator
Y

I
<=

[(TT T TTT I TTITTT1] Q




Sampling Rate

n
t = —
z(t) X pe(t) r M
0 [ S

L
M

Pe(t)

Pseudorandom
Seed — Number

Generator

e Goal: Sample near signal’ s (low) “information rate”
rather than its (high) Nyquist rate

M = O(K log(N/K))

!
A2I /

number of Nyquist
sampling tones / bandwidth
rate window



Sampling Rate

z(t) X pe(t) M

o0 [ e S

e Theorem [Tropp, B, et al 2007]

If the sampling rate satisfies

M > cKlog?(N/§), 0<dé<1

then locally Fourier K-sparse signals can be
recovered exactly with probability

1—0



Sampling Rate H

Empirical Results

n
(62}

5
o

w
(%2

w
o

sl TS 20 40 60 80 100 120 140
Signal Bandwidth Hz (N) Number of Nonzero Components (K)

1.69K log(N/K +1) +4.51  1.71K log(N/K + 1) + 1

M < CK log(N/K + 1)
C~ 1.7



Frequency bin

Example: Frequency Hopper

: : 20x sub-Nyquist
Nyquist rate sampling sampling
spectrogram sparsogram

500 500

400 400

w

o

o
Frequency Bin

w

o

o

N
o
(=]
N
o
(=]

100 100

5 10 15 5 10 15
Time Window Time Window



Example: Frequency Hopper

: : 20x sub-Nyquist
Nyquist rate sampling sampling
spectrogram Ssparsogram

50 100 150 . 50 ] 50 100 150 200 250

20MHz sampling rate 1MHz sampling rate



o Key resulit:

Stated Number of Bits (N)

251
23 1
211
191
17 1
151
1371
117

Dynamic Range

Random measurements don’t affect

dynamic range

Theoretical slope = 1/3 b/dB
i oo N\ .\_ Actual Slope

B ° N ;\._\ — 1/2.3 b/dB
N\

N\
X ORxe &

- o

H Seeis o RSN QO e \ H

® NOK
MK BEHE X 3K

X=X EDERRENENORC ORI

X

® Flash

" Folding

A Half-Flash

X Pipelined

X SAR

® Sigma-Delta
Unknown

high resolution
(many bits per

N sample) only at low
XK 0K RIS AKX OUKA0MSEOON \\
N\

sampling rate

L X poe - o g TE Y bl LA .“\ \
- o oo O
: : : : : : : P Degradation
10 20 30 40 50 60 70 80 90 100

10log(f,) (dBsps)



Application: Frequency Tracking

e Compressive Phase Locked Loop (PLL)

— key idea: phase detector in PLL computes inner product
between signal and oscillator output

— RIP ensures we can compute this inner product between
corresponding low-rate CS measurements

03f /|| ——CS—PLL Output
A I Traditional FM D d
<y, v> % <x, u> ol ‘ \‘ ‘ ““H ra ||onT emo -
l! ““ 1‘]'\ ‘;" ! C“,
(N] A [ N
=S N A T VA N A O G T I A WO
x(t) y[m] _ (- (T A N O O O I O
. 0 (I Iy L o I
> > nase 00 1iter ol " ;‘ | [ '\ ‘ ‘
Pl Om] | Loop Fitter/ | #Im = 10t
» Detector | Phase Update LI I ARV |/
—02} \/ [ | ‘I“, ;’
-0.3f Vi
0.0.63 0.(564 0.065 0.066 0.067 0.068 0.069
v [m] u [n] Seconds
b I« Oscillator [« CS-PLL w/ 20X

undersampling



Summary: CS

o Compressive sensing
— randomized dimensionality reduction
— exploits signal sparsity information
— Integrates sensing, compression, processing

e Why it works: with high probability, random

projections preserve information

in signals with concise geometric
structures

e Enables new sensing architectures
— ADCs, radios, cameras, ...

e Can process signals/images directly from their
compressive measurements



Open Research Issues

e Links with information theory
- new encoding matrix design via codes (LDPC, fountains)
— new decoding algorithms (BP, etc.)
— quantization and rate distortion theory

e Links with machine learning
— Johnson-Lindenstrauss, manifold embedding, RIP

e Processing/inference on random projections
— filtering, tracking, interference cancellation, ...

e Multi-signal CS

— array processing, localization, sensor networks, ...

e CS hardware
- ADCs, receivers, cameras, imagers, radars, ...






