Compressive Sensing

A New Framework for Sparse Signal Acquisition and Processing

Richard Baraniuk

Rice University
Better, Stronger, Faster
Accelerating Data Deluge

- **1250 billion gigabytes** generated in 2010
 - # digital bits > # stars in the universe
 - growing by a factor of 10 every 5 years

- Total data **generated** > total storage

- Increases in **generation rate** >> increases in **transmission rate**
Case in Point: DARPA ARGUS-IS

- 1.8 Gpixel image sensor
 - video rate output: 770 Gbits/s
 - data rate input: 274 Mbits/s
 - factor of 2800x way out of reach of existing compression technology

- **Reconnaissance without conscience**
 - too much data to transmit to a ground station
 - too much data to make effective real-time decisions
Accelerating Data Deluge
Today’s Menu

• What’s wrong with today’s sensor systems?
 why go to all the work to acquire massive amounts of multimedia data only to throw much/most of it away?

• One way out: dimensionality reduction (compressive sensing)
 enables the design of radically new sensors and systems

• Theory: mathematics of sparsity
 new nonlinear signal models and recovery algorithms

• Practice: compressive sensing in action
 new cameras, imagers, ADCs, …
Sense by Sampling
Sense by Sampling

$\mathcal{X} \xrightarrow{\text{sample}} N \xrightarrow{\text{too much data!}}$
Sense then *Compress*

\[x \rightarrow \text{sample} \rightarrow N \gg K \rightarrow K \]

JPEG
JPEG2000
...

\[K \rightarrow \text{decompress} \rightarrow N \rightarrow \hat{x} \]
Sparsity

\[N \text{ pixels} \]

\[K \ll N \text{ large wavelet coefficients} \]
(blue = 0)

\[N \text{ wideband signal samples} \]

\[K \ll N \text{ large Gabor (TF) coefficients} \]
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly with power-law
Concise Signal Structure

- **Sparse** signal: only K out of N coordinates nonzero
 - model: union of K-dimensional subspaces

- **Compressible** signal: sorted coordinates decay rapidly with power-law
 - model: ℓ_p ball: $\|x\|_p^p = \sum_i |x_i|^p \leq 1$, $p \leq 1$
What’s Wrong with this Picture?

- Why go to all the work to acquire \(N \) samples only to discard all but \(K \) pieces of data?
What’s Wrong with this Picture?

linear processing
linear signal model
(bandlimited subspace)

nonlinear processing
nonlinear signal model
(union of subspaces)

\(\mathcal{X} \rightarrow \text{sample} \)

\(\overset{N}{\longrightarrow} \text{compress} \)

\(\overset{K}{\longrightarrow} \)

\(\overset{K}{\longrightarrow} \text{decompress} \)

\(\overset{N}{\longrightarrow} \hat{\mathcal{X}} \)
Compressive Sensing

- Directly acquire “compressed” data via dimensionality reduction
- Replace samples by more general “measurements”

\[K \approx M \ll N \]

\[\begin{align*}
\mathbf{x} &\rightarrow \text{compressive sensing} \\
&M \rightarrow \mathbf{y}
\end{align*} \]
Sampling

• Signal x is K-sparse in basis/dictionary Ψ
 - WLOG assume sparse in space domain $\Psi = I$

• Sampling

$$N \times 1$$
measurements

y

$\Phi = I$

x

$N \times 1$
sparse signal

K
nonzero entries
Compressive Sampling

- When data is sparse/compressible, can directly acquire a **condensed representation** with no/little information loss through linear **dimensionality reduction**

\[y = \Phi x \]

- \(M \times 1 \) measurements
- \(\Phi \) is a \(M \times N \) matrix
- \(x \) is a \(N \times 1 \) sparse signal
- \(K < M \ll N \) where \(K \) is the number of nonzero entries

\[
\begin{align*}
M & \times 1 \\
\text{measurements} & \\
\Phi & \\
\begin{array}{c}
M \times N \\
\text{nonzero entries}
\end{array}
\end{align*}
\]
How Can It Work?

• Projection Φ
 not full rank...

\[M < N \]

... and so

loses information in general

• Ex: Infinitely many x’s map to the same y (null space)
How Can It Work?

- Projection Φ not full rank...

 $M < N$

 ... and so loses information in general

- But we are only interested in **sparse** vectors
How Can It Work?

- Projection Φ not full rank...

$$M < N$$

... and so loses information in general

- But we are only interested in sparse vectors

- Φ is effectively MxK
How Can It Work?

• Projection Φ not full rank...

$$M < N$$

... and so loses information in general

• But we are only interested in \textit{sparse} vectors

• \textbf{Design Φ} so that each of its MxK submatrices are full rank (ideally close to orthobasis)
 - \textit{Restricted Isometry Property (RIP)}
RIP = Stable Embedding

- An information preserving projection Φ preserves the **geometry** of the set of sparse signals

- RIP ensures that $\|x_1 - x_2\|_2 \approx \|\Phi x_1 - \Phi x_2\|_2$
How Can It Work?

• Projection Φ not full rank...

\[M < N \]

... and so loses information in general

• Design Φ so that each of its MxK submatrices are full rank (RIP)

• Unfortunately, a combinatorial, NP-Hard design problem
Insight from the 70’s [Kashin, Gluskin]

- Draw Φ at random
 - iid Gaussian
 - iid Bernoulli ± 1

- Then Φ has the RIP with high probability provided

$$M = O(K \log(N/K)) \ll N$$
Randomized Sensing

• Measurements \(y = \text{random linear combinations} \) of the entries of \(x \)

• **No information loss** for sparse vectors \(x \) whp

\[
M \times 1 \begin{array}{c}	ext{measurements} \\
\end{array} = \Phi \begin{array}{c}	ext{\(M \times N \)} \\
\end{array} x
\]

\[M = O(K \log(N/K))\]
CS Signal Recovery

- **Goal**: Recover signal \(x \) from measurements \(y \)
- **Problem**: Random projection \(\Phi \) not full rank (ill-posed inverse problem)
- **Solution**: Exploit the sparse/compressible *geometry* of acquired signal \(x \)
CS Signal Recovery

• Random projection Φ not full rank

• Recovery problem: given $y = \Phi x$ find x

• Null space

• Search in null space for the “best” x according to some criterion
 – ex: least squares

\[y = \Phi x \]

$(N-M)$-dim hyperplane at random angle
\[l_2 \text{ Signal Recovery} \]

- **Recovery:**
 (ill-posed inverse problem)
 \[
 \text{given } y = \Phi x \\
 \text{find } \hat{x} \text{ (sparse)}
 \]

- **Optimization:**
 \[
 \hat{x} = \arg \min_{\Phi x = y} \|x\|_2
 \]

- **Closed-form solution:**
 \[
 \hat{x} = (\Phi^T \Phi)^{-1} \Phi^T y
 \]

- **Wrong answer!**
ℓ_2 Signal Recovery

- Recovery: given $y = \Phi x$
 find x (sparse)

- Optimization:

- Closed-form solution:

 $\hat{x} = \arg\min_{y = \Phi x} \|x\|_2$

 $\hat{x} = (\Phi^T\Phi)^{-1}\Phi^Ty$

- Wrong answer!

![Diagram of signal recovery process]
\(l_0 \) Signal Recovery

- Recovery:
 (ill-posed inverse problem)

- Optimization:

 - **Correct!**

 \[
 \hat{x} = \arg \min_{\|x\|_0} \| y - \Phi x \|_0
 \]

 “find sparsest vector in translated nullspace”

- But **NP-Complete** alg

\[y = \Phi x \]
\[\| _1 \text{ Signal Recovery} \]

- **Recovery:**
 (ill-posed inverse problem)
 \[
 \text{given } y = \Phi x \\
 \text{find } x \text{ (sparse)}
 \]

- **Optimization:**
 \[
 \hat{x} = \arg \min_{y = \Phi x} \| x \|_1
 \]

 Convexify the \(\ell_0 \) optimization

Candes Romberg Tao Donoho
\(\ell_1 \) Signal Recovery

- **Recovery:**
 \((\text{ill-posed inverse problem}) \)
 \(\text{given} \quad y = \Phi x \)
 \(\text{find} \quad x \quad \text{(sparse)} \)

- **Optimization:**
 \(\hat{x} = \arg \min_{y=\Phi x} \|x\|_1 \)

- **Convexify** the \(\ell_0 \) optimization

- **Correct!**

- **Polynomial time** alg
 (linear programming)
CS Hallmarks

- **Stable**
 - acquisition/recovery process is numerically stable

- **Asymmetrical** (most processing at decoder)
 - conventional: smart encoder, dumb decoder
 - CS: dumb encoder, smart decoder

- **Democratic**
 - each measurement carries the same amount of information
 - robust to measurement loss and quantization
 - “digital fountain” property

- Random measurements *encrypted*

- **Universal**
 - same random projections / hardware can be used for *any* sparse signal class *(generic)*
Universality

- Random measurements can be used for signals sparse in any basis

\[x = \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in *any* basis

\[y = \Phi x = \Phi \Psi \alpha \]
Universality

- Random measurements can be used for signals sparse in any basis

\[y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha \]
Compressive Sensing

In Action

Cameras
“Single-Pixel” CS Camera

scene

random pattern on DMD array

single photon detector

image reconstruction or processing

w/ Kevin Kelly
“Single-Pixel” CS Camera

- Flip mirror array M times to acquire M measurements
- Sparsity-based (linear programming) recovery
First Image Acquisition

- Target: 65536 pixels
- 11000 measurements (16%)
- 1300 measurements (2%)
Utility?

Fairchild 100Mpixel CCD

Single photon detector
true color low-light imaging
256 x 256 image with 10:1 compression
[Nature Photonics, April 2007]
CS Infrared Imager

IR photodiode

raster scan IR

CS IR
CS Hyperspectral Imager

Hyperspectral data cube
450-850nm
$N=1M$ space x wavelength voxels
$M=200k$ random measurements
Compressive Sensing

In Action

Video Acquisition
From Image to Video Sensing

• Nontrivial extension of CS image acquisition
 – immoral to treat time as 3rd spatial dimension

• **Ephemeral** temporal events
 – should measure temporal events at their “information rate”
 – fleeting events hard to predict and capture

• Computational **complexity** involved in recovering billions of video voxels
Simple LDS Model

• **Linear dynamical system** model
 – image sequence lies along a curve on a linear subspace

• Reasonable model for certain physical phenomena
 – flows, waves, ...

• Leverage modern *state space techniques* to estimate image sequence from compressive measurements
Flame Video

(a) Ground truth

(b) $f_s = 256$ Hz, $\tilde{M} = 30$, $\tilde{M} = 170$, Meas. rate = 5%, SNR = 13.73 dB.

(c) $f_s = 512$ Hz, $\tilde{M} = 30$, $\tilde{M} = 70$, Meas. rate = 2.44%, SNR = 13.73 dB.

(d) $f_s = 1024$ Hz, $\tilde{M} = 30$, $\tilde{M} = 20$, Meas. rate = 1.22%, SNR = 12.63 dB.
Traffic Video

ground truth

CS video recovery

measurement rate = 4%
Compressive Sensing

In Action

A/D Converters
Analog-to-Digital Conversion

- Nyquist rate limits reach of today’s ADCs

- “Moore’s Law” for ADCs:
 - technology Figure of Merit incorporating sampling rate and dynamic range doubles every 6-8 years

- Analog-to-Information (A2I) converter
 - wideband signals have high Nyquist rate but are often sparse/compressible
 - develop new ADC technologies to exploit
 - new tradeoffs among Nyquist rate, sampling rate, dynamic range, ...
Streaming Measurements

- Streaming applications: cannot fit entire signal into a processing buffer at one time

\[y = \Phi x \]

streaming requires special \(\Phi \)
Streaming Measurements

- Streaming applications: cannot fit entire signal into a processing buffer at one time

\[y = \Phi x \]

streaming requires special \(\Phi \)

\[M \text{ measurements} = \Phi \]

\[x \]
Streaming Measurements

- Many applications: Signal sparse in **frequency** (Fourier transform)

\[y = \Phi x \]

streaming requires special \(\Phi \)

\[
\begin{array}{cccc}
\text{y} & \Phi & \psi & \alpha \\
\text{_} & \text{_} & \text{_} & \text{_}
\end{array}
\]
Random Demodulator

\[x(t) \times p_c(t) \]

\[\int_{t}^{t - \frac{1}{M}} \]

\[y[n] \]

\[t = \frac{n}{M} \]

input signal \(x(t) \)

\[\times \]

pseudorandom sequence \(p_c(t) \)

modulated input

input signal \(X(\omega) \)

\[\ast \]

pseudorandom sequence spectrum \(P_c(\omega) \)

modulated input and integrator (low-pass filter)
Random Demodulator

$x(t) \times p_c(t) \rightarrow \int_{t-\frac{1}{M}}^t \rightarrow y[n]$

Seed → Pseudorandom Number Generator

\[y = \Phi \]

\[x \]

\[\Psi \]

\[\alpha \]
Random Demodulator

\[x(t) \times p_c(t) \xrightarrow{\int_{t-\frac{1}{M}}^{t}} y[n] \]

Seed → Pseudorandom Number Generator

\[y = \Phi \psi \alpha \]

\[\omega \]
Sampling Rate

- **Goal:** Sample near signal’s (low) “information rate” rather than its (high) Nyquist rate

\[M = O(K \log(N/K)) \]

- A2I sampling rate
- number of tones / window
- Nyquist bandwidth
Sampling Rate

• **Theorem** [Tropp, B, et al 2007]

If the sampling rate satisfies

\[M > cK \log^2(N/\delta), \quad 0 < \delta < 1 \]

then locally Fourier K-sparse signals can be recovered exactly with probability

\[1 - \delta \]
Empirical Results

\[M \leq CK \log\left(\frac{N}{K} + 1\right) \]

\[C \sim 1.7 \]
Example: Frequency Hopper

Nyquist rate sampling

spectrogram

20x sub-Nyquist sampling

sparsogram
Example: Frequency Hopper

Nyquist rate sampling

- spectrogram
- conventional ADC
- 20MHz sampling rate

20x sub-Nyquist sampling

- sparsogram
- CS-based AIC
- 1MHz sampling rate
Dynamic Range

- **Key result:** Random measurements don’t affect dynamic range

Theoretical slope = $1/3 \, \text{b/dB}$

Actual Slope = $1/2.3 \, \text{b/dB}$

High resolution (many bits per sample) only at low sampling rate
Application: Frequency Tracking

- Compressive **Phase Locked Loop (PLL)**
 - key idea: phase detector in PLL computes inner product between signal and oscillator output
 - RIP ensures we can compute this inner product between corresponding low-rate CS measurements
Summary: CS

- **Compressive sensing**
 - randomized dimensionality reduction
 - exploits signal **sparsity** information
 - integrates sensing, compression, processing

- Why it works: with high probability, random projections preserve information in signals with concise geometric structures

- Enables new sensing architectures
 - ADCs, radios, cameras, ...

- Can process signals/images directly from their compressive measurements
Open Research Issues

• **Links with information theory**
 – new encoding matrix design via codes (LDPC, fountains)
 – new decoding algorithms (BP, etc.)
 – quantization and rate distortion theory

• **Links with machine learning**
 – Johnson-Lindenstrauss, manifold embedding, RIP

• **Processing/inference** on random projections
 – filtering, tracking, interference cancellation, ...

• **Multi-signal CS**
 – array processing, localization, sensor networks, ...

• **CS hardware**
 – ADCs, receivers, cameras, imagers, radars, ...