C1 Theory (25 points)

a. (6.25 points) Show that

 $L_1 = \{ w \in \{a, b\}^* \mid w \text{ contains subword } aab \text{ or } 20\text{th from last symbol of } w \text{ exists } \& = b \}$ (1)

is regular. You may use with out proof any standard text book results about regular sets provided you clearly say which results you are using when.¹

b. (6.25 points)

Find a *deterministic* finite automaton \mathcal{M}' which accepts the same language (over $\{a, b\}$) as the non-deterministic finite automaton \mathcal{M} depicted in table form just below.

δ	a	b
start 1	$\{1, 2\}$	{1}
2	{3}	$\{3\}$
3	$\{4\}$	$\{4\}$
4	$\{5\}$	$\{5\}$
final 5	Ø	Ø.

c. (6.25 points)

Employ an appropriate pumping lemma to show that

$$L_2 = \{a^m b^n \mid m \text{ is a perfect square } \lor n \text{ is odd}\}$$

$$\tag{2}$$

is not regular.

d. (6.25 points)

Employ an appropriate pumping lemma to show that

$$L_3 = \{ab^p \mid p \text{ is prime}\}\tag{3}$$

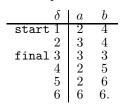
is not context free, i.e., is not accepted by any push down automaton.

 $^{{}^{1}}L_{1}$ is not a standard text book regular language. (...)

C2 Theory (25 points)

a. (12.5 points)

Consider the following finite automaton \mathcal{M} expressed in tabular form.



This \mathcal{M} is minimal state (for the accepting task it performs). Explicitly employ Myhill-Nerode to prove this \mathcal{M} is minimal state.

Hint: You may find it useful to draw the state diagram of \mathcal{M} . Find a relevant spanning S by considering how to reach each state of \mathcal{M} from its start state. Show this S can't be reduced in size and still be relevantly spanning. The number of combinations of six things taken two at a time is 15.

b. (12.5 points)

Explicitly program a *deterministic* push-down automaton which accepts all and only the strings in

$$L = \{a^n b^{2n} \mid n > 0\}.$$
 (4)

Up to half credit if your pda is not deterministic.

C3 Theory (25 points)

Let N = the set of non-negative integers.

We write $(f_i \mid i \in N)$ for the infinite sequence of functions (f_0, f_1, f_2, \ldots) .

Definition A sequence of functions $(f_i \mid i \in N)$ is said to be uniformly computable $\stackrel{\text{def}}{\Leftrightarrow}$ the function $\lambda i, x \cdot f_i(x)$ is computable.

Example 1 For each i, x, let

$$f_i(x) = i^2 x^3 + 4i. (5)$$

Then this $(f_i \mid i \in N)$ is clearly uniformly computable.

Definition A sequence of functions $(f_i \mid i \in N)$ is uniformly primitive recursive $\stackrel{\text{def}}{\Leftrightarrow}$ the function $\lambda i, x \cdot f_i(x)$ is primitive recursive.

Example 2 Define $\lambda i, x \cdot f_i(x)$ as in (5) of Example 1 above. Then $(f_i \mid i \in N)$ is, in fact, uniformly primitive recursive.

a. (12.5 points)

Prove, employing the Hint just below that there is a sequence of functions $(F_i \mid i \in N)$ such that

1. $(\forall i)[F_i \text{ is computable}]$ and

2. $(F_i \mid i \in N)$ is not uniformly computable.

Hint for C3a: Let A be an r.e. *not* computable set. Write A as $\{a_0 < a_1 < a_2 < ...\}$. For each i, x, let $F_i(x) \stackrel{\text{def}}{=} a_i$.

Show that, for each, fixed $i \in N$, $\lambda x \cdot F_i(x)$ is a primitive recursive (hence, computable) function.

Suppose for contradiction $(F_i \mid i \in N)$ is uniformly computable. Then $\lambda i, x \cdot F_i(x)$ is computable.

Show, then, that $\lambda i \cdot F_i(0)$ is computable, monotone increasing, and has range A. Show how to obtain a contradiction from this.

b. (12.5 points)

Prove, employing the Hint just below that there is a sequence of functions $(G_i \mid i \in N)$ such that

- 1. $(\forall i)[G_i \text{ is primitive recursive}],$
- 2. $(G_i \mid i \in N)$ is not uniformly primitive recursive, and
- 3. $(G_i \mid i \in N)$ is uniformly computable.
- **Hint for C3b:** Fix a standard algorithmic coding of the finite sets of equations each defining a one argument primitive recursive function 1-1 onto N. Let G_i be the one argument primitive recursive function defined by the finite set of such equations with code number *i*. Do not waste time providing details about such a coding. Trivially, $(\forall i)[G_i$ is primitive recursive].

Suppose for contradiction $(G_i \mid i \in N)$ is uniformly primitive recursive. Hence, $\lambda i, x, G_i(x)$ is primitive recursive. Define $g(x) = 1 + G_x(x)$. To get a contradiction, show that g is both primitive recursive and not primitive recursive.

Argue very informally and briefly that $\lambda i, x \cdot G_i(x)$ is computable.

C4 Theory (25 points)

Fix a standard programming formalism φ for computing all the *one-argument* partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the φ -programs *onto* the entire set of non-negative integers. Let φ_p denote the partial function computed by program (number) p in the φ -system. Let $W_p \stackrel{\text{def}}{=}$ the domain of φ_p .² You may assume with*out* proof that, in the φ -system, Universality, S-m-n, *and the Kleene Recursion Theorem (KRT)* hold.

As usual: \downarrow means 'is defined'; and \uparrow means 'undefined'.

Explicitly employ the hint further below to prove the following theorem.

Theorem For each non-negative integer x, let

$$\psi(x) = \begin{cases} \text{the least } y \in W_x , & \text{if } W_x \neq \emptyset; \\ \uparrow, & \text{otherwise.} \end{cases}$$
(6)

Then ψ is *not* partial computable.

Hint: Suppose for contradiction otherwise.

Employ KRT to obtain a φ -program e such that (7), (8), and (9) below each hold.

$$1 \in W_e \subseteq \{0, 1\}. \tag{7}$$

Note that (7) will force $\psi(e) \downarrow \in \{0, 1\}$.

$$\psi(e) = 1 \Rightarrow 0 \in W_e. \tag{8}$$

$$\psi(e) = 0 \Rightarrow 0 \notin W_e. \tag{9}$$

Finally show that the behavior of your e is contradictory.

²Then W_0, W_1, W_2, \ldots provides a standard listing of *all* the r.e. sets (of non-negative integers).