C1 Theory (25 points)

a. (6.25 points)

Show that
$L_{1}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains subword $a a b$ or 20 th from last symbol of w exists $\left.\&=b\right\}$
is regular. You may use without proof any standard text book results about regular sets provided you clearly say which results you are using when. ${ }^{1}$
b. (6.25 points)

Find a deterministic finite automaton \mathcal{M}^{\prime} which accepts the same language (over $\{a, b\}$) as the non-deterministic finite automaton \mathcal{M} depicted in table form just below.

δ	a	b
start 1	$\{1,2\}$	$\{1\}$
2	$\{3\}$	$\{3\}$
3	$\{4\}$	$\{4\}$
4	$\{5\}$	$\{5\}$
final 5	\emptyset	\emptyset.

c. (6.25 points)

Employ an appropriate pumping lemma to show that

$$
\begin{equation*}
L_{2}=\left\{a^{m} b^{n} \mid m \text { is a perfect square } \vee n \text { is odd }\right\} \tag{2}
\end{equation*}
$$

is not regular.
d. (6.25 points)

Employ an appropriate pumping lemma to show that

$$
\begin{equation*}
L_{3}=\left\{a b^{p} \mid p \text { is prime }\right\} \tag{3}
\end{equation*}
$$

is not context free, i.e., is not accepted by any push down automaton.

[^0]C2 Theory (25 points)
a. (12.5 points)

Consider the following finite automaton \mathcal{M} expressed in tabular form.

δ	a	b
start 1	2	4
2	3	4
final 3	3	3
4	2	5
5	2	6
6	6	6.

This \mathcal{M} is minimal state (for the accepting task it performs).
Explicitly employ Myhill-Nerode to prove this \mathcal{M} is minimal state.
Hint: You may find it useful to draw the state diagram of \mathcal{M}.
Find a relevant spanning S by considering how to reach each state of \mathcal{M} from its start state. Show this S can't be reduced in size and still be relevantly spanning. The number of combinations of six things taken two at a time is 15 .
b. (12.5 points)

Explicitly program a deterministic push-down automaton which accepts all and only the strings in

$$
\begin{equation*}
L=\left\{a^{n} b^{2 n} \mid n>0\right\} . \tag{4}
\end{equation*}
$$

Up to half credit if your pda is not deterministic.

C3 Theory (25 points)
Let $N=$ the set of non-negative integers.
We write $\left(f_{i} \mid i \in N\right)$ for the infinite sequence of functions $\left(f_{0}, f_{1}, f_{2}, \ldots\right)$.

Definition A sequence of functions $\left(f_{i} \mid i \in N\right)$ is said to be uniformly computable $\stackrel{\text { def }}{\Leftrightarrow}$ the function $\lambda i, x . f_{i}(x)$ is computable.

Example 1 For each i, x, let

$$
\begin{equation*}
f_{i}(x)=i^{2} x^{3}+4 i \tag{5}
\end{equation*}
$$

Then this $\left(f_{i} \mid i \in N\right)$ is clearly uniformly computable.

Definition A sequence of functions $\left(f_{i} \mid i \in N\right)$ is uniformly primitive recursive $\stackrel{\text { def }}{\Leftrightarrow}$ the function $\lambda i, x . f_{i}(x)$ is primitive recursive.

Example 2 Define $\lambda i, x . f_{i}(x)$ as in (5) of Example 1 above. Then $\left(f_{i} \mid i \in N\right)$ is, in fact, uniformly primitive recursive.
a. (12.5 points)

Prove, employing the Hint just below that there is a sequence of functions $\left(F_{i} \mid i \in N\right)$ such that

1. $(\forall i)\left[F_{i}\right.$ is computable $]$ and
2. $\left(F_{i} \mid i \in N\right)$ is not uniformly computable.

Hint for C3a: Let A be an r.e. not computable set. Write A as $\left\{a_{0}<a_{1}<a_{2}<\ldots\right\}$. For each i, x, let $F_{i}(x) \stackrel{\text { def }}{=} a_{i}$.
Show that, for each, fixed $i \in N, \lambda x . F_{i}(x)$ is a primitive recursive (hence, computable) function.
Suppose for contradiction $\left(F_{i} \mid i \in N\right)$ is uniformly computable. Then $\lambda i, x . F_{i}(x)$ is computable.
Show, then, that $\lambda i . F_{i}(0)$ is computable, monotone increasing, and has range A.
Show how to obtain a contradiction from this.
b. (12.5 points)

Prove, employing the Hint just below that there is a sequence of functions $\left(G_{i} \mid i \in N\right)$ such that

1. $(\forall i)\left[G_{i}\right.$ is primitive recursive $]$,
2. $\left(G_{i} \mid i \in N\right)$ is not uniformly primitive recursive, and
3. $\left(G_{i} \mid i \in N\right)$ is uniformly computable.

Hint for C3b: Fix a standard algorithmic coding of the finite sets of equations each defining a one argument primitive recursive function 1-1 onto N. Let G_{i} be the one argument primitive recursive function defined by the finite set of such equations with code number i. Do not waste time providing details about such a coding.
Trivially, $(\forall i)\left[G_{i}\right.$ is primitive recursive].
Suppose for contradiction $\left(G_{i} \mid i \in N\right)$ is uniformly primitive recursive. Hence, $\lambda i, x$. $G_{i}(x)$ is primitive recursive. Define $g(x)=1+G_{x}(x)$. To get a contradiction, show that g is both primitive recursive and not primitive recursive.
Argue very informally and briefly that $\lambda i, x . G_{i}(x)$ is computable.

C4 Theory (25 points)
Fix a standard programming formalism φ for computing all the one-argument partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the φ-programs onto the entire set of non-negative integers. Let φ_{p} denote the partial function computed by program (number) p in the φ-system. Let $W_{p} \stackrel{\text { def }}{=}$ the domain of $\varphi_{p} .{ }^{2}$ You may assume without proof that, in the φ-system, Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.
As usual: \downarrow means 'is defined'; and \uparrow means 'undefined'.
Explicitly employ the hint further below to prove the following theorem.
Theorem For each non-negative integer x, let

$$
\psi(x)= \begin{cases}\text { the least } y \in W_{x}, & \text { if } W_{x} \neq \emptyset \tag{6}\\ \uparrow, & \text { otherwise }\end{cases}
$$

Then ψ is not partial computable.
Hint: Suppose for contradiction otherwise.
Employ KRT to obtain a φ-program e such that (7), (8), and (9) below each hold.

$$
\begin{equation*}
1 \in W_{e} \subseteq\{0,1\} \tag{7}
\end{equation*}
$$

Note that (7) will force $\psi(e) \downarrow \in\{0,1\}$.

$$
\begin{align*}
& \psi(e)=1 \Rightarrow 0 \in W_{e} \tag{8}\\
& \psi(e)=0 \Rightarrow 0 \notin W_{e} . \tag{9}
\end{align*}
$$

Finally show that the behavior of your e is contradictory.

[^1]
[^0]: ${ }^{1} L_{1}$ is not a standard text book regular language. ($\left.\cup^{\bullet}\right)$

[^1]: ${ }^{2}$ Then $W_{0}, W_{1}, W_{2}, \ldots$ provides a standard listing of all the r.e. sets (of non-negative integers).

