
A1: Architecture (25 points)

Consider these four possible branch predictors:

(A) Static backward taken, forward not taken

(B) 1-bit saturating counter

(C) 2-bit saturating counter

(D) Global predictor (m,n) based on m-bit history and n-bit saturating counter.

Each has advantages and disadvantages in terms of performance and hardware costs.

For each branch pattern below, indicate which type of branch predictor among the four listed above you
recommend, in order to get the best performance.

If multiple predictors have the same performance for a given pattern, then your answer should be the
predictor that would have the lower hardware cost.

If you choose the global predictor (D), you should also specify your recommended values for m and n.

For the patterns given, there is always one predictor that provides best performance and lower hardware
cost.

For each behavior, “T” represents a branch taken, and “N” a branch not taken.

1.1 [6 points]. Behavior:

T T T T T T N T T T T T T T T N T T T T T T T T T N T T T T T T T T T T T N.

Predictor (A, B, C, or D): . If you chose D, then m = , n = .

1.2 [6 points]. In this example, the branch patterns are generated from executions of the following code:

for (i=0; i<256; i++) {

if (i%5 == 0) {

...

}

}

The behavior begins:

Branch 1: T T T T T T T T T T T T T T T · · ·
Branch 2: T N N N N T N N N N T N N N N · · ·

Predictor (A, B, C, or D): . If you chose D, then m = , n = .

1



1.3 [6 points]. In this example, there are two branches in a program that are invoked as follows: Branch 1
first, then Branch 2. These exhibit the following behavior:

Branch 1: T N T T T N N N T N T N T T N T T N
Branch 2: N T N N N T T T N T N T N N T N N T

Predictor (A, B, C, or D): . If you chose D, then m = , n = .

1.4 [7 points]. In this example, the branch patterns are generated from executions of the following code:

do {

a = random(0,1); // a is either 0 or 1

if (a == 0) { // Branch 1

...

}

if (a == 1) { // Branch 2

...

}

i++;

} while (i<10); // Branch 3

A possible behavior resulting from executing the code is:

Branch 1: T N T T T N N N T N
Branch 2: N T N N N T T T N T
Branch 3: T T T T T T T T T N

Predictor (A, B, C, or D): . If you chose D, then m = , n = .

2



A2: Architecture (25 points)

2.1 [8 points]. Indicate which claims are true or false by placing a “T” or “F” in the blank to the left of
the claim.

2.1.1: . Empirical studies have shown MFLOPS to be a consistent and useful measure of performance.

2.1.2: . The performance gain that can be observed by improving some portion of a computer can be
estimated fairly accurately using Amdahl’s Law.

2.1.3: . Synthetic benchmarks generally do a good job in predicting performance for real programs.

2.1.4: . A well-designed benchmark will remain valid indefinitely.

2.1.5: . Peak performance generally correlates well with observed performance.

2.1.6: . The simplest approach to summarizing relative performance is to use total execution time of
a program.

2.1.7: . MIPS is generally an accurate measure for comparing performance of different computers.

2.1.8: . The most important and pervasive principle of computer design is “make the common case
fast.”

2.2 [6 points]. Four benchmark programs are executed on three computers with the following results:

Computer A Computer B Computer C
Program 1 1 10 20
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

The table shows the execution time in seconds, with 100, 000, 000 instructions executed in each of the four
programs.

Calculate the MIPS (million instructions per second) rates for each computer for each program, entering the
MIPS values into the table below:

Computer A Computer B Computer C

Program 1

Program 2

Program 3

Program 4

3



2.3 [6 points]. Now use the MIPS rates computed in 2.2 as your measure of performance to compare the
three computers. Calculate the arithmetic and harmonic means of the instruction rates, assuming equal
weights for the four programs. Rank the computers based on arithmetic mean and harmonic mean from 1
to 3, where “1” indicates the fastest and “3” indicates the slowest computer, entering your results into the
table below:

Arithmetic mean Rank Harmonic mean Rank

Computer A

Computer B

Computer C

2.4 [5 points]. By looking at the values in 2.3, which metric better relates to the execution time?
(Write letter in blank at left.)

(A) arithmetic mean

(B) harmonic mean

(C) both relate equally well to the execution time

(D) neither relates well to the execution time

4



A3: Architecture (25 points)

3.1 [6 points]. For each cache mapping policy, place an “X” in all cache blocks into which the memory
block with address 12 could be placed.

Each picture represents a cache with 8 blocks, numbered 0 through 7, moving from left to right.

3.1.1. Fully mapped:

3.1.2. Direct mapped:

3.1.3. 4-way associative mapped:

3.2 [7 points]. Consider a cache memory system in which there is a direct-mapped Level 1 (L1) cache and
an 8-way set-associative Level 2 (L2) cache, with the following parameters:

Parameter Value
L1 number of sets 128 sets
L1 block size 4 words
L1 cache access time 2 ns per block
L2 number of sets 128 sets
L2 block size 8 words
L2 cache access time 15 ns per block
Main memory access time 60 ns per word
Main memory size 512M words
L1 cache hit rate 96%
L2 cache hit rate 88%

What is the effective access time (also known as the Average Memory Access Time) of the system?

Answer: ns

5



3.3 [6 points]. Assume a 32-bit memory address is used to access the L1 cache described in 3.2. Assume
the memory is word-addressed. What is the size of each field of a memory address?

TAG : bits

INDEX : bits

OFFSET: bits

3.4 [6 points]. What is the Average Memory Access Time (AMAT) of a 750 MHz machine with a miss
penalty of 20 cycles, a hit time of 2 cycles, and a miss rate of 5%?

AMAT =

6



A4: Architecture (25 points)

4.1 [4 points] Match the right dependency relation with the right question, by writing one of the letters in
the blank to the left of each question.

Dependency relations:

(A) Data true dependence

(B) Data antidependence

(C) Data output dependence

(D) Control dependence

4.1.1: . On what previous decisions does the execution of a particular instruction depend (in what case
will it be reached)?

4.1.2: . Which instructions subsequently write locations read by the instruction?

4.1.3: . On the results of which previous instructions does each instruction immediately depend?

4.1.4: . Which instructions subsequently write locations written by the instruction?

4.2 [9 points]. Identify all of the dependencies by type in the following code segment. Write your answers
as a list of ordered pairs (x, y) of related instructions, where x and y are the numbers that correspond to each
instruction, and instruction x depends on instruction y. For example, “(5, 3) (3, 2)” is a correctly formatted
answer.

(1) foo L.D F0, 0(R1)

(2) ADD.D F2, F0, F3

(3) L.D F3, 4(R1)

(4) MUL.D F2, F2, F3

(5) DADDI R1, R1, #-8

(6) BNEZ R1, foo

(7) S.D F2, 8(R1)

Data (RAW):

Anti (WAR):

Out (WAW):

7



4.3 [6 points]. Now assume forwarding hardware is provided and a hazard detection mechanism is used
to avoid any remaining data or control hazards by stalling the pipeline. For each instruction, determine in
which clock cycle the instruction is safely completed (i.e., the cycle in which its write back stage occurs). Use
a 5-stage pipeline. However, since the code deals with floating point operations, stages can have different
lengths in terms of number of cycles. Thus assume in-order fetching but out-of-order execution. Moreover,
assume the instruction stages are as follows:

Instruction fetch 1 cycle (F)
Instruction decode 1 cycle (D)
Integer execution 1 cycle (X)
FP addition 4 cycles (A1–A4)
FP multiplication 7 cycles (M1–M7)
Memory 1 cycle (M)
Write back 1 cycle (W)
Stalls each takes 1 cycle (S)

Instruction Write Back Cycle

(1) L.D F0, 0(R1)

(2) ADD.D F2, F0, F3

(3) L.D F3, 4(R1)

(4) MUL.D F2, F2, F3

(5) DADDI R1, R1, #-8

(6) BNEZ R1, foo

(7) S.D F2, 8(R1) 18

4.4 [6 points] What is the throughput (in instructions per cycle) of the pipeline while executing these
instructions? Show your work.

IPC = .

8


