C1 Theory (25 points)

a. (6.25 points)

Let $L = \{x \in \{a, b\} \mid x$'s final five symbols include two *a*'s and three *b*'s}. Explicitly prove by Myhill-Nerode that L is regular.

b. (6.25 points)

Let $L = \{w \cdot w^R \mid w \in \{a, b\}^*\}$, where w^R is w spelled backwards, and \cdot is the string concatenation operation — not an alphabet symbol. Explicitly prove by Generalized Pumping for Finite Automata that L is not regular.

c. (6.25 points)

Construct a four state finite automaton \mathcal{M} for accepting $L = \{ab\}$ and explicitly prove by Myhill-Nerode your \mathcal{M} is minimal state.

d. (6.25 points)

Explicitly use Generalized Pumping for Finite Automata to show that no finite automaton accepting $L = \{ab\}$ has fewer than three states.

C2 Theory (25 points)

Let $L_{wwr} \stackrel{\text{def}}{=} \{w \cdot w^R \mid w \in \{a, b\}^*\}$, where w^R is w spelled backwards, and the \cdot denotes string concatenation not an alphabet symbol.

a. (5.0 points)

Explicitly draw the state diagram of a PDA for accepting L_{wwr} .

b. (10.0 points)

Show that the language (over the alphabet $\{a, b\}$) $\overline{L_{wwr}}$ is also a CFL.

Hint: First show

$$\overline{L_{wwr}} = (L_{odd} \cup L'), \tag{1}$$

where

$$L_{odd} = \{ x \in \{a, b\}^* \mid |x| \text{ is odd} \},$$
(2)

and

$$L' = \{ uv \in \{a, b\}^* \mid |u| = |v| \land u \neq v^R \}.$$
(3)

Then show step-by-step the relevance of (1) above.

c. (10.0 points)

Let $L = \{ab^{n^2} \mid n \ge 0\}$. Explicitly employ Pumping for PDA to show that L is not a CFL.

C3 Theory (25 points)

Let \tilde{N} denote the set of non-negative integers.

Definition Consider all the finite sets of equations defining primitive recursive functions and which contain a special one argument function letter \mathbf{f} . Gödel number (code number) 1-1 onto N all these finite sets of equations.

1. Let E_q be (by definition) the finite set of equations with Gödel number q.

2. $f_q \stackrel{\text{def}}{=}$ the primitive recursive function which **f** defines in E_q .

Clearly, then, f_0, f_1, f_2, \ldots is a list of all and only the primitive recursive functions of one argument. You may and should use the following theorem with *out* proof.

Theorem For each $x \in N$, let

$$g(x) = 1 + f_x(x).$$
 (4)

Then g is computable, but not primitive recursive.

Explicitly use the Hint just below to prove the following

Corollary 1 $\lambda x \cdot f_x(x)$ is also computable, but not primitive recursive.

You may also use with *out* proof the primitive recursiveness of functions in standard lists of primitive recursive functions. You must *say* when you are using one of these! N.B. Do *not* prove the theorem just above.

Hint: Show that $\lambda x \cdot f_x(x)$ is computable using the Theorem.

To show that $\lambda x f_x(x)$ is not primitive recursive, suppose for contradiction otherwise and then use the Theorem.

C4 **Theory** (25 points)

Fix a standard programming formalism φ for computing all the *one-argument* partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the φ programs *onto* the entire set of non-negative integers. Let φ_p denote the partial function computed by program (number) p in the φ -system. Let Φ denote a standard Blum step-counting measure associated with φ .¹ Let $W_p \stackrel{\text{def}}{=}$ the domain of φ_p .² You may assume *without* proof that in the φ -system Universality, S-m-n, *and the Kleene Recursion Theorem (KRT)* hold.

The first two parts of this question will lead you (with very useful hints) through a proof of the following

Theorem Suppose Δ is a collection of r.e. sets. Let

$$P_{\Delta} \stackrel{\text{def}}{=} \{ p \mid W_p \in \Delta \}. \tag{5}$$

Suppose P_{Δ} is r.e. Then

 $(\forall p)[W_p \in \Delta \Leftrightarrow (\exists a \text{ finite set } D \subseteq W_p)[D \in \Delta]].$ (6)

The third and fourth parts of this question each asks you to apply the theorem and also provides very useful hints. In that interest and for later use, let

$$A = \{ p \mid W_p = \{ 0 \} \}.$$
(7)

a. (6.25 points)

Assume all the hypotheses of the Theorem. Explicitly use KRT in the φ -system (formally or informally — as you choose) to prove that

$$(\forall p)[W_p \in \Delta \Rightarrow (\exists a \text{ finite set } D \subseteq W_p)[D \in \Delta]].$$
 (8)

- Hint for C4(a): Suppose that $W_p \in \Delta$. Suppose for contradiction that $(\forall \text{ finite sets } D \subseteq W_p)[D \notin \Delta]$. Apply KRT to obtain an self-referential e which determines its I/O behavior on input x in part according to whether or not "e appears in P_{Δ} within x steps." Make this precise, figure out what to have e do in each case, etc., and get a contradiction. b. (6.25 points)
 - Assume all the hypotheses of the Theorem. Explicitly use KRT in the φ -system (formally or informally as you choose) to prove that

$$(\forall p)[(\exists a \text{ finite set } D \subseteq W_p)[D \in \Delta] \Rightarrow W_p \in \Delta].$$
 (9)

Hint for C4(b): Suppose $(\exists a \text{ finite set } D \subseteq W_p)[D \in \Delta]$. Let D be an example. Suppose for contradiction that $W_p \notin \Delta$. Apply KRT to obtain an self-referential e which determines its I/O behavior on input x in part according to whether it eventually discovers that " $[x \in D \lor e \text{ appears in } P_{\Delta}]$." Make this precise, figure out what to have e do if it makes this discovery, *etc.*

c. (6.25 points)

- Explicitly use the Theorem stated above in this question, C4, to show that A is not r.e., where A is defined in (6) above.
- **Hint** for C4(c): Suppose for contradiction otherwise. Clearly $A = P_{\Delta}$ for $\Delta = \{\{0\}\}$. Therefore, from (5) above, we have that $(\forall p)[W_p = \{0\} \Leftrightarrow (\exists a \text{ finite set } D \subseteq W_p)[D = \{0\}]]$. Pick D and W_p so that $D = \{0\} \subseteq W_p \neq \{0\}$. Get a contradiction.
- d. (6.25 points)

Explicitly use the Theorem stated above in this question, C4, to show that \overline{A} is not r.e., where A is defined in (6) above.

Hint for C4(d): Suppose for contradiction otherwise. Clearly $\overline{A} = P_{\Delta}$ for $\Delta = \{W_p \mid W_p \neq \{0\}\}$. Therefore, from (5) above, we have that $(\forall p)[W_p \neq \{0\} \Leftrightarrow (\exists a \text{ finite set } D \subseteq W_p)[D \neq \{0\}]]$. Pick a D and a W_p to get a contradiction.

¹Hence, (i) $(\forall p)$ [domain (Φ_p) = domain (φ_p)], and (ii) [{ $(p, x, t) \mid \Phi_p(x) \leq t$ } is an algorithmically decidable set].

²Then W_0, W_1, W_2, \ldots provides a standard listing of all the r.e. sets (of non-negative integers).