
C1 Theory (25 points)

a. (6.25 points)
Let L = {x ∈ {a, b} | x’s final five symbols include two a’s and three b’s}. Explicitly prove by
Myhill-Nerode that L is regular.

b. (6.25 points)
Let L = {w · wR | w ∈ {a, b}∗}, where wR is w spelled backwards, and ‘·’ is the string concate-
nation operation — not an alphabet symbol. Explicitly prove by Generalized Pumping for Finite
Automata that L is not regular.

c. (6.25 points)
Construct a four state finite automaton M for accepting L = {ab} and explicitly prove by Myhill-
Nerode your M is minimal state.

d. (6.25 points)
Explicitly use Generalized Pumping for Finite Automata to show that no finite automaton ac-
cepting L = {ab} has fewer than three states.



C2 Theory (25 points)
Let Lwwr

def= {w · wR | w ∈ {a, b}∗}, where wR is w spelled backwards, and the · denotes string
concatenation not an alphabet symbol.

a. (5.0 points)
Explicitly draw the state diagram of a PDA for accepting Lwwr.

b. (10.0 points)
Show that the language (over the alphabet {a, b}) Lwwr is also a CFL.
Hint: First show

Lwwr = (Lodd ∪ L′), (1)

where
Lodd = {x ∈ {a, b}∗ | |x| is odd}, (2)

and
L′ = {uv ∈ {a, b}∗ | |u| = |v| ∧ u 6= vR}. (3)

Then show step-by-step the relevance of (1) above.
c. (10.0 points)

Let L = {abn2 | n ≥ 0}. Explicitly employ Pumping for PDA to show that L is not a CFL.



C3 Theory (25 points)
Let N denote the set of non-negative integers.

Definition Consider all the finite sets of equations defining primitive recursive functions and
which contain a special one argument function letter f . Gödel number (code number) 1-1 onto N
all these finite sets of equations.
1. Let Eq be (by definition) the finite set of equations with Gödel number q.

2. fq
def= the primitive recursive function which f defines in Eq.

Clearly, then, f0, f1, f2, . . . is a list of all and only the primitive recursive functions of one argument.
You may and should use the following theorem without proof.

Theorem For each x ∈ N , let
g(x) = 1 + fx(x). (4)

Then g is computable, but not primitive recursive.

Explicitly use the Hint just below to prove the following

Corollary 1 λx fx(x) is also computable, but not primitive recursive.

You may also use without proof the primitive recursiveness of functions in standard lists of
primitive recursive functions. You must say when you are using one of these!
N.B. Do not prove the theorem just above.
Hint: Show that λx fx(x) is computable using the Theorem.

To show that λx fx(x) is not primitive recursive, suppose for contradiction otherwise and
then use the Theorem.



C4 Theory (25 points)
Fix a standard programming formalism ϕ for computing all the one-argument partial computable
functions which map the non-negative integers into themselves. Code (Gödel) number the ϕ-
programs onto the entire set of non-negative integers. Let ϕp denote the partial function computed
by program (number) p in the ϕ-system. Let Φ denote a standard Blum step-counting measure
associated with ϕ.1 Let Wp

def= the domain of ϕp.2 You may assume without proof that in the
ϕ-system Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.
The first two parts of this question will lead you (with very useful hints) through a proof of the
following
Theorem Suppose ∆ is a collection of r.e. sets. Let

P∆
def= {p | Wp ∈ ∆}. (5)

Suppose P∆ is r.e.
Then

(∀p)[Wp ∈ ∆ ⇔ (∃ a finite set D ⊆ Wp)[D ∈ ∆]]. (6)

The third and fourth parts of this question each asks you to apply the theorem and also provides
very useful hints. In that interest and for later use, let

A = {p | Wp = {0}}. (7)

a. (6.25 points)
Assume all the hypotheses of the Theorem. Explicitly use KRT in the ϕ-system (formally or
informally — as you choose) to prove that

(∀p)[Wp ∈ ∆ ⇒ (∃ a finite set D ⊆ Wp)[D ∈ ∆]]. (8)

Hint for C4(a): Suppose that Wp ∈ ∆. Suppose for contradiction that (∀ finite sets D ⊆
Wp)[D 6∈ ∆]. Apply KRT to obtain an self-referential e which determines its I/O behavior
on input x in part according to whether or not “e appears in P∆ within x steps.” Make
this precise, figure out what to have e do in each case, etc., and get a contradiction.

b. (6.25 points)
Assume all the hypotheses of the Theorem. Explicitly use KRT in the ϕ-system (formally or
informally — as you choose) to prove that

(∀p)[(∃ a finite set D ⊆ Wp)[D ∈ ∆] ⇒ Wp ∈ ∆]. (9)

Hint for C4(b): Suppose (∃ a finite set D ⊆ Wp)[D ∈ ∆]. Let D be an example. Suppose for
contradiction that Wp 6∈ ∆. Apply KRT to obtain an self-referential e which determines
its I/O behavior on input x in part according to whether it eventually discovers that
“[x ∈ D ∨ e appears in P∆].” Make this precise, figure out what to have e do if it makes
this discovery, etc.

c. (6.25 points)
Explicitly use the Theorem stated above in this question, C4, to show that A is not r.e., where
A is defined in (6) above.
Hint for C4(c): Suppose for contradiction otherwise. Clearly A = P∆ for ∆ = {{0}}. There-

fore, from (5) above, we have that (∀p)[Wp = {0} ⇔ (∃ a finite set D ⊆ Wp)[D = {0}]].
Pick D and Wp so that D = {0} ⊆ Wp 6= {0}. Get a contradiction.

d. (6.25 points)
Explicitly use the Theorem stated above in this question, C4, to show that A is not r.e., where
A is defined in (6) above.
Hint for C4(d): Suppose for contradiction otherwise. Clearly A = P∆ for ∆ = {Wp | Wp 6=

{0}}. Therefore, from (5) above, we have that (∀p)[Wp 6= {0} ⇔ (∃ a finite set D ⊆
Wp)[D 6= {0}]]. Pick a D and a Wp to get a contradiction.

1Hence, (i) (∀p)[domain(Φp) = domain(ϕp)], and (ii) [{(p, x, t) | Φp(x) ≤ t} is an algorithmically decidable set].
2Then W0, W1, W2, . . . provides a standard listing of all the r.e. sets (of non-negative integers).


