C1 Theory (25 points)
a. (6.25 points)

Let $L=\{x \in\{a, b\} \mid x$'s final five symbols include two a 's and three b 's $\}$. Explicitly prove by Myhill-Nerode that L is regular.
b. (6.25 points)

Let $L=\left\{w \cdot w^{R} \mid w \in\{a, b\}^{*}\right\}$, where w^{R} is w spelled backwards, and ' \cdot ' is the string concatenation operation - not an alphabet symbol. Explicitly prove by Generalized Pumping for Finite Automata that L is not regular.
c. (6.25 points)

Construct a four state finite automaton \mathcal{M} for accepting $L=\{a b\}$ and explicitly prove by MyhillNerode your \mathcal{M} is minimal state.
d. (6.25 points)

Explicitly use Generalized Pumping for Finite Automata to show that no finite automaton accepting $L=\{a b\}$ has fewer than three states.

C2 Theory (25 points)
Let $L_{w w r} \stackrel{\text { def }}{=}\left\{w \cdot w^{R} \mid w \in\{a, b\}^{*}\right\}$, where w^{R} is w spelled backwards, and the \cdot denotes string concatenation not an alphabet symbol.
a. (5.0 points)

Explicitly draw the state diagram of a PDA for accepting $L_{w w r}$.
b. (10.0 points)

Show that the language (over the alphabet $\{a, b\}) \overline{L_{w w r}}$ is also a CFL.
Hint: First show

$$
\begin{equation*}
\overline{L_{w w r}}=\left(L_{o d d} \cup L^{\prime}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{o d d}=\left\{x \in\{a, b\}^{*}| | x \mid \text { is odd }\right\}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
L^{\prime}=\left\{u v \in\{a, b\}^{*}| | u\left|=|v| \wedge u \neq v^{R}\right\} .\right. \tag{3}
\end{equation*}
$$

Then show step-by-step the relevance of (1) above.
c. (10.0 points)

Let $L=\left\{a b^{n^{2}} \mid n \geq 0\right\}$. Explicitly employ Pumping for PDA to show that L is not a CFL.

C3 Theory (25 points)
Let N denote the set of non-negative integers.
Definition Consider all the finite sets of equations defining primitive recursive functions and which contain a special one argument function letter \mathbf{f}. Gödel number (code number) 1-1 onto N all these finite sets of equations.

1. Let E_{q} be (by definition) the finite set of equations with Gödel number q.
2. $f_{q} \stackrel{\text { def }}{=}$ the primitive recursive function which \mathbf{f} defines in E_{q}.

Clearly, then, $f_{0}, f_{1}, f_{2}, \ldots$ is a list of all and only the primitive recursive functions of one argument. You may and should use the following theorem without proof.
Theorem For each $x \in N$, let

$$
\begin{equation*}
g(x)=1+f_{x}(x) \tag{4}
\end{equation*}
$$

Then g is computable, but not primitive recursive.
Explicitly use the Hint just below to prove the following
Corollary $1 \lambda x . f_{x}(x)$ is also computable, but not primitive recursive.
You may also use without proof the primitive recursiveness of functions in standard lists of primitive recursive functions. You must say when you are using one of these!
N.B. Do not prove the theorem just above.

Hint: Show that $\lambda x . f_{x}(x)$ is computable using the Theorem.
To show that $\lambda x \cdot f_{x}(x)$ is not primitive recursive, suppose for contradiction otherwise and then use the Theorem.

C4 Theory (25 points)
Fix a standard programming formalism φ for computing all the one-argument partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the φ programs onto the entire set of non-negative integers. Let φ_{p} denote the partial function computed by program (number) p in the φ-system. Let Φ denote a standard Blum step-counting measure associated with $\varphi .^{1}$ Let $W_{p} \stackrel{\text { def }}{=}$ the domain of $\varphi_{p} .{ }^{2}$ You may assume without proof that in the φ-system Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.
The first two parts of this question will lead you (with very useful hints) through a proof of the following
Theorem Suppose Δ is a collection of r.e. sets. Let

$$
\begin{equation*}
P_{\Delta} \stackrel{\text { def }}{=}\left\{p \mid W_{p} \in \Delta\right\} . \tag{5}
\end{equation*}
$$

Suppose P_{Δ} is r.e.
Then

$$
\begin{equation*}
(\forall p)\left[W_{p} \in \Delta \Leftrightarrow\left(\exists \text { a finite set } D \subseteq W_{p}\right)[D \in \Delta]\right] . \tag{6}
\end{equation*}
$$

The third and fourth parts of this question each asks you to apply the theorem and also provides very useful hints. In that interest and for later use, let

$$
\begin{equation*}
A=\left\{p \mid W_{p}=\{0\}\right\} \tag{7}
\end{equation*}
$$

a. (6.25 points)

Assume all the hypotheses of the Theorem. Explicitly use KRT in the φ-system (formally or informally - as you choose) to prove that

$$
\begin{equation*}
(\forall p)\left[W_{p} \in \Delta \Rightarrow\left(\exists \text { a finite set } D \subseteq W_{p}\right)[D \in \Delta]\right] \tag{8}
\end{equation*}
$$

Hint for $\mathrm{C} 4(\mathrm{a})$: Suppose that $W_{p} \in \Delta$. Suppose for contradiction that (\forall finite sets $D \subseteq$ $\left.W_{p}\right)[D \notin \Delta]$. Apply KRT to obtain an self-referential e which determines its I/O behavior on input x in part according to whether or not " e appears in P_{Δ} within x steps." Make this precise, figure out what to have e do in each case, etc., and get a contradiction.
b. (6.25 points)

Assume all the hypotheses of the Theorem. Explicitly use $K R T$ in the φ-system (formally or informally - as you choose) to prove that

$$
\begin{equation*}
(\forall p)\left[\left(\exists \text { a finite set } D \subseteq W_{p}\right)[D \in \Delta] \Rightarrow W_{p} \in \Delta\right] \tag{9}
\end{equation*}
$$

Hint for C4(b): Suppose (\exists a finite set $D \subseteq W_{p}$) $[D \in \Delta]$. Let D be an example. Suppose for contradiction that $W_{p} \notin \Delta$. Apply KR $\overline{\mathrm{T}}$ to obtain an self-referential e which determines its I/O behavior on input x in part according to whether it eventually discovers that " $\left[x \in D \vee e\right.$ appears in $\left.P_{\Delta}\right]$." Make this precise, figure out what to have e do if it makes this discovery, etc.
c. (6.25 points)

Explicitly use the Theorem stated above in this question, C 4 , to show that A is not r.e., where
A is defined in (6) above.
Hint for $\mathrm{C} 4(\mathrm{c})$: Suppose for contradiction otherwise. Clearly $A=P_{\Delta}$ for $\Delta=\{\{0\}\}$. Therefore, from (5) above, we have that $(\forall p)\left[W_{p}=\{0\} \Leftrightarrow\left(\exists\right.\right.$ a finite set $\left.\left.D \subseteq W_{p}\right)[D=\{0\}]\right]$. Pick D and W_{p} so that $D=\{0\} \subseteq W_{p} \neq\{0\}$. Get a contradiction.
d. (6.25 points)

Explicitly use the Theorem stated above in this question, C 4 , to show that \bar{A} is not r.e., where A is defined in (6) above.
Hint for C4(d): Suppose for contradiction otherwise. Clearly $\bar{A}=P_{\Delta}$ for $\Delta=\left\{W_{p} \mid W_{p} \neq\right.$ $\{0\}\}$. Therefore, from (5) above, we have that $(\forall p)\left[W_{p} \neq\{0\} \Leftrightarrow(\exists\right.$ a finite set $D \subseteq$ $\left.\left.W_{p}\right)[D \neq\{0\}]\right]$. Pick a D and a W_{p} to get a contradiction.

[^0]
[^0]: ${ }^{1}$ Hence, (i) $(\forall p)\left[\operatorname{domain}\left(\Phi_{p}\right)=\operatorname{domain}\left(\varphi_{p}\right)\right]$, and (ii) $\left[\left\{(p, x, t) \mid \Phi_{p}(x) \leq t\right\}\right.$ is an algorithmically decidable set].
 ${ }^{2}$ Then $W_{0}, W_{1}, W_{2}, \ldots$ provides a standard listing of all the r.e. sets (of non-negative integers).

