Uncertainty. (10 points) Suppose that four different Boolean sensors (S1, S2, S3, S4) are used to predict an imminent earthquake E, with the following probabilities:

$$
\begin{array}{lllll}
p(E)=.02 & p(S 1 \mid E)=0.01 & p(S 2 \mid E)=0.1 & p(S 3 \mid E)=0.002 & p((S 4 \mid E)=0.0003 \\
p(S 1)=.01 & p(S 2)=.01 & p(S 3)=.01 & p(S 4)=.01
\end{array}
$$

(a) [5 pts$]$ Assuming the conditional independence of $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, and S 4 given E (often called Naive Bayes), compute the $\mathrm{p}(\mathrm{EIS} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4)$.
(b) [5 pts]Suppose that you are told that the probability of all of the sensors registering positive given an imminent earthquake is 0.000004 and you are also given the following additional information:

$$
\mathrm{p}(\mathrm{~S} 1, \mathrm{~S} 4)=.01 \quad \mathrm{p}((\mathrm{~S} 21 \mathrm{~S} 1, \mathrm{~S} 3, \mathrm{~S} 4)=.03
$$

What one other piece of information do you need in order to compute a better estimate of $p(E I S 1, S 2, S 3, S 4)$ than is provided by Naive Bayes? Give the formula that you would use to compute this better estimate, using all of these additional pieces of information.

Planning. (15 points) Consider the Towers of Hanoi problem as a planning problem. Here, the idea is to move all the disks from Peg 1 to Peg 3, one at a time, where no larger disk may ever be placed upon a smaller disk.

Consider the following initial state.

At(D3, 1, P1)	Top(P1,3)	Size(D3, 3)
At(D2, 2, P1)	Top(P2,0)	Size(D2, 2)
At(D1, 3, P1)	$\operatorname{Top(P3,0)}$	Size(D1, 1)

(a) [12 pts] Write an STRIPS-style operator schema or schemas to represent the operations in this problem so that it could be solved by a planner. You may use numerical comparisons (<, >, =, etc.) and functions + and - only. Do not use conditional schemas.
(b) [3 pts] Argue that you don't really need + and -at all.

