### C1. Theory (25 points)

### a. (5 points)

Prove that  $\{w \in \{a,b\}^* \mid \text{the number of occurrences of } ab \text{ in } w \text{ equals the number of occurrences of } ba \text{ in } w\}$  is a regular language.

## b. (5 points)

Prove that  $\{w \in \{a, b, c\}^* \mid \text{the number of occurrences of } ab \text{ in } w \text{ equals the number of occurrences of } ba \text{ in } w\}$  is not a regular language.

# c. (7 points)

Prove that no infinite subset of  $\{a^nb^n \mid n \geq 0\}$  is a regular language.

## d. (8 points)

Prove that  $\{a^nb^m \mid n \geq 0, m \geq 0, m \neq n\}$  is a context free language.

#### C2 Theory (25 points)

Let  $A = \{a_1, \ldots, a_n\}$  where n > 1. Let

$$L = \{w \in A^* \mid w \text{ is missing at least one symbol of A}\}.$$

a. (5 points)

Explicitly exhibit the state diagram of a non-deterministic finite automaton, M, having exactly n+1 states and such that L(M)=L.

b. (10 points)

Show that any spanning set of L must contain at least  $2^n$  members. Recall the crucial equivalence relation used in the Myhill-Nerode theorem applied to L is  $\equiv_L$ , where for all  $x, y \in A^*$ ,

$$x \equiv_L y \stackrel{\mathrm{def}}{\Leftrightarrow} (\forall z \in A^*)[xz \in L \Leftrightarrow yz \in L]$$

**Hint:** Let  $B, C \subseteq A$  where  $B \neq C$ . Let x contain all and only the symbols in B and likewise let y contain all and only the symbols in C. Show  $x \not\equiv_L y$  (consider a symbol that is in one of the two sets (B or C) but not the other).

c. (10 points)

Let  $L_1$  and  $L_2$  be regular languages. Show (precisely) that the following set is also regular:

$$L = \{x \mid (x \in L_1 \& x \notin L_2) \text{ or } (x \notin L_1 \& x \in L_2)\}$$

#### C3 Theory (25 points)

Fix a standard programming formalism  $\varphi$  for computing all the *one-argument* partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the  $\varphi$ -programs onto the entire set of non-negative integers. Let  $\varphi_p$  denote the partial function computed by program (number) p in the  $\varphi$ -system. Let  $W_p \stackrel{\text{def}}{=}$  the domain of  $\varphi_p$ . You may assume without proof that in the  $\varphi$ -system Universality, S-m-n, and the Kleene Recursion Theorem (KRT) etc. hold. You may also assume that there is a program that decides the predicate whether a program with code number p halts on p within p steps.

a. (5 points)

Prove that  $\{x \mid W_x \text{ is empty }\}$  is not recursive.

b. (10 points)

Let  $P(x) \stackrel{\text{def}}{\Leftrightarrow} [\varphi_x(x) \downarrow \& \varphi_x(x) \neq x]$ . Show that this predicate is not computable.

c. (10 points)

Show that there is a non-negative number p such that  $\forall x [\varphi_p(x) \downarrow \text{ iff } x = p]$ , i.e.,  $W_p = \{p\}$ .

Then  $W_0, W_1, W_2, \ldots$  provides a standard listing of all the re sets (of non-negative integers).

#### C4 Theory (25 points)

Fix a standard programming formalism  $\varphi$  for computing all the *one-argument* partial computable functions which map the non-negative integers into themselves. Code (Gödel) number the  $\varphi$ -programs onto the entire set of non-negative integers. Let  $\varphi_p$  denote the partial function computed by program

(number) p in the  $\varphi$ -system. Let  $W_p \stackrel{\text{def}}{=}$  the domain of  $\varphi_p$ .<sup>1</sup> You may assume without proof that in the  $\varphi$ -system Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold. You may also assume that there is a program that decides the predicate whether a program with code number p halts on x within t steps.

The first two parts of this question will lead you (with very useful hints) through a proof of the following

**Theorem 1** Suppose  $\Delta$  is a collection of re sets. Let

$$P_{\Delta} \stackrel{\text{def}}{=} \{ p \mid W_n \in \Delta \}. \tag{1}$$

Suppose  $P_{\Delta}$  is r.e.

Then

$$(\forall p)[W_p \in \Delta \Leftrightarrow (\exists \text{ a finite set } D \subseteq W_p)[D \in \Delta]]. \tag{2}$$

a. (8 points)

Assume all the hypotheses of the Theorem. Explicitly use KRT in the  $\varphi$ -system (formally or informally — as you choose) to prove that

$$(\forall p)[W_p \in \Delta \Rightarrow (\exists \text{ a finite set } D \subseteq W_p)[D \in \Delta]]. \tag{3}$$

Hint for C4(a): Suppose that  $W_p \in \Delta$ . Suppose for contradiction that  $(\forall \text{ finite sets } D \subseteq W_p)[D \notin \Delta]$ . Apply KRT to obtain an self-referential e which determines its I/O behavior on input x in part according to whether or not "e appears in  $P_\Delta$  within x steps." Make this precise, figure out what to have e do in each case, etc., and get a contradiction.

b. (8 points)

Assume all the hypotheses of the Theorem. Explicitly use KRT in the  $\varphi$ -system (formally or informally — as you choose) to prove that

$$(\forall p)[(\exists \text{ a finite set } D \subseteq W_p)[D \in \Delta] \Rightarrow W_p \in \Delta]. \tag{4}$$

Hint for C4(b): Suppose ( $\exists$  a finite set  $D \subseteq W_p$ )[ $D \in \Delta$ ]. Let D be an example. Suppose for contradiction that  $W_p \notin \Delta$ . Apply KRT to obtain an self-referential e which determines its I/O behavior on input x in part according to whether it eventually discovers that " $[x \in D \lor e$  appears in  $P_{\Delta}$ ]." Make this precise, figure out what to have e do if it makes this discovery, etc.

c. (9 points)

$$A = \{ p \mid W_p = \{0\} \}. \tag{5}$$

Explicitly use the Theorem stated above in this question, C4, to show that A is not r.e., where A is defined in (5) above.

Hint for C4(c): Suppose for contradiction otherwise. Clearly  $A = P_{\Delta}$  for  $\Delta = \{\{0\}\}$ . Therefore, from (2) above, we have that  $(\forall p)[W_p = \{0\} \Leftrightarrow (\exists \text{ a finite set } D \subseteq W_p)[D = \{0\}]]$ . Pick D and  $W_p$  so that  $D = \{0\} \subseteq W_p \neq \{0\}$ . Get a contradiction.

<sup>&</sup>lt;sup>1</sup>Then  $W_0, W_1, W_2, \ldots$  provides a standard listing of all the re-sets (of non-negative integers).