A1. Logic (25 points)

a. (5 points)

Disprove by exhibiting a suitable structure or interpretation.

$$\begin{split} \{F_1,F_2\} &\models F_3 \\ \text{where} \\ F_1 &= (\forall x)(\forall y)[R(x,y) \rightarrow \neg R(y,x)], \\ F_2 &= (\forall x)(\exists y)[R(x,y)], \\ F_3 &= (\forall x)(\forall y)(\forall z)[[R(x,y) \wedge R(y,z)] \rightarrow R(x,z)]. \end{split}$$

b. (10 points)

Prove step by step using resolution. Show all of your work.

$$\{F_1, F_2, F_3\} \models F_4$$
 where
$$F_1 = (\exists x) [T(x) \land P(x) \land (\forall y) [R(x, y) \rightarrow T(y)]],$$

$$F_2 = (\forall x) [P(x) \rightarrow [Q(x) \lor (\exists y) [S(y) \land R(x, y)]]],$$

$$F_3 = (\forall x) [T(x) \rightarrow \neg S(x)],$$

$$F_4 = (\exists x) [Q(x)].$$

c. (10 points)

Prove step by step using resolution. Show all of your work.

$$\{F_1, F_2, F_3, F_4\} \models F_5$$
 where
$$F_1 = (\forall x)(\forall y)(\forall z)[[P(x,y) \land Q(z,x) \land R(z)] \rightarrow S(y,z)],$$

$$F_2 = (\forall x)(\exists y)[R(x) \rightarrow [T(y) \land Q(x,y)]],$$

$$F_3 = (\forall x)(\exists y)[T(x) \rightarrow P(x,y)],$$

$$F_4 = (\exists x)[R(x)],$$

$$F_5 = (\exists x)(\exists y)[S(x,y)].$$

A2 Logic (25 points) (Propositional Logic)

a. (15points)

Let S be a satisfiable set of wffs. Let F_0, F_1, F_2, \ldots be an enumeration all wffs. Consider the following sequence:

$$\begin{array}{l} S_0 = S \\ S_{i+1} = \left\{ \begin{array}{ll} S_i \bigcup \{F_i\} & \text{if } S_i \bigcup \{F_i\} \text{ is satisfiable} \\ S_i & \text{otherwise} \end{array} \right. \end{array}$$

Let $\Delta = \bigcup_{n \geq 0} S_n$. Show that

- i. (3 points) Each S_n is satisfiable, $n \geq 0$.
- ii. (6 points) For each wf F, $[F \in \Delta \text{ iff } \neg F \not\in \Delta]$
- iii. (6 points) For all wffs $F, G, [(F \vee G) \in \Delta \text{ iff } F \in \Delta \text{ or } G \in \Delta]$

b. (10 points)

For this question, do not assume that the compactness theorem has been established. Let S be a set of wff and F be a wff. Now, consider the following two statements:

- (I) If $S \models F$, then for some finite subset, $S_f \subseteq S$, $S_f \models F$.
- (II) If every finite subset of S is satisfiable then S is satisfiable.
- i. (5 points) Show that if (I) holds then (II) holds.
- ii. (5 points) Show that if (II) holds then (I) holds.

For this question you may assume that $S \models F$ iff $S \cup \{\neg F\}$ is unsatisfiable.

A3. Logic (25 points)

Here is one form of the Compactness Theorem for first order predicate logics.

Theorem (Compactness) Suppose L is a first order predicate logic language. Suppose Γ is a set of formulas of L. Then Γ has a model if and only if every finite subset of Γ has a model.

In this problem, you should explicitly employ this form of the Compactness Theorem without proof.

Recall that graphs are defined by specifying a set of nodes and a set of edges or arcs connecting nodes. Each edge or arc connects two nodes (which may or may not be the same node).

Let L be a first order predicate logic language containing at least one binary predicate R and at least the constants a and b.

- a. (5 points) Explain how language L can be used to specify a graph.
- b. (5 points) For each natural number n > 0, define a formula $path_n(x,y)$ in the language L that will be true exactly when there is a path of length n from node x to node y in a graph.
- c. (15 points) Using the Compactness Theorem (above), prove that it is not possible to define in L the general notion of a finite path from one node in the graph to another node. Hint: Suppose that there is a formula path(x,y) that will be true exactly when there is a path (of any finite length) from node x to node y. Consider the set of formulas $\{\neg path_n(a,b) \mid n > 0\} \cup \{path(a,b)\}$.

A4 Logic (25 points)

Here is one form of the Compactness Theorem for (first order) predicate logics.

Theorem (Compactness) Suppose ℓ is a first order predicate logic language. Suppose Γ is a set of formulas of ℓ .

Then: Γ has a model \Leftrightarrow $(\forall finite \Delta \subseteq \Gamma)[\Delta \text{ has a model}].$

In this problem, you may and should explicitly employ this form of the Compactness Theorem without proof.

Definition

1. (U, <) is a partial ordering on $U \stackrel{\text{def}}{\Leftrightarrow} U$ is a set and < is a binary relation on U such that

$$(\forall u, v \in U)[u < v \Rightarrow v \nleq u] \tag{1}$$

and

$$(\forall u, v, w \in U)[[u < v \text{ and } v < w] \Rightarrow u < w]. \tag{2}$$

2. (U, <) is a total ordering on $U \stackrel{\text{def}}{\Leftrightarrow} (U, <)$ is a partial ordering on U and

$$(\forall u, v \in U \mid u \neq v)[u < v \text{ or } v < u]. \tag{3}$$

Examples

1. Suppose U is the set of nodes, $\{1, 2, 3, 4, 5, 6, 7, 8\}$, in the finite graph depicted in Figure 1 below and < on U is the transitive closure of the (directed) edge relation depicted by arrows in this figure. For example, in Figure 1, we have 5 < 2.

This (U, <) is a total ordering on U.

Figure 1: Example 1

2. Suppose U is the set of nodes, $\{1,2,3,4,5,6,7,8\}$, in the finite graph depicted in Figure 2 below and < on U is the transitive closure of the (directed) edge relation depicted by arrows in this figure. For example, in Figure 2, we have 5 < 1. This (U, <) is partial ordering on U but not a total ordering on U. It does satisfy (1) and (2) above; however, it does not satisfy (3). For example, in Figure 2, we have $1 \not< 2$ and $2 \not> 1$, and, also, $4 \not< 7$ and $7 \not> 4$.

(Problem A4 continues onto the next page.)

Figure 2: Example 2

(This page is the continuation of Problem A4.)

- 3. Suppose U is the set of all real numbers and < on U stands for the ordinary less-than relation on U. This (U, <) is a total ordering on U.
- 4. Suppose U is the set of all subsets of the set of real numbers. Then (U, \subset) is a partial ordering on U. You may find it hard to think of an example < so that (U, <) is a total order on U.

Definition Suppose (U, <) and (U, <') are each partial orderings on U.

$$(U, <') \ extends \ (U, <) \stackrel{\text{def}}{\Leftrightarrow} (\forall u, v \in U)[u < v \Rightarrow u <' v]. \tag{4}$$

E.g., Example 1 above extends Example 2 above.

Explicitly apply the form of the Compactness Theorem above and employ the Hint below to prove

$$(\forall \text{ partial orderings } (U, <))(\exists <')[(U, <') \text{ is a total ordering on } U \text{ which extends } (U, <)].$$
 (5)

Hint: Suppose (U, <) is a partial ordering on U.

Define a first order predicate logic language ℓ and a set of formulas Γ of ℓ such that

- (a) ℓ contains a constant symbol c_u for each $u \in U$ and a binary predicate symbol <; and
- (b) Γ contains two axioms expressing (1) and (2) above, respectively, and all the axioms of the two forms

$$c_u < c_v, \tag{6}$$

where $u, v \in U$ and u < v, and

$$[c_u < c_v \lor c_v < c_u], \tag{7}$$

where $u, v \in U$ and $u \neq v$.

Suppose V is any finite subset of U. Show that, for the partial ordering (V, < restricted to V), there is a total ordering (V, <') extending it. To do this, suppose $V = \{v_1, \ldots, v_n\}, n \geq 0$. Pick out the <-minimal elements of V and order them by their v-subscripts. Pull them out of V and iterate until no longer possible. String the results of each iteration after one another to (graphically) construct <'. Make this construction more detailed and convincing.

Suppose Δ is any finite subset of Γ . Consider which constant symbols c_u are explicitly mentioned in this Δ . Obtain a model for Δ .

Next apply the form of the Compactness Theorem above to obtain a model of Γ . Consider:

- the interpretation in this latter model of each constant symbol c_u , for $u \in U$, and
- the interpretation in this latter model of the binary predicate symbol <.

For Example 2 above the <-minimal elements of that U are 8, 5, 6. Following the iterative procedure on this example will yield a total ordering on this U extending (U, <) different from the one in Example 1.