a. (6.25 points)
Show that
\[L_1 = \{w \in \{a, b\}^* \mid w \text{ contains the subword } bba \text{ or } w \text{ ends in } baa \} \] (1)
is regular. You may use without proof any standard text book general results about regular sets provided you clearly say which results you are using when.\(^1\)

b. (6.25 points)
Find a deterministic finite automaton \(M' \) which accepts the same language (over \(\{a, b\} \)) as the non-deterministic finite automaton \(M \) depicted in table form just below.

\[
\begin{array}{c|cc}
\delta & a & b \\
\hline
\text{start} & \{1\} & \{1, 2\} \\
2 & \{3\} & \{3\} \\
3 & \{4\} & \{4\} \\
\text{final} & \emptyset & \emptyset \\
\end{array}
\]

c. (6.25 points)
Consider the following finite automaton \(M \) expressed in tabular form.

\[
\begin{array}{c|cc}
\delta & a & b \\
\hline
\text{start} & 2 & 4 \\
2 & 3 & 4 \\
\text{final} & 3 & 3 \\
4 & 2 & 5 \\
5 & 2 & 6 \\
6 & 6 & 6 \\
\end{array}
\]

This \(M \) is minimal state (for the accepting task it performs).

Explicitly employ Myhill-Nerode to prove this \(M \) is minimal state.

Hint: You may find it useful to draw the state diagram of \(M \).

Find a relevant spanning \(S \) by considering how to reach each state of \(M \) from its start state. Show this \(S \) can’t be reduced in size and still be relevantly spanning.

The number of combinations of six things taken two at a time is 15.

d. (6.25 points)
Employ an appropriate pumping lemma to show that
\[L_2 = \{a^m b^n \mid m \text{ is a perfect square } \vee \ n \text{ is odd} \} \] (2)
is not regular.

\(^1\)\(L_1 \)'s regularity is not a standard text book general result about regular languages. (⊂)
C2 Theory (25 points)

a. (12.5 points)
 Explicitly draw a state diagram for a PDA which accepts all and only the words in
 \[L = \{xayubv \mid x, y, u, v \in \{a, b\}^* \land |x| = |y| \land |u| = |v|\}. \] (3)

b. (12.5 points)
 Let \(L = \{a^m b^n a^m b^n \mid m, n > 1\} \). *Explicitly employ Pumping for PDA* to show that \(L \) is
 not a Context Free Language, i.e., that it is *not* accepted by any PDA.
C3 Theory (25 points)

Let N denote the set of non-negative integers.

Fix an unknown arbitrary standard programming formalism for computing all the one-argument partial computable functions which map N into N. Fix a code (Gödel) numbering of the programs of this formalism onto N. Let φ_p denote the partial function computed by program (number) p in the formalism.

Let $\Phi_p(x) \overset{\text{def}}{=} \text{the number of steps } \varphi\text{-program } p \text{ executes on input } x \text{ if } p \text{ on } x \text{ halts and undefined if } p \text{ on } x \text{ does not halt. You may assume: } \Phi_p(x) \text{ defines a partially computable function of } p, x; \ \Phi_p(x) \text{ is defined exactly when } \varphi_p(x) \text{ is defined; and}$

\[
\{(p,x,t) \mid \Phi_p(x) \leq t\} \text{ is a computable set.} \tag{4}
\]

You may assume without proof that, in the formalism, Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.

Prove by explicit application of KRT the following

Theorem Suppose f is computable, i.e., partially computable and total. Then there is an e such that

1. $\varphi_e = f$ and
2. $(\forall x \in N)\{\Phi_e(x) < \Phi_e(x + 1)\}$.

Hint for C3: Suppose f is computable. Informally apply KRT to get an e which creates a self-copy and which, on $x > 0$, uses that self-copy to (try to) compare $\Phi_e(x - 1)$ and $\Phi_e(x)$. If, as is not desired, $\Phi_e(x - 1) \geq \Phi_e(x)$, make sure e does something that, in the case that $\Phi_e(x - 1) \uparrow$, i.e., in the case that $\Phi_e(x - 1)$ is defined, will yield a contradiction. Otherwise, have e output $f(x)$. That was about $x > 0$. Explicitly make $\varphi_e(0) = f(0)$ — with no use of e’s self-copy.

When you have the behavior of your e on any input x all worked out and have justified that your e’s use of its self-copy and of its input x is algorithmic, then argue as follows. Suppose for contradiction that x is the least number such that $\varphi_e(x) \uparrow$, i.e., such that $\varphi_e(x)$ is undefined. Argue that, then, $\Phi_e(x) \uparrow$. Argue that $\Phi_e(0) \uparrow$. Show, then, that \[x > 0 \land \Phi_e(x - 1) \geq \Phi_e(x)\]. What can you then conclude re $\Phi_e(x - 1)$? What can you then conclude re $\varphi_e(x - 1)$? Get a contradiction. Argue that, then, φ_e is total. Finish the proof of the theorem.
C4 **Theory** (25 points)

The notation and terminology below is standard from the associated reading list book\(^2\) for this Theory part of the Preliminary Exam *except* that \(\varphi\) is used below in place of that book’s \(\Phi\).\(^3\)

This question, C4, features four multiple choice problems (about types), **where a short explanation for each of your choices also required. Again: you must also explain each of your choices!**

a. (6.25 points) Which one of the following is a type of \(\varphi\)?
 1. Computable function.
 2. Snapshot.
 3. Infinite partial computable function.
 4. Finite partial computable function.
 5. \(\mathcal{L}\)-program.

b. (6.25 points) Which one of the following is a type of \(\{2, 10^{10}\}\)?
 1. \(\mathcal{L}\)-program.
 2. Partial computable function.
 3. R.e. set.
 5. Snapshot.

c. (6.25 points) Which one of the following is a type of \(K\)?
 1. Non-negative integer.
 2. Partial computable function.
 3. \(\mathcal{L}\)-program.
 4. Non-r.e. set.
 5. R.e. set.

d. (6.25 points) Which one of the following is a type of \(\overline{K}\)?
 1. Computable, \(\{0,1\}\)-valued function.
 2. Computable set.
 3. R.e. set.
 4. Non-r.e. set.
 5. Non-negative integer.

\(^3\)This usage of \(\varphi\) below is also the same as its usage in the CISC 601 course here based on that reading list book.