
C1 Theory (25 points)

a. (6.25 points)
Show that

L1 = {w ∈ {a, b}∗ | w contains the subword bba or w ends in baa} (1)

is regular. You may use without proof any standard text book general results about
regular sets provided you clearly say which results you are using when.1

b. (6.25 points)
Find a deterministic finite automaton M′ which accepts the same language (over {a, b})
as the non-deterministic finite automaton M depicted in table form just below.

δ a b

start 1 {1} {1, 2}
2 {3} {3}
3 {4} {4}

final 4 ∅ ∅.
c. (6.25 points)

Consider the following finite automaton M expressed in tabular form.

δ a b

start 1 2 4
2 3 4

final 3 3 3
4 2 5
5 2 6
6 6 6.

This M is minimal state (for the accepting task it performs).
Explicitly employ Myhill-Nerode to prove this M is minimal state.

Hint: You may find it useful to draw the state diagram of M.
Find a relevant spanning S by considering how to reach each state of M from its
start state. Show this S can’t be reduced in size and still be relevantly spanning.
The number of combinations of six things taken two at a time is 15.

d. (6.25 points)
Employ an appropriate pumping lemma to show that

L2 = {ambn | m is a perfect square ∨ n is odd} (2)

is not regular.

1L1’s regularity is not a standard text book general result about regular languages. (
. .
^)



C2 Theory (25 points)

a. (12.5 points)
Explicitly draw a state diagram for a PDA which accepts all and only the words in

L = {xayubv | x, y, u, v ∈ {a, b}∗ ∧ |x| = |y| ∧ |u| = |v|}. (3)

b. (12.5 points)
Let L = {ambnambn | m,n > 1}. Explicitly employ Pumping for PDA to show that L is
not a Context Free Language, i.e., that it is not accepted by any PDA.



C3 Theory (25 points)
Let N denote the set of non-negative integers.

Fix an unknown arbitrary standard programming formalism for computing all the one-
argument partial computable functions which map N into N . Fix a code (Gödel) numbering
of the programs of this formalism onto N . Let ϕp denote the partial function computed by
program (number) p in the formalism.

Let Φp(x) def= the number of steps ϕ-program p executes on input x if p on x halts and
undefined if p on x does not halt. You may assume: Φp(x) defines a partially computable
function of p, x; Φp(x) is defined exactly when ϕp(x) is defined; and

{(p, x, t) | Φp(x) ≤ t} is a computable set. (4)

You may assume without proof that, in the formalism, Universality, S-m-n, and the Kleene
Recursion Theorem (KRT) hold.

Prove by explicit application of KRT the following

Theorem Suppose f is computable, i.e., partially computable and total. Then there is an e
such that

1. ϕe = f and

2. (∀x ∈ N)[Φe(x) < Φe(x + 1)].

Hint for C3: Suppose f is computable. Informally apply KRT to get an e which creates a
self-copy and which, on x > 0, uses that self-copy to (try to) compare Φe(x − 1) and
Φe(x). If, as is not desired, Φe(x− 1) ≥ Φe(x), make sure e does something that, in the
case that Φe(x−1)↓, i.e., in the case that Φe(x−1) is defined, will yield a contradiction.
Otherwise, have e output f(x). That was about x > 0. Explicitly make ϕe(0) = f(0) —
with no use of e’s self-copy.
When you have the behavior of your e on any input x all worked out and have justified
that your e’s use of its self-copy and of its input x is algorithmic, then argue as follows.
Suppose for contradiction that x is the least number such that ϕe(x)↑, i.e., such that
ϕe(x) is undefined. Argue that, then, Φe(x)↑. Argue that Φe(0)↓. Show, then, that
[x > 0 ∧ Φe(x− 1) ≥ Φe(x)]. What can you then conclude re Φe(x− 1)? What can you
then conclude re ϕe(x − 1)? Get a contradiction. Argue that, then, ϕe is total. Finish
the proof of the theorem.



C4 Theory (25 points)
The notation and terminology below is standard from the associated reading list book2 for
this Theory part of the Preliminary Exam except that ϕ is used below in place of that book’s
Φ.3

This question, C4, features four multiple choice problems (about types), where a short
explanation for each of your choices also required. Again: you must also explain
each of your choices!

a. (6.25 points) Which one of the following is a type of ϕ?

1. Computable function.
2. Snapshot.
3. Infinite partial computable function.
4. Finite partial computable function.
5. L-program.

b. (6.25 points) Which one of the following is a type of {2, 1010}?
1. L-program.
2. Partial computable function.
3. R.e. set.
4. Computable function.
5. Snapshot.

c. (6.25 points) Which one of the following is a type of K?

1. Non-negative integer.
2. Partial computable function.
3. L-program.
4. Non-r.e. set.
5. R.e. set.

d. (6.25 points) Which one of the following is a type of K?

1. Computable, {0,1}-valued function.
2. Computable set.
3. R.e. set.
4. Non-r.e. set.
5. Non-negative integer.

2This book is: M. Davis, R. Sigal, and E. Weyuker, Computability, Complexity and Languages: Fundamentals of
Theoretical Computer Science, Second Edition, Academic Press, New York, NY, 1994.

3This usage of ϕ below is also the same as its usage in the CISC 601 course here based on that reading list book.


