C1 **Theory** (25 points)

a. (6.25 points) Show that

$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ contains the subword } bba \text{ or } w \text{ ends in } baa \}$$
(1)

is regular. You may use with out proof any standard text book general results about regular sets provided you clearly say which results you are using when.¹

b. (6.25 points)

Find a *deterministic* finite automaton \mathcal{M}' which accepts the same language (over $\{a, b\}$) as the non-deterministic finite automaton \mathcal{M} depicted in table form just below.

δ	a	b
$\texttt{start}\ 1$	{1}	$\{1, 2\}$
2	$\{3\}$	$\{3\}$
3	$\{4\}$	$\{4\}$
$\texttt{final} \ 4$	Ø	Ø.

c. (6.25 points)

Consider the following finite automaton \mathcal{M} expressed in tabular form.

δ	a	b
$\texttt{start} \ 1$	2	4
2	3	4
$\texttt{final}\;3$	3	3
4	2	5
5	2	6
6	6	6.

This \mathcal{M} is minimal state (for the accepting task it performs).

Explicitly employ Myhill-Nerode to prove this \mathcal{M} is minimal state.

- **Hint:** You may find it useful to draw the state diagram of \mathcal{M} . Find a relevant spanning S by considering how to reach each state of \mathcal{M} from its start state. Show this S can't be reduced in size and still be relevantly spanning. The number of combinations of six things taken two at a time is 15.
- d. (6.25 points)

Employ an appropriate pumping lemma to show that

$$L_2 = \{a^m b^n \mid m \text{ is a perfect square } \lor n \text{ is odd}\}$$
(2)

is not regular.

¹ L_1 's regularity is not a standard text book general result about regular languages. (\bigcirc)

C2 Theory (25 points)

a. (12.5 points)

Explicitly draw a state diagram for a PDA which accepts all and only the words in

$$L = \{xayubv \mid x, y, u, v \in \{a, b\}^* \land |x| = |y| \land |u| = |v|\}.$$
(3)

b. (12.5 points)

Let $L = \{a^m b^n a^m b^n \mid m, n > 1\}$. Explicitly employ Pumping for PDA to show that L is not a Context Free Language, i.e., that it is not accepted by any PDA.

C3 Theory (25 points)

Let N denote the set of non-negative integers.

Fix an unknown arbitrary standard programming formalism for computing all the oneargument partial computable functions which map N into N. Fix a code (Gödel) numbering of the programs of this formalism onto N. Let φ_p denote the partial function computed by program (number) p in the formalism.

Let $\Phi_p(x) \stackrel{\text{def}}{=}$ the number of steps φ -program p executes on input x if p on x halts and undefined if p on x does not halt. You may assume: $\Phi_p(x)$ defines a *partially* computable function of p, x; $\Phi_p(x)$ is defined exactly when $\varphi_p(x)$ is defined; and

$$\{(p, x, t) \mid \Phi_p(x) \le t\} \text{ is a computable set.}$$

$$\tag{4}$$

You may assume with *out* proof that, in the formalism, Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.

Prove by explicit application of KRT the following

Theorem Suppose f is computable, i.e., partially computable and total. Then there is an e such that

- 1. $\varphi_e = f$ and
- 2. $(\forall x \in N) [\Phi_e(x) < \Phi_e(x+1)].$
- Hint for C3: Suppose f is computable. Informally apply KRT to get an e which creates a self-copy and which, on x > 0, uses that self-copy to (try to) compare $\Phi_e(x-1)$ and $\Phi_e(x)$. If, as is not desired, $\Phi_e(x-1) \ge \Phi_e(x)$, make sure e does something that, in the case that $\Phi_e(x-1)\downarrow$, i.e., in the case that $\Phi_e(x-1)$ is defined, will yield a contradiction. Otherwise, have e output f(x). That was about x > 0. Explicitly make $\varphi_e(0) = f(0)$ with no use of e's self-copy.

When you have the behavior of your e on any input x all worked out and have justified that your e's use of its self-copy and of its input x is algorithmic, then argue as follows. Suppose for contradiction that x is the least number such that $\varphi_e(x)\uparrow$, i.e., such that $\varphi_e(x)$ is undefined. Argue that, then, $\Phi_e(x)\uparrow$. Argue that $\Phi_e(0)\downarrow$. Show, then, that $[x > 0 \land \Phi_e(x-1) \ge \Phi_e(x)]$. What can you then conclude re $\Phi_e(x-1)$? What can you then conclude re $\varphi_e(x-1)$? Get a contradiction. Argue that, then, φ_e is total. Finish the proof of the theorem. C4 **Theory** (25 points)

The notation and terminology below is standard from the associated reading list book² for this Theory part of the Preliminary Exam *except* that φ is used below in place of that book's Φ .³

This question, C4, features four multiple choice problems (about types), where a short explanation for each of your choices also required. Again: you must also explain each of your choices!

- a. (6.25 points) Which one of the following is a type of φ ?
 - 1. Computable function.
 - 2. Snapshot.
 - 3. Infinite partial computable function.
 - 4. Finite partial computable function.
 - 5. \mathcal{L} -program.
- b. (6.25 points) Which one of the following is a type of $\{2, 10^{10}\}$?
 - 1. \mathcal{L} -program.
 - 2. Partial computable function.
 - 3. R.e. set.
 - 4. Computable function.
 - 5. Snapshot.
- c. (6.25 points) Which one of the following is a type of K?
 - 1. Non-negative integer.
 - 2. Partial computable function.
 - 3. *L*-program.
 - 4. Non-r.e. set.
 - 5. R.e. set.
- d. (6.25 points) Which one of the following is a type of \overline{K} ?
 - 1. Computable, $\{0,1\}$ -valued function.
 - 2. Computable set.
 - 3. R.e. set.
 - 4. Non-r.e. set.
 - 5. Non-negative integer.

²This book is: M. Davis, R. Sigal, and E. Weyuker, *Computability, Complexity and Languages: Fundamentals of Theoretical Computer Science*, Second Edition, Academic Press, New York, NY, 1994.

³This usage of φ below is also the same as its usage in the CISC 601 course here based on that reading list book.