C1 Theory (25 points)

a. (6.25 points)

Show that

$$
\begin{equation*}
L_{1}=\left\{w \in\{a, b\}^{*} \mid w \text { contains the subword bba or } w \text { ends in baa }\right\} \tag{1}
\end{equation*}
$$

is regular. You may use without proof any standard text book general results about regular sets provided you clearly say which results you are using when. ${ }^{1}$
b. (6.25 points)

Find a deterministic finite automaton \mathcal{M}^{\prime} which accepts the same language (over $\{a, b\}$) as the non-deterministic finite automaton \mathcal{M} depicted in table form just below.

δ	a	b
start 1	$\{1\}$	$\{1,2\}$
2	$\{3\}$	$\{3\}$
3	$\{4\}$	$\{4\}$
final 4	\emptyset	\emptyset.

c. (6.25 points)

Consider the following finite automaton \mathcal{M} expressed in tabular form.

δ	a	b
start 1	2	4
2	3	4
final 3	3	3
4	2	5
5	2	6
6	6	6.

This \mathcal{M} is minimal state (for the accepting task it performs).
Explicitly employ Myhill-Nerode to prove this \mathcal{M} is minimal state.
Hint: You may find it useful to draw the state diagram of \mathcal{M}.
Find a relevant spanning S by considering how to reach each state of \mathcal{M} from its start state. Show this S can't be reduced in size and still be relevantly spanning. The number of combinations of six things taken two at a time is 15 .
d. (6.25 points)

Employ an appropriate pumping lemma to show that

$$
\begin{equation*}
L_{2}=\left\{a^{m} b^{n} \mid m \text { is a perfect square } \vee n \text { is odd }\right\} \tag{2}
\end{equation*}
$$

is not regular.

[^0]
C2 Theory (25 points)

a. (12.5 points)

Explicitly draw a state diagram for a $P D A$ which accepts all and only the words in

$$
\begin{equation*}
L=\left\{x a y u b v\left|x, y, u, v \in\{a, b\}^{*} \wedge\right| x|=|y| \wedge| u|=|v|\}\right. \tag{3}
\end{equation*}
$$

b. (12.5 points)

Let $L=\left\{a^{m} b^{n} a^{m} b^{n} \mid m, n>1\right\}$. Explicitly employ Pumping for $P D A$ to show that L is not a Context Free Language, i.e., that it is not accepted by any PDA.

C3 Theory (25 points)

Let N denote the set of non-negative integers.
Fix an unknown arbitrary standard programming formalism for computing all the oneargument partial computable functions which map N into N. Fix a code (Gödel) numbering of the programs of this formalism onto N. Let φ_{p} denote the partial function computed by program (number) p in the formalism.
Let $\Phi_{p}(x) \stackrel{\text { def }}{=}$ the number of steps φ-program p executes on input x if p on x halts and undefined if p on x does not halt. You may assume: $\Phi_{p}(x)$ defines a partially computable function of $p, x ; \Phi_{p}(x)$ is defined exactly when $\varphi_{p}(x)$ is defined; and

$$
\begin{equation*}
\left\{(p, x, t) \mid \Phi_{p}(x) \leq t\right\} \text { is a computable set. } \tag{4}
\end{equation*}
$$

You may assume without proof that, in the formalism, Universality, S-m-n, and the Kleene Recursion Theorem (KRT) hold.

Prove by explicit application of KRT the following
Theorem Suppose f is computable, i.e., partially computable and total. Then there is an e such that

1. $\varphi_{e}=f$ and
2. $(\forall x \in N)\left[\Phi_{e}(x)<\Phi_{e}(x+1)\right]$.

Hint for C3: Suppose f is computable. Informally apply KRT to get an e which creates a self-copy and which, on $x>0$, uses that self-copy to (try to) compare $\Phi_{e}(x-1)$ and $\Phi_{e}(x)$. If, as is not desired, $\Phi_{e}(x-1) \geq \Phi_{e}(x)$, make sure e does something that, in the case that $\Phi_{e}(x-1) \downarrow$, i.e., in the case that $\Phi_{e}(x-1)$ is defined, will yield a contradiction. Otherwise, have e output $f(x)$. That was about $x>0$. Explicitly make $\varphi_{e}(0)=f(0)$ with no use of e 's self-copy.
When you have the behavior of your e on any input x all worked out and have justified that your e's use of its self-copy and of its input x is algorithmic, then argue as follows. Suppose for contradiction that x is the least number such that $\varphi_{e}(x) \uparrow$, i.e., such that $\varphi_{e}(x)$ is undefined. Argue that, then, $\Phi_{e}(x) \uparrow$. Argue that $\Phi_{e}(0) \downarrow$. Show, then, that $\left[x>0 \wedge \Phi_{e}(x-1) \geq \Phi_{e}(x)\right]$. What can you then conclude re $\Phi_{e}(x-1)$? What can you then conclude re $\varphi_{e}(x-1)$? Get a contradiction. Argue that, then, φ_{e} is total. Finish the proof of the theorem.

C4 Theory (25 points)

The notation and terminology below is standard from the associated reading list book ${ }^{2}$ for this Theory part of the Preliminary Exam except that φ is used below in place of that book's $\Phi{ }^{3}$
This question, C4, features four multiple choice problems (about types), where a short explanation for each of your choices also required. Again: you must also explain each of your choices!
a. (6.25 points) Which one of the following is a type of φ ?

1. Computable function.
2. Snapshot.
3. Infinite partial computable function.
4. Finite partial computable function.
5. \mathcal{L}-program.
b. (6.25 points) Which one of the following is a type of $\left\{2,10^{10}\right\}$?
6. \mathcal{L}-program.
7. Partial computable function.
8. R.e. set.
9. Computable function.
10. Snapshot.
c. (6.25 points) Which one of the following is a type of K ?
11. Non-negative integer.
12. Partial computable function.
13. \mathcal{L}-program.
14. Non-r.e. set.
15. R.e. set.
d. (6.25 points) Which one of the following is a type of \bar{K} ?
16. Computable, $\{0,1\}$-valued function.
17. Computable set.
18. R.e. set.
19. Non-r.e. set.
20. Non-negative integer.
[^1]
[^0]: ${ }^{1} L_{1}$'s regularity is not a standard text book general result about regular languages. (こ)

[^1]: ${ }^{2}$ This book is: M. Davis, R. Sigal, and E. Weyuker, Computability, Complexity and Languages: Fundamentals of Theoretical Computer Science, Second Edition, Academic Press, New York, NY, 1994.
 ${ }^{3}$ This usage of φ below is also the same as its usage in the CISC 601 course here based on that reading list book.

